首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clostridium beijerinckii NCIMB 8052 parent strain and BA101, a hypersolvent-producing mutant, fermented 6% (w/v) glucose, maltodextrin, maltose or xylose in a medium containing corn steep water (CSW) to produce butanol. Batch fermentation in an unoptimized 6% (w/v) maltodextrin plus 1.6% solids CSW medium demonstrated that C. beijerinckii NCIMB 8052 and BA101 produced 10.7 g butanol/L and 14.5 g butanol/L, respectively.  相似文献   

2.
Spray-dried soy molasses (SDSM) contains the sugars dextrose, sucrose, fructose, pinitol, raffinose, verbascose, melibiose, and stachyose. Of the 746 g kg−1 total sugars in SDSM, 434 g kg−1 is fermentable using Clostridium beijerinckii BA101. SDSM was used to produce acetone, butanol, and ethanol (ABE) by C. beijerinckii BA101 in batch cultures. Using 80 g l−1 SDSM, 10.7 g l−1 ABE was produced in P2 medium. Higher concentrations of SDSM resulted in poor solvent production due to the presence of excessive salt and inhibitory components. C. beijerinckii BA101 in SDSM at 80 g l−1 concentration produced 22.8 g l−1 ABE when supplemented with 25.3 g l−1 glucose. SDSM contains 57.4 g kg−1 mineral ash and 2% tri-calcium phosphate. Tri-calcium phosphate up to 43.1 g l−1 was not inhibitory and at a tri-calcium phosphate concentration of 28.8 g l−1, the culture produced more solvents (30.1 g l−1) than the control experiment (23.8 g l−1). In contrast, sodium chloride was a strong inhibitor of C. beijerinckii BA101 cell growth. At a concentration of 10 g l−1 sodium chloride, a maximum cell concentration of 0.6 g l−1 was achieved compared to 1.7 g l−1 in the control experiment. The effects of two salts on specific growth rate constant (μ) and specific rate of ABE production (ν) for C. beijerinckii BA101 were examined. Journal of Industrial Microbiology & Biotechnology (2001) 26, 290–295. Received 20 September 2000/ Accepted in revised form 16 February 2001  相似文献   

3.
Use of starch solution as feed for butanol bioconversion processes employing Clostridium beijerinckii BA101 may have added economic advantage over the use of glucose. Acetone butanol ethanol (ABE) was produced from 30 gL(-1) starch solution using a continuous process. The bioreactor was fed at a dilution rate of 0.02 h(-1) and starch solution/feed volume (3 L) was replaced every 72 h. The continuous reactor fed with cornstarch solution (feed temperature 19 degrees C) produced approximately 6.0 gL(-1) total ABE. Increasing the feed storage temperature to 37 degrees C improved ABE production to 7.2 gL(-1) suggesting that retrogradation was occurring more rapidly at 19 degrees C. In both these cases the fermentation drifted toward acid production after approximately 260 h, consistent with the retrogradation of starch overtime. The use of soluble starch, which is less prone to retrogradation, resulted in the production of 9.9 gL(-1) ABE at 37 degrees C feed storage temperature, as compared to 7.2 gL(-1) ABE when cornstarch was used. It should be noted that gelatinized starch retrogradation takes place after sterilization and prior to use of the feed medium, and does not occur during long-term storage of the raw corn material in the months leading up to processing. The degree of hydrolysis of gelatinized starch decreased from 68.8 to 56.2% in 3 days when stored at 37 degrees C. Soluble starch which does not retrograde demonstrated no change in the degree of hydrolysis.  相似文献   

4.
Corn steep water (CSW) medium (1.6% solids plus 6% glucose) was evaluated for growth and butanol production by Clostridium beijerinckii NCIMB 8052 wild-type and hyper-amylolytic, hyper-butanol-producing mutant strain BA101. CSW alone was not a suitable substrate, whereas addition of glucose supported growth and butanol production by both strains. In a batch-scale fermentation using an optimized 6% glucose-1.6% solids CSW medium, C. beijerinckii NCIMB 8052 and strain BA101 produced 10.7 g L−1 and 14.5 g L−1 of butanol, respectively. The total solvents (acetone, butanol, and ethanol) produced by C. beijerinckii NCIMB 8052 and strain BA101 were 14 g L−1 and 20 g L−1, respectively. Initial fermentation in small-scale flasks containing 6% maltodextrin-1.6% solids concentration CSW medium resulted in 6 g L−1 and 12.6 g L−1 of butanol production by C. beijerinckii NCIMB 8052 and strain BA101, respectively. CSW can serve as an economic source of nitrogen, vitamins, amino acids, minerals, and other nutrients. Thus, it is feasible to use 6% glucose-1.6% solids CSW medium in place of semi-defined P2 medium. Received 9 February 1998/ Accepted in revised form 1 September 1998  相似文献   

5.
Cassava flour (CF), a cost-effective source of starch, was employed as a substrate for successful acetone-butanol-ethanol (ABE) production by batch-fermentation with Clostridium beijerinckii. The effect of temperature, initial concentration of CF and chemical/enzymatic hydrolysis were studied in a 23 factorial design. Results revealed that temperature and initial concentration of substrate exert a significant effect on ABE production, as well as interactions of temperature with the other variables. Solvent production was maximized when working at 40°C, 60 g l−1 CF and enzymatic pretreatment. An average of 31.38 g l−1 ABE was produced after 96 h, with a productivity of 0.33 g l−1 h−1. A posterior randomized block design (3 × 2) showed that enzymatic hydrolysis (with saccharification periods of 6 h at 60°C) enhances both reducing sugar and solvent production if compared to chemical pretreatments. Average ABE production in this case was 27.28 g l−1, with a productivity of 0.28 g l−1 h−1. Results suggest that CF may be a suitable substrate for industrial ABE production.  相似文献   

6.
The performance of a continuous bioreactor containing Clostridium beijerinckii BA101 adsorbed onto clay brick was examined for the fermentation of acetone, butanol, and ethanol (ABE). Dilution rates from 0.3 to 2.5 h–1 were investigated with the highest solvent productivity of 15.8 g l–1 h–1 being obtained at 2.0 h–1. The solvent yield at this dilution rate was found to be 0.38 g g–1 and total solvent concentration was 7.9 g l–1. The solvent yield was maximum at 0.45 at a dilution rate of 0.3 h–1. The maximum solvent productivity obtained was found to be 2.5 times greater than most other immobilized continuous and cell recycle systems previously reported for ABE fermentation. A higher dilution rate (above 2.0 h–1) resulted in acid production rather than solvent production. This reactor was found to be stable for over 550 h. Scanning electron micrographs (SEM) demonstrated that a large amount of C. beijerinckii cells were adsorbed onto the brick support.  相似文献   

7.
This is an overview of the mutant strain Clostridium beijerinckii BA101 which produces solvents (acetone–butanol–ethanol, ABE) at elevated levels. This organism expresses high levels of amylases when grown on starch. C. beijerinckii BA101 hydrolyzes starch effectively and produces solvent in the concentration range of 27–29 g l−1. C. beijerinckii BA101 has been characterized for both substrate and butanol inhibition. Supplementing the fermentation medium (MP2) with sodium acetate enhances solvent production to 33 g l−1. The results of studies utilizing commercial fermentation medium and pilot plant-scale reactors are consistent with the results using small-scale reactors. Pervaporation, a technique to recover solvents, has been applied to fed-batch reactors containing C. beijerinckii BA101, and solvent production as high as 165 g l−1 has been achieved. Immobilization of C. beijerinckii BA101 by adsorption and use in a continuous reactor resulted in reactor productivity of 15.8 g l−1 h−1. Recent economic studies employing C. beijerinckii BA101 suggested that butanol can be produced at US$0.20–0.25 lb−1 by employing batch fermentation and distillative recovery. Application of new technologies such as pervaporation, fed-batch culture, and immobilized cell reactors is expected to further reduce these prices. Journal of Industrial Microbiology & Biotechnology (2001) 27, 287–291. Received 12 September 2000/ Accepted in revised form 27 January 2001  相似文献   

8.
Addition of sodium acetate to chemically defined MP2 medium was found to increase and stabilize solvent production by Clostridium beijerinckii BA101, a solvent-hyperproducing mutant derived from C. beijerinckii NCIMB 8052. C. beijerinckii BA101 demonstrated a greater increase in solvent production than C. beijerinckii NCIMB 8052 when sodium acetate was added to MP2 medium. In 1-l batch fermentations, C. beijerinckii BA101 produced 32.6 g/l total solvents, with butanol at 20.9 g/l, when grown in MP2 medium containing 60 mM sodium acetate and 8% glucose. To our knowledge, these values represent the highest solvent and butanol concentrations produced by a solventogenic Clostridium strain when grown in batch culture. Received: 29 September 1998 / Received revision: 13 February 1999 / Accepted: 26 February 1999  相似文献   

9.
We examined the effect of gas-stripping on the in situ removal of acetone, butanol, and ethanol (ABE) from batch reactor fermentation broth. The mutant strain (Clostridium beijerinckii BA101) was not affected adversely by gas stripping. The presence of cells in the fermentation broth affected the selectivities of ABE. A considerable improvement in the productivity and yield was recorded in this work in comparison with the non-integrated process. In an integrated process of ABE fermentation-recovery using C. beijerinckii BA101, ABE productivities and yield were improved up to 200 and 118%, respectively, as compared to control batch fermentation data. In a batch reactor C. beijerinckii BA101 utilized 45.4 g glucose l–1 and produced 17.7 g total ABE l–1, while in the integrated process it utilized 161.7 g glucose l–1 and produced total ABE of 75.9 g l–1. In the integrated process, acids were completely converted to solvents when compared to the non-integrated process (batch fermentation) which contained residual acids at the end of fermentation. In situ removal of ABE by gas stripping has been reported to be one of the most important techniques of solvent removal. During these studies we were able to maintain the ABE concentration in the fermentation broth below toxic levels.  相似文献   

10.
Mixed sugars from tropical maize stalk juice were used to carry out butanol fermentation with Clostridium beijerinckii NCIMB 8052. Batch experiments employing central composite design (CCD) and response surface methodology (RSM) optimization were performed to evaluate effects of three factors, i.e. pH, initial total sugar concentration, and agitation rate on butanol production. Optimum conditions of pH 6.7, sugar concentration 42.2 g/L and agitation rate 48 rpm were predicted, under which a maximum butanol yield of 0.27 g/g-sugar was estimated. Further experiments demonstrated that higher agitation facilitated acetone production, leading to lower butanol selectivity in total acetone–butanol–ethanol (ABE). While glucose and fructose are more preferable by C. beijerinckii, sucrose can also be easily degraded by the microorganism. This study indicated that RSM is a useful approach for optimizing operational conditions for butanol production, and demonstrated that tropical maize, with high yield of biomass and stalk sugars, is a promising biofuel crop.  相似文献   

11.
A silicone membrane was used to study butanol separation from model butanol solutions and fermentation broth. Depending upon the butanol feed concentration in the model solution and pervaporation conditions, butanol selectivities of 20.88-68.32 and flux values of 158.7-215.4 g m(-)(2) h(-)(1) were achieved. Higher flux values (400 g m(-)(2) h(-)(1)) were obtained at higher butanol concentrations using air as sweep gas. In an integrated process of butanol fermentation-recovery, solvent productivities were improved to 200% of the control batch fermentation productivities. In a batch reactor the hyper-butanol-producing mutant strain C. beijerinckii BA101 utilized 57.3 g/L glucose and produced 24.2 g/L total solvents, while in the integrated process it produced 51.5 g/L (culture volume) total solvents. Concentrated glucose medium was also fermented. The C. beijerinckii BA101 mutant strain was not negatively affected by the pervaporative conditions. In the integrated experiment, acids were not produced. With the active fermentation broth, butanol selectivity was reduced by a factor of 2-3. However, the membrane flux was not affected by the active fermentation broth. The butanol permeate concentration ranged from 26.4 to 95.4 g/L, depending upon butanol concentration in the fermentation broth. Since the permeate of most membranes contains acetone, butanol, and ethanol (and small concentrations of acids), it is suggested that distillation be used for further purification.  相似文献   

12.
Lignocellulose-derived microbial inhibitors such as furfural and 5-hydroxymethyl furfural adversely affect fermentation of lignocellulosic biomass hydrolysates to fuels and chemicals due to their toxicity on fermenting microbes. To harness the potential of lignocellulose as a cheap source of fermentable sugars, in situ detoxification of furfural and other lignocellulose-derived microbial inhibitors is essential. To enhance in situ detoxification and tolerance of furfural by Clostridium beijerinckii NCIMB 8052 during acetone-butanol-ethanol (ABE) fermentation, the effect of glycerol on NADH/NADPH generation and ABE production by furfural (4, 5, and 6 g/L)-challenged cultures was investigated in this study. In all instances, beneficial outcomes were observed. For example, the fermentation medium supplemented with glycerol and subjected to 5 g/L furfural elicited up to 1.8- and 3-fold increases, respectively, in NADH and NADPH levels in C. beijerinckii 8052 relative to the control culture. These critical changes are the likely underpinnings for the glycerol-mediated 2.3-fold increase in the rate of detoxification of 5 g/L furfural, substrate consumption, and ABE production compared to the unsupplemented medium. Collectively, these results demonstrate that increased intracellular NADH/NADPH in C. beijerinckii 8052 due to glycerol utilization engenders favorable effects on many aspects of cellular metabolism, including enhanced furfural reduction and increased ABE production.  相似文献   

13.
14.
During pretreatment and hydrolysis of fiber-rich agricultural biomass, compounds such as salts, furfural, hydroxymethyl furfural (HMF), acetic, ferulic, glucuronic, rho-coumaric acids, and phenolic compounds are produced. Clostridium beijerinckii BA101 can utilize the individual sugars present in lignocellulosic [e.g., corn fiber, distillers dry grain solubles (DDGS), etc] hydrolysates such as cellobiose, glucose, mannose, arabinose, and xylose. In these studies we investigated the effect of some of the lignocellulosic hydrolysate inhibitors associated with C. beijerinckii BA101 growth and acetone-butanol-ethanol (ABE) production. When 0.3 g/L rho-coumaric and ferulic acids were introduced into the fermentation medium, growth and ABE production by C. beijerinckii BA101 decreased significantly. Furfural and HMF are not inhibitory to C. beijerinckii BA101; rather they have stimulatory effect on the growth of the microorganism and ABE production.  相似文献   

15.
《Process Biochemistry》2014,49(8):1238-1244
PH is an essential factor for acetone/butanol/ethanol (ABE) production using Clostridium spp. In this study, batch fermentations by Clostridium beijerinckii IB4 at various pH values ranging from 4.9 to 6.0 were examined. At pH 5.5, the ABE production was dominant and maximum ABE concentration of 24.6 g/L (15.7 g/L of butanol, 8.63 g/L of acetone and 0.32 g/L of ethanol) was obtained with the consumption of 60 g/L of glucose within 36 h. However, in the control (without pH control), an ABE concentration of 14.1 g/L (11.0 g/L of butanol, 3.01 g/L of acetone and 0.16 g/L of ethanol) was achieved with the consumption of 41 g/L of glucose within 40 h. A considerable improvement in the productivity of up to 93.8% was recorded at controlled pH in comparison to the process without pH control. To better understand the influence of pH on butanol production, the reducing power capability and NADH-dependent butanol dehydrogenase activity were investigated, both of which were significantly improved at pH 5.5. Thus, the pH control technique is a convenient and efficient method for high-intensity ABE production.  相似文献   

16.
The effect of factors such as gas recycle rate, bubble size, presence of acetone, and ethanol in the solution/broth were investigated in order to remove butanol from model solution or fermentation broth (also called acetone butanol ethanol or ABE or solvents). Butanol (8 g L–1, model solution, Fig. 2) stripping rate was found to be proportional to the gas recycle rate. In the bubble size range attempted (<0.5 and 0.5–5.0 mm), the bubble size did not have any effect on butanol removal rate (Fig. 3, model solution). In Clostridium beijerinckii fermentation, ABE productivity was reduced from 0.47 g L–1 h–1 to 0.25 g L–1 h–1 when smaller (<0.5 mm) bubble size was used to remove ABE (Fig. 4, results reported as butanol/ABE concentration). The productivity was reduced as a result of addition of an excessive amount of antifoam used to inhibit the production of foam caused by the smaller bubbles. This suggested that the fermentation was negatively affected by antifoam.Mention of trade names of commercial products in this article is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture.  相似文献   

17.
The specific activities and the mRNA expression levels associated with coenzyme A transferase, acetoacetate decarboxylase, and butyraldehyde dehydrogenase were elevated in hyper-solvent-producing Clostridium beijerinckii BA101 during the exponential growth phase. The increase in expression of the sol operon and associated enzyme activities may be responsible for enhanced solvent production by C. beijerinckii BA101.  相似文献   

18.
A new isolate of the solvent-producing Clostridium acetobutylicum YM1 was used to produce butanol in batch culture fermentation. The effects of glucose concentration, butyric acid addition and C/N ratio were studied conventionally (one-factor-at-a-time). Moreover, the interactions between glucose concentration, butyric acid addition and C/N ratio were further investigated to optimize butanol production using response surface methodology (RSM). A central composite design was applied, and a polynomial regression model with a quadratic term was used to analyze the experimental data using analysis of variance (ANOVA). ANOVA revealed that the model was highly significant (p < 0.0001) and the effects of the glucose and butyric acid concentrations on butanol production were significant. The model validation experiment showed 13.82 g/L butanol was produced under optimum conditions. Scale up fermentation in optimized medium resulted in 17 g/L of butanol and 21.71 g/L of ABE. The experimental data of scale up in 5 L bioreactor and flask scale were fitted to kinetic mathematical models published in the literature to estimate the kinetic parameters of the fermentation. The models used gave the best fit for butanol production, biomass and glucose consumption for both flask scale and bioreactor scale up.  相似文献   

19.
以抗逆突变株Clostridium beijerinckii IB4为出发菌株,通过常压室温等离子体诱变( ARTP ),刃天青平板初筛,摇瓶发酵复筛,筛选出1株高抗逆高丁比的突变菌株C.beijerinckii IT111。发酵结果表明:该突变菌株利用多种C源时均展现其高丁醇比的特性,以玉米芯酸解糖液为C源时,溶剂产量达到10.5 g/L,丁醇8.0 g/L,丁醇比高达76%。抑制物抗逆性测试结果显示:糠醛和酸类对C.beijerinckii发酵影响较小,酚类物质对C.beijerinckii抑制作用较强,其中以香草醛为最。综上所述,C.beijerinckii IT111是1株极具潜力的利用木质纤维原料制备丁醇的菌株。  相似文献   

20.
The optimum conditions for biological hydrogen production from food waste by Clostridium beijerinckii KCTC 1875 were investigated. The optimum initial pH and fermentation temperature were 7.0 and 40°C, respectively. When the pH of fermentation was controlled to 5.5, a maximum amount of hydrogen could be obtained. Under these conditions, about 2,737 mL of hydrogen was produced from 50 g COD/L of food waste for 24 h, and the hydrogen content in the biogas was 38%. Hydrogen production rate and yield were about 108 mL/L·h and 128 mL/g CODdegraded, respectively. High concentrations of acetic (< 5,000 mg/L) or butyric acid (< 3,000 mg/L) significantly inhibited hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号