首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methanogenic bacteria with a coccobacillus morphology similar to Methanobrevibacter ruminantium were isolated from the bovine rumen. One isolate, 10-16B, represented a previously undescribed rumen population that, unlike M. ruminantium, synthesized coenzyme M, grew rapidly (mu = 0.24 h-1) on H2-CO2 in a complex medium, had simple nutritional requirements, and metabolized formate at reported rumen concentrations. H2 was metabolized to partial pressures 10-fold lower than those reported for the rumen. After H2 starvation for 26 h, strain 10-16B rapidly resumed growth when H2 was made available. The minimum concentrations of acetate (6 mM) and ammonia (less than 7 mM) that were required for optimal growth were lower than the reported acetate and ammonia concentrations in the rumen. Isoleucine and leucine stimulated growth, but only at concentrations (greater than 50 microM) higher than those reported for the rumen. Another coccobacillary methanogenic organism that synthesized coenzyme M was isolated from a different animal as were organisms that required an exogenous supply of coenzyme M. In general, methanogenic bacteria that required an exogenous supply of coenzyme M had lower maximum growth rates and more complex nutritional requirements than organisms that synthesized the cofactor. The ability of all isolates to metabolize formate below the detection limit of 10 microM indicated that, in contrast to previous reports, methanogenic bacteria have the potential to directly metabolize formate in the rumen. This study demonstrated that there are physiologically diverse populations of coccobacillary methanogenic bacteria in the rumen that can interact competitively and cooperatively.  相似文献   

2.
The anaerobic cellulolytic rumen bacterium Ruminococcus flavefaciens normally produces succinic acid as a major fermentation product together with acetic and formic acids, H2, and CO2. When grown on cellulose and in the presence of the methanogenic rumen bacterium Methanobacterium ruminantium, acetate was the major fermentation product; succinate was formed in small amounts; little formate was detected; H2 did not accumulate; and large amounts of CH4 were formed. M. ruminantium depends for growth on the reduction of CO2 to CH4 by H2, which it can obtain directly or by producing H2 and CO2 from formate. In mixed culture, the methanobacterium utilized the H2 and possibly the formate produced by the ruminococcus and in so doing stimulated the flow of electrons generated during glycolysis by the ruminococcus toward H2 formation and away from formation of succinate. This type of interaction may be of significance in determining the flow of cellulose carbon to the normal rumen fermentation products.  相似文献   

3.
The anaerobic cellulolytic rumen bacterium Ruminococcus flavefaciens normally produces succinic acid as a major fermentation product together with acetic and formic acids, H2, and CO2. When grown on cellulose and in the presence of the methanogenic rumen bacterium Methanobacterium ruminantium, acetate was the major fermentation product; succinate was formed in small amounts; little formate was detected; H2 did not accumulate; and large amounts of CH4 were formed. M. ruminantium depends for growth on the reduction of CO2 to CH4 by H2, which it can obtain directly or by producing H2 and CO2 from formate. In mixed culture, the methanobacterium utilized the H2 and possibly the formate produced by the ruminococcus and in so doing stimulated the flow of electrons generated during glycolysis by the ruminococcus toward H2 formation and away from formation of succinate. This type of interaction may be of significance in determining the flow of cellulose carbon to the normal rumen fermentation products.  相似文献   

4.
Methanobacterium ruminantium was shown to possess a formate dehydrogenase which is linked to factor 420 (F420) as the first low-molecular-weight or anionic electron transfer coenzyme. Reduced F420 obtained from the formate dehydrogenase can be further linked to the formation of hydrogen via the previously described F420-dependent hydrogenase reaction, thus constituting an apparently simple formate hydrogenlyase system, or to the reduction of nicotinamide adenine dinucleotide phosphate via F420:nicotinamide adenine dinucleotide phosphate oxidoreductase. The results indicate that hydrogen and formate, the only known energy sources for M. ruminantium and many other methanogenic bacteria, should be essentially equivalent as sources of electrons in the metabolism of this organism.  相似文献   

5.
Coenzyme M (2-mercaptoethane sulfonic acid) and factor F430 (a nickel porphinoid) are coenzymes found in methanogenic bacteria. Recently it has been proposed that in these bacteria a coenzyme MF430 also exists which plays a key role in methane formation and in which coenzyme M and F430 are bound to each other. To test this hypothesis Methanobrevibacter ruminantium, which requires coenzyme M as a vitamin, was grown in the presence of [2-14C]CoMSH. F430 and 'CoM' (mixture of CoMSH and its disulfides) were quantitatively extracted from these cells and from partially purified methyl-CoM reductase using various methods. The extracts were chromatographed on cellulose or Sephadex G-10. Under all conditions factor F430 and 'CoM' were completely (greater than 99%) separated. There was no indication for the existence of a protein-free F430 species containing covalently bound coenzyme M in Mb. ruminantium. The results support the structure previously assigned to coenzyme F430.  相似文献   

6.
To ascertain its physiological similarity to other methanogenic bacteria, Methanospirillum hungatii, the type species of the genus, was characterized nutritionally and biochemically. Good growth occurred in a medium consisting of mineral salts, cysteine sulfide reducing buffer, and an H2-CO2 (80:20) atmosphere. Addition of amino acids and B vitamins stimulated growth. Cell-free extracts contained methylcobalamin-coenzyme M methyltransferase, methylreductase, and formate hydrogenlyase. Cells contained coenzyme M and coenzyme F420. Coenzyme F420 was required for formate hydrogenlyase activity. Coenzyme F420 purified from M. hungatii had identical properties to that purified from species of Methanobacterium. The physiological basis of the family Methanobacteriaceae is strengthened by these findings.  相似文献   

7.
To ascertain its physiological similarity to other methanogenic bacteria, Methanospirillum hungatii, the type species of the genus, was characterized nutritionally and biochemically. Good growth occurred in a medium consisting of mineral salts, cysteine sulfide reducing buffer, and an H2-CO2 (80:20) atmosphere. Addition of amino acids and B vitamins stimulated growth. Cell-free extracts contained methylcobalamin-coenzyme M methyltransferase, methylreductase, and formate hydrogenlyase. Cells contained coenzyme M and coenzyme F420. Coenzyme F420 was required for formate hydrogenlyase activity. Coenzyme F420 purified from M. hungatii had identical properties to that purified from species of Methanobacterium. The physiological basis of the family Methanobacteriaceae is strengthened by these findings.  相似文献   

8.
Experiments with washed suspensions of holotrich protozoa (Isotricha spp. and Dasytricha ruminantium) showed that both organisms have an efficient O2-scavenging capability (apparent Km values 2.3 and 0.3 microM, respectively). Reversible inhibition of H2 production increased almost linearly with increasing O2 up to 1.5 microM; higher levels of O2 gave irreversible inhibition. In situ determinations of H2, CH4, O2 and CO2 in ovine rumen liquor, using a membrane inlet mass spectrometer probe, indicated that O2 was present before feeding at 1-1.5 microM and decreased to undetectable levels (less than 0.25 microM) within 25 min after feeding. A transient increase in O2 concentration after feeding occurred only in defaunated animals and resulted in suppression of CH4 and CO2 production. The presence of washed holotrich protozoa decreases the O2 sensitivity of CH4 production by suspensions of a cultured methanogenic bacterium Methanosarcina barkeri. It is concluded that holotrich protozoa play a role in ruminal O2 utilization as well as in the production of fermentation end products (especially short-chain volatile fatty acids) utilized by the ruminant and H2 utilized by methanogenic bacteria. These hydrogenosome-containing protozoa thus both control patterns of fermentation by influencing O2 levels, and are themselves regulated by the low ambient O2 concentrations they experience in the rumen.  相似文献   

9.
Formate as an Intermediate in the Bovine Rumen Fermentation   总被引:27,自引:1,他引:26       下载免费PDF全文
An average of 11 (range, 2 to 47) mumoles of formate per g per hr was produced and used in whole bovine rumen contents incubated in vitro, as calculated from the product of the specific turnover rate constant, k, times the concentration of intercellular formate. The latter varied between 5 and 26 (average, 12) nmoles/g. The concentration of formate in the total rumen contents was as much as 1,000 times greater, presumably owing to formate within the microbial cells. The concentration of formate in rumen contents minus most of the plant solids was varied, and from the rates of methanogenesis the Michaelis constant, K(m), for formate conversion to CH(4) was estimated at 30 nmoles/g. Also, the dissolved H(2) was measured in relation to methane production, and a K(m) of 1 nmole/g was obtained. A pure culture of Methanobacterium ruminantium showed a K(m) of 1 nmole of H(2)/g, but the K(m) for formate was much higher than the 30 nmoles for the rumen contents. It is concluded that nonmethanogenic microbes metabolize intercellular formate in the rumen. CO(2) and H(2) are the principal substrates for rumen methanogenesis. Eighteen per cent of the rumen methane is derived from formate, as calculated from the intercellular concentration of hydrogen and formate in the rumen, the Michaelis constants for conversion of these substrates by rumen liquid, and the relative capacities of whole rumen contents to ferment these substrates.  相似文献   

10.
A growth factor present in rumen fluid and essential for growth of a rumen strain of Methanobacterium ruminantium was shown to be coenzyme M, 2-mercaptoethanesulfonic acid.  相似文献   

11.
The effects of ruminal concentrations of CO2 and O2 on glucose-stimulated and endogenous fermentation of the rumen isotrichid ciliate Dasytricha ruminantium were investigated. Principal metabolic products were lactic, butyric and acetic acids, H2 and CO2. Traces of propionic acid were also detected; formic acid present in the incubation supernatants was found to be a fermentation product of the bacteria closely associated with this rumen ciliate. 13C NMR spectroscopy revealed alanine as a minor product of glucose fermentation by D. ruminantium. Glucose uptake and metabolite formation rates were influenced by the headspace gas composition during the protozoal incubations. The uptake of exogenously supplied D-glucose was most rapid in the presence of O2 concentrations typical of those detected in situ (i.e. 1-3 microM). A typical ruminal gas composition (high CO2, low O2) led to increased butyrate and acetate formation compared to results obtained using O2-free N2. At a partial pressure of 66 kPa CO2 in N2, increased cytosolic flux to butyrate was observed. At low O2 concentrations (1-3 microM dissolved in the protozoal suspension) in the absence of CO2, increased acetate and CO2 formation were observed and D. ruminantium utilized lactate in the absence of extracellular glucose. The presence of both O2 and CO2 in the incubation headspaces resulted in partial inhibition of H2 production by D. ruminantium. Results suggest that at the O2 and CO2 concentrations that prevail in situ, the contribution made by D. ruminantium to the formation of ruminal volatile fatty acids is greater than previously reported, as earlier measurements were made under anaerobic conditions.  相似文献   

12.
Metabolic interactions between anaerobic bacteria in methanogenic environments   总被引:29,自引:0,他引:29  
In methanogenic environments organic matter is degraded by associations of fermenting, acetogenic and methanogenic bacteria. Hydrogen and formate consumption, and to some extent also acetate consumption, by methanogens affects the metabolism of the other bacteria. Product formation of fermenting bacteria is shifted to more oxidized products, while acetogenic bacteria are only able to metabolize compounds when methanogens consume hydrogen and formate efficiently. These types of metabolic interaction between anaerobic bacteria is due to the fact that the oxidation of NADH and FADH2 coupled to proton or bicarbonate reduction is thermodynamically only feasible at low hydrogen and formate concentrations. Syntrophic relationships which depend on interspecies hydrogen or formate transfer were described for the degradation of e.g. fatty acids, amino acids and aromatic compounds.  相似文献   

13.
The Fusarium spp. mycotoxins fusaric acid and deoxynivalenol (DON) were tested for antimicrobial activity against Ruminococcus albus and Methanobrevibacter ruminantium. The growth of both organisms was inhibited by fusaric acid as low as 15 micrograms/mL (84 microM) but not by DON, at levels as high as 100 micrograms/mL (338 microM). No synergistic inhibitory effect was observed with DON plus fusaric acid. Neither organism was able to adapt to the fusaric acid and responses of each organism to the compound were different. The optical density (OD) maximum for R. albus, but not for M. ruminantium, was diminished after 28 days incubation at concentrations of fusaric acid below 240 micrograms/mL. Inhibition of R. albus started before significant growth had occurred, while M. ruminantium doubled twice before the onset of inhibition. Responses to picolinic acid, an analog of fusaric acid, were also dramatically different between the two microorganisms with M. ruminantium exhibiting a severe lag followed by a complete recovery of growth, while R. albus was only slightly inhibited with no lag. These results suggest that the mechanism of fusaric acid inhibition is specific to each microorganism. This is the first demonstration of the common mycotoxin fusaric acid inhibiting the growth of rumen bacteria.  相似文献   

14.
Characteristics of methanogens isolated from bovine rumen.   总被引:3,自引:2,他引:1       下载免费PDF全文
Six strains of methanogens were isolated from 10(-8) and 10(-9) ml of bovine rumen contents. All strains had the morphologic and physiologic characteristics of Methanobrevibacter spp. Four strains required coenzyme M; two did not. Growth of all strains either depended on or was stimulated by a mixture of isobutyric, isovaleric, 2-methylbutyric, and valeric acids. None of the strains reacted with antiserum against the type strain of Methanobrevibacter ruminantium.  相似文献   

15.
Characteristics of methanogens isolated from bovine rumen   总被引:2,自引:0,他引:2  
Six strains of methanogens were isolated from 10(-8) and 10(-9) ml of bovine rumen contents. All strains had the morphologic and physiologic characteristics of Methanobrevibacter spp. Four strains required coenzyme M; two did not. Growth of all strains either depended on or was stimulated by a mixture of isobutyric, isovaleric, 2-methylbutyric, and valeric acids. None of the strains reacted with antiserum against the type strain of Methanobrevibacter ruminantium.  相似文献   

16.
Nutrition and carbon metabolism of Methanococcus voltae.   总被引:54,自引:27,他引:27       下载免费PDF全文
Methanococcus voltae is a heterotrophic, H2-oxidizing methanogenic bacterium. In complex medium, this bacterium has a doubling time of 1.2 h at its temperature optimum of 38 degrees C. In defined medium, optimal growth is obtained with 0.75 mM isoleucine, 0.75 mM leucine, 2.5 mM acetate, 5 mM NH4Cl, 84 mM MgSO4, 0.4 M NaCl, 1 mM CaCl2, 10 microM Fe2O3, and 0.2 microM NiCl2. In addition, pantothenate, sodium selenate, and cobalt stimulate growth. Optimal growth is obtained between pH 6.0 and 7.0 with either H2 or formate as the electron donor. The volatile fatty acids 2-methylbutyrate and isovalerate can substitute for isoleucine and leucine, respectively. Cellular carbon is derived from acetate (31%), isoleucine (22%), leucine (25%), and carbon dioxide (23%). The amino acids and fatty acids are incorporated almost exclusively into protein. A comparison of the incorporation of U-14C-amino acids and 1-14C-fatty acids indicated that the fatty acids are degraded during incorporation into cell protein. The distribution of carbon from the amino acids suggests that acetyl coenzyme A is not a major intermediate in the degradation of these compounds. Thus, M. voltae may convert isoleucine and leucine to other amino acids by a unique mechanism. The lipid carbon is derived largely from acetate. Thus, the isoprenoid lipids are synthesized de novo from acetate rather than by degradation of leucine. The carbon in the nucleic acids is derived from carbon dioxide (45%), the C-1 of acetate (25%), the C-2 of acetate (22%), and isoleucine and leucine (7%). This labeling pattern is consistent with known biochemical pathways.  相似文献   

17.
The sensitivity of the requirement of Methanobacterium ruminantium strain M1 to a new coenzyme, 2-mercaptoethanesulfonic acid (HS-CoM) was examined by use of new techniques that were developed for rapid and efficient handling of large numbers of cultures of methanogenic bacteria. The system uses sealed tubes that contain a gas mixture of 80% hydrogen and 20% carbon dioxide under a pressure of 2 to 3 atm. This modification of the Hungate technique reduces variability among replicate cultures and simplifies the dispensing, sterilization, and storage of liquid media as well as the transfer and maintenance of methanogenic bacteria. Results indicate a limit of sensitivity of the assay at 5 nM HS-CoM, with half-maximal growth at 25 nM HS-CoM. Coenzyme activity could be replaced by 2,2'-dithiodiethanesulfonic acid at a half-molar equivalent of the HS-CoM concentration, or by 2-(methylthio)ethanesulfonic acid on an equimolar basis. These data reveal a very sensitive and precise requirement for HS-CoM in the nutrition of this fastidious anaerobe.  相似文献   

18.
Strains of three anaerobic rumen bacteria, Bacteroides ruminicola, Anaerovibrio lipolytica and Selenomonas ruminantium, were able to use extracellular H2 to reduce fumarate to succinate. Each bacterium possessed membrane-bound hydrogenase and fumarate reductase activity. Membrane-bound cytochrome b was reducible by H2 and oxidizable by fumarate in each bacterium. The apparent Km values for hydrogen of the hydrogenases were 4 . 5 x 10(-6) M, 1 . 4 x 10(-5) M and 4 . 4 x 10(-5) M for B. ruminicola, A. lipolytica and S. ruminantium, respectively. The apparent Km values for fumarate of the fumarate reductases were approximately 1 . 0 x 10(-4) M for each bacterium.  相似文献   

19.
Experiments with washed suspensions of holotrich protozoa (Isotricha spp. and Dasytricha ruminantium ) showed that both organisms have an efficient 0,-scavenging capability (apparent Km values 2.3 and 0.3 μM, respectively). Reversible inhibition of H2, production increased almost linearly with increasing O2 up to 1.5 μM; higher levels of O2 gave irreversible inhibition. In situ determinations of H, CH4, O2, and CO2, in ovine rumen liquor, using a membrane inlet mass spectrometer probe, indicated that O2, was present before feeding at 1-1.5 μM and decreased to undetectable levels (<0.25 μM) within 25 min after feeding. A transient increase in O2. concentration after feeding occurred only in defaunated animals and resulted in suppression of CH4 and CO2 production. The presence of washed holotrich protozoa decreases the O2 sensitivity of CH4 production by suspensions of a cultured methanogenic bacterium Methanosarcina barkeri . It is concluded that holotrich protozoa play a role in ruminal O2 utilization as well as in the production of fermentation end products (especially short-chain volatile fatty acids) utilized by the ruminant and H, utilized by methanogenic bacteria. These hydrogenosome-containing protozoa thus both control patterns of fermentation by influencing O2 levels, and are themselves regulated by the low ambient O2 concentrations they experience in the rumen.  相似文献   

20.
Fumarate-reducing bacteria were sought from the main ruminal bacteria. Fibrobacter succinogenes, Selenomonas ruminantium subsp. ruminantium, Selenomonas ruminantium subsp. lactilytica, and Veillonella parvula reduced fumarate by using H(2) as an electron donor. Ruminococcus albus, Prevotella ruminicola, and Anaerovibrio lipolytica consumed fumarate, although they did not oxidize H(2). Of these bacteria, V. parvula, two strains of Selenomonas, and F. succinogenes had a high capacity to reduce fumarate. In all the fumarate-reducing bacteria examined, fumarate reductase existed in the membrane fraction. Based on the activity per cell mass and the affinity of fumarate reductase to fumarate, these bacteria were divided into two groups, which corresponded to the capacity to use H(2): A group of bacteria with higher activity and affinity were able to use H(2) as an electron donor for fumarate reduction. The bacteria in this group should gain an advantage over the bacteria in another group in fumarate reduction in the rumen. Cellulose digestion by R. albus was improved by fumarate reduction by S. lactilytica as a result of an increased growth of R. albus, which may have been caused by the fact that S. lactilytica immediately consumed H(2) produced by R. albus. Thus fumarate reduction may play an important role in keeping a low partial pressure of H(2) in the rumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号