首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Broken chromosome ends are believed to be capped by a terminal protein complex, and can be maintained in Drosophila melanogaster for many generations. We investigated whether the vicinity of a chromosome end affected P element mobilization and the subsequent repair of the resulting DNA lesion. High levels of P element excision were observed when at least 5 kb of DNA was located between the P element and the end of the chromosome, but recovery of chromosomes from which the P element had been excised was greatly reduced when the chromosome end was positioned less than 5 kb away from the original P element insertion site. Moreover, when the P element was mobilized in terminal deficiency ( y TD ) alleles, excision events were accompanied by deletions of sequences originally located distal to the P element.Communicated by G. Reuter  相似文献   

3.
Transposable elements are being developed as tools for genomics and for the manipulation of insect genotypes for the purposes of biological control. An understanding of their transposition behavior will facilitate the use of these elements. The behavior of an autonomous Hermes transposable element from Musca domestica in the soma and germ-line of Drosophila melanogaster was investigated using the method of transposon display. In the germ-line, Hermes transposed at a rate of approximately 0.03 jumps per element per generation. Within the soma Hermes exhibited markedly non-random patterns of integration. Certain regions of the genome were distinctly preferred over others as integration targets, while other regions were underrepresented among the integration sites used. One particular site accounted for 4.4% of the transpositions recovered in this experiment, all of which were located within a 2.5-kb region of the actin5C promoter. This region was also present within the Hermes element itself, suggesting that this clustering is an example of transposable element "homing". Clusters of integration sites were also observed near the original donor sites; these represent examples of local hopping. The information content (sequence specificity) of the 8-bp target site was low, and the consensus target site resembles that determined from plasmid-based integration assays.  相似文献   

4.
The results obtained at our laboratory during several last years suggest that a specific telomeric chromatin is formed at the terminal regions of Drosophila melanogaster DNA of 4–5 kb in length. In this work, we have studied how the telomeric chromatin influences the Polycomb-dependent repression. Many Polycomb proteins are involved in the formation of subtelomeric chromatin and inhibit the expression of a transgene inserted into it. However, the question on a positive or negative effect of telomeric chromatin on the assembly of subtelomeric protein complexes is yet open. Using a model system, in which a P element inserted upstream of the yellow gene promoter and located at the end of a terminally deleted chromosome can serve as a binding site for Pc-G proteins in the presence of ph p1 mutant allele, we have shown that a specific structure of the telomeric chromatin negatively influences the formation of Polycomb-dependent repression complex. These results suggest an antagonism between the telomeric and subtelomeric (Pc-G-dependent) chromatins.  相似文献   

5.
Extensive research has been carried out to understand how circadian clocks regulate various physiological processes in organisms. The discovery of clock genes and the molecular clockwork has helped researchers to understand the possible role of these genes in regulating various metabolic processes. In Drosophila melanogaster, many studies have shown that the basic architecture of circadian clocks is multi-oscillatory. In nature, different neuronal subgroups in the brain of D. melanogaster have been demonstrated to control different circadian behavioural rhythms or different aspects of the same circadian rhythm. Among the circadian phenomena that have been studied so far in Drosophila, the egg-laying rhythm is unique, and relatively less explored. Unlike most other circadian rhythms, the egg-laying rhythm is rhythmic under constant light conditions, and the endogenous or free-running period of the rhythm is greater than those of most other rhythms. Although the clock genes and neurons required for the persistence of adult emergence and activity/rest rhythms have been studied extensively, those underlying the circadian egg-laying rhythm still remain largely unknown. In this review, we discuss our current understanding of the circadian egg-laying rhythm in D. melanogaster, and the possible molecular and physiological mechanisms that control the rhythmic output of the egg-laying process.  相似文献   

6.
The P transposable element invaded the Drosophila melanogaster genome in the middle of the twentieth century, probably from D. willistoni in the Caribbean or southeastern North America. P elements then spread rapidly and became ubiquitous worldwide in wild populations of D. melanogaster by 1980. To study the dynamics and long-term fate of transposable genetic elements, we examined the molecular profile of genomic P elements and the phenotype in the P-M system of the current North American natural populations collected in 2001-2003. We found that full-size P and KP elements were the two major size classes of P elements present in the genomes of all populations ("FP + KP predominance") and that the P-related phenotypes had largely not changed since the 1980s. Both FP + KP predominance and phenotypic stability were also seen in other populations from other continents. As North American populations did not show many KP elements in earlier samples, we hypothesize that KP elements have spread and multiplied in the last 20 years in North America. We suggest that this may be due to a transpositional advantage of KP elements, rather than to a role in P-element regulation.  相似文献   

7.
Non-mammalian infection models have been developed over the last two decades, which is a historic milestone to understand the molecular basis of bacterial pathogenesis. They also provide small-scale research platforms for identification of virulence factors, screening for antibacterial hits, and evaluation of antibacterial efficacy. The fruit fly, Drosophila melanogaster is one of the model hosts for a variety of bacterial pathogens, in that the innate immunity pathways and tissue physiology are highly similar to those in mammals. We here present a relatively simple protocol to assess the key aspects of the polymicrobial interaction in vivo between the human opportunistic pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, which is based on the systemic infection by needle pricking at the dorsal thorax of the flies. After infection, fly survival and bacteremia over time for both P. aeruginosa and S. aureus within the infected flies can be monitored as a measure of polymicrobial virulence potential. The infection takes ~24 h including bacterial cultivation. Fly survival and bacteremia are assessed using the infected flies that are monitored up to ~60 h post-infection. These methods can be used to identify presumable as well as unexpected phenotypes during polymicrobial interaction between P. aeruginosa and S. aureus mutants, regarding bacterial pathogenesis and host immunity.  相似文献   

8.
The effect of strong hypomorphic mutation of the insulin-like protein gene (dilp6) on metabolism of octopamine (one of the main biogenic amines in insects) was studied in Drosophila melanogaster males and females. The activity of tyrosine decarboxylase (the key enzyme of octopamine synthesis) and the activity of octopamine-dependent N-acetyltransferase (the enzyme of its degradation) were measured. It was demonstrated that the activity of both studied enzymes is decreased under normal conditions in the dilp641 mutants (as we previously demonstrated, this is correlated with an increased level of octopamine). It was also found that hypomorphic mutation of the dilp6 gene decreases the intensity of tyrosine decarboxylase response to heat stress. Thus, it was demonstrated for the first time that insulin-like DILP6 protein in drosophila influences the level of octopamine (regulating the activity of the enzyme degrading octopamine).  相似文献   

9.
The endosymbiotic α-proteobacteria Wolbachia is widely spread among arthropods and Filariidae nematodes. This bacterium is transmitted vertically via a transovarian route. Wolbachia is a cause of several reproductive abnormalities in the host species. We analyzed the isofemale lines created using flies collected from Drosophila melanogaster natural populations for infection with the endosymbiont Wolbachia. Wolbachia were genotyped according to five variable markers: the presence of insertion sequence IS5 in two loci, the copy number of two minisatellite repeats, and an inversion. Overall, 665 isofemale lines isolated from the populations of D. melanogaster from Ukraine, Belarus, Moldova, Caucasus, Central Asia, Ural, Udmurtia, Altai, West and East Siberia, and Far East in 1974 through 2005 were used in the work. The samples from Ukrainian, Altaian, and Middle Asian populations were largest. The infection rate of D. melanogaster populations from Middle Asia, Altaian, and Eastern Europe (Ukraine, Moldavia, and Belarus) with Wolbachia amounted to 64, 56, and 39%, respectively. The D. melanogaster population from the Caucasus displayed heterogeneity in the genotypes of this cytoplasmic infection. The Wolbachia genotype wMel, detected in all the populations studied, was the most abundant. The genotype wMelCS2 was always present in the populations from Middle Asia and Altai and was among the rare variants in the D. melanogaster populations from the Eastern Europe. Single instances of the Wolbachia genotype wMelCS occurred in a few flies from the Central Asian and Altai populations, but was not found this genotype in the other regions.  相似文献   

10.
Wolbachia pipientis is a commonly occurring endosymbiont with well-characterised effects on host reproductive biology associated with its infection of the gonads. Wolbachia infections are also widespread in somatic tissues and consequently they have the potential to play a much broader role in host biology. Recently, Wolbachia was shown to alter the locomotion of Drosophila melanogaster in response to food cues in the laboratory. To determine whether this laboratory-based phenotype might translate to real differences for insects in the field, we performed a simple mark-release-recapture experiment with Wolbachia-infected D. melanogaster in a forested habitat. We demonstrate that infected flies are recaptured at twice the rate of uninfected flies, although infection does not affect the distance traveled by those flies recaptured. The differences in recapture could be explained by infection-induced changes in physiology or behavior. If generalizable, such changes may affect the interpretation of behavioral studies for Wolbachia-infected insects and have potential implications for the dynamics of Wolbachia infections in natural populations, including situations where Wolbachia-infected insects are being released for biological control.  相似文献   

11.
The protein Merlin is involved in the regulation of cell proliferation and differentiation in the eyes and wings of Drosophila and is a homolog of the human protein encoded by the Neurofibromatosis 2 (NF2) gene whose mutations cause auricular nerve tumors. Recent studies show that Merlin and Expanded cooperatively regulate the recycling of membrane receptors, such as the epidermal growth factor receptor (EGFR). By performing a search for potential genetic interactions between Merlin (Mer) and the genes important for vesicular trafficking, we found that ectopic expression in the wing pouch of the clathrin adapter protein Lap involved in clathrin-mediated receptor endocytosis resulted in the formation of extra vein materials. On the one hand, coexpression of wild-type Merlin and lap in the wing pouch restored normal venation, while overexpression of a dominant-negative mutant Mer DBB together with lap enhanced ectopic vein formation. Using various constructs with Merlin truncated copies, we showed the C-terminal portion of the Merlin protein to be responsible for the Merlin-lap genetic interaction. Furthermore, we showed that the Merlin and Lap proteins colocalized at the cortex of the wing imaginal disc cells.  相似文献   

12.
13.
Using the method of immunoprecipitation of the in vivo crosslinked and sheared by sonication chromatin, mapping of potential trithorax-associated regulatory elements within the extended (9 kb) promoter region of the fork head gene (fkh) in the Drosophila melanogaster salivary gland cells was performed. Reaative homogeneity of the salivary gland cells, along with the parallel use of the antibodies to different domains of the same trithorax protein (TRX), and the introduction of cross-hybridization steps for additional specific enrichment of initial DNA libraries, allowed us to improve the method and to identify one major and two less evident potential TRX-binding sites.  相似文献   

14.

Background  

Hormones frequently guide animal development via the induction of cascades of gene activities, whose products further amplify an initial hormonal stimulus. In Drosophila the transformation of the larva into the pupa and the subsequent metamorphosis to the adult stage is triggered by changes in the titer of the steroid hormone 20-hydroxyecdysone. singed wings (swi) is the only gene known in Drosophila melanogaster for which mutations specifically interrupt the transmission of the regulatory signal from early to late ecdysone inducible genes.  相似文献   

15.
The heterochromatin of chromosomes 2 and 3 of Drosophila melanogaster contains about 30 essential genes defined by genetic analysis. In the last decade only a few of these genes have been molecularly characterized and found to correspond to protein-coding genes involved in important cellular functions. Moreover, several predicted genes have been identified by annotation of genomic sequence that are associated with polytene chromosome divisions 40, 41 and 80 but their locations on the cytogenetic map of the heterochromatin are still uncertain. To expand our current knowledge of the genetic functions located in heterochromatin, we have performed fluorescence in situ hybridization (FISH) mapping to mitotic chromosomes of nine bacterial artificial chromosomes (BACs) carrying several predicted genes and of 13 P element insertions assigned to the proximal regions of 2R and 3L. We found that 22 predicted genes map to the h46 region of 2R and eight map to the h47 regions of 3L. This amounts to at least 30 predicted genes located in these heterochromatic regions, whereas previous studies detected only seven vital genes. Finally, another 58 genes localize either in the euchromatin-heterochromatin transition regions or in the proximal euchromatin of 2R and 3L. Edited by: B. McKeeN. Corradini and F. Rossi contributed equally to this work  相似文献   

16.
17.
18.
We have studied the molecular characteristics of the yellow locus (y; 1–0.0), which determines the body color of phenotypically wild-type and mutant alleles isolated in different years from geographically distant populations of Drosophila melanogaster. According to the Southern blot, data restriction maps of the yellow locus of all examined strains differ from one another, as well as from Oregon stock. FISH analysis shows that, in the neighborhood of the yellow locus in the X chromosome, neither P nor hobo elements are found in y1–775 stock, while only hobo is found in these region in y1–859 and y1–866 stocks, only the P element is found in y+sn849 stock, and both elements are found in y1–719 stock. Thus, all yellow mutants studied are of independent origin. Locus yellow located on the end of X chromosome (region 1A5–8 on the cytologic map) carries significantly more transposon than retrotransposon induced mutations compared to the white locus (region 3C2). It is possible that, at the ends of Drosophila melanogaster chromosomes, transposons are more active than retrotransposons.  相似文献   

19.
The chromosome arms are assumed to be homologous within the genus Drosophila. Homology at the level of the polytene chromosome banding pattern between non-sibling species is, however, almost impossible to establish as different processes such as inversion, transposition and unequal crossing over, have disturbed it. Even though the band sequences cannot be followed, we may ask whether there is a correlation in the total number of bands between species. The polytene dot chromosome is an excellent starting point for such an approach. Here we present the detailed cytology of polytene chromosome 4 of D. melanogasterand the polytene dot chromosome of D. subobscura using electron microscopy. The results show that the number of bands is about the same, around 30, in both species. We predict that by using thin sections and electron microscopy for the longer polytene chromosome arms, both species will turn out to have approximately equal band numbers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号