首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two conformational states of Candida rugosa lipase.   总被引:5,自引:4,他引:1       下载免费PDF全文
The structure of Candida rugosa lipase in a new crystal form has been determined and refined at 2.1 A resolution. The lipase molecule was found in an inactive conformation, with the active site shielded from the solvent by a part of the polypeptide chain-the flap. Comparison of this structure with the previously determined "open" form of this lipase, in which the active site is accessible to the solvent and presumably the substrate, shows that the transition between these 2 states requires only movement of the flap. The backbone NH groups forming the putative oxyanion hole do not change position during this rearrangement, indicating that this feature is preformed in the inactive state. The 2 lipase conformations probably correspond to states at opposite ends of the pathway of interfacial activation. Quantitative analysis indicates a large increase of the hydrophobic surface in the vicinity of the active site. The flap undergoes a flexible rearrangement during which some of its secondary structure refolds. The interactions of the flap with the rest of the protein change from mostly hydrophobic in the inactive form to largely hydrophilic in the "open" conformation. Although the flap movement cannot be described as a rigid body motion, it has very definite hinge points at Glu 66 and at Pro 92. The rearrangement is accompanied by a cis-trans isomerization of this proline, which likely increases the energy required for the transition between the 2 states, and may play a role in the stabilization of the active conformation at the water/lipid interface. Carbohydrate attached at Asn 351 also provides stabilization for the open conformation of the flap.  相似文献   

2.
Spronk SA  Carlson HA 《Proteins》2011,79(7):2247-2259
β-Site amyloid precursor protein cleaving enzyme 1 (BACE1) is a potential target for treating Alzheimer's disease. BACE1's binding site is partially covered by a flexible loop on its N-terminal domain, known as the "flap," which has been found in several conformations in crystal structures of BACE1 and other aspartyl proteases. The side chain of the invariant residue Tyr71 on the flap adopts several rotameric orientations, leading to our hypothesis that the orientation of this residue dictates the movement and conformations available to the flap. We investigated this hypothesis by performing 220 ns of molecular dynamics simulations of bound and unbound wild-type BACE1 as well as the unbound Y71A mutant. Our findings indicate that the flap exhibits various degrees of mobility and adopts different conformations depending on the Tyr71 orientation. Surprisingly, the "self-inhibited" form is stable in our simulations, making it a reasonable target for drug design. The alanine mutant, lacking a large side chain at position 71, displays significant differences in flap dynamics from wild type, freely sampling very open and closed conformations. Our simulations show that Tyr71, in addition to its previously determined functions in catalysis and substrate binding, has the important role of modulating flap conformations in BACE1.  相似文献   

3.
The hydroxyl group of Tyr alpha 42 in human hemoglobin forms a hydrogen bond with the carboxylate of Asp beta 99 which is considered to be one of the most important hydrogen bonds for stabilizing the "T-state." However, no spontaneous mutation at position 42 of the alpha subunit has been reported, and the role of the tyrosine has not been tested experimentally. Two artificial human mutant hemoglobins in which Tyr alpha 42 was replaced by phenylalanine or histidine were synthesized in Escherichia coli, and their proton NMR spectra were studied with particular attention to the hyperfine-shifted and hydrogen-bonded proton resonances. The site-directed mutagenesis of the Tyr alpha 42----Phe removes the hydrogen bond described above and prevents transition to the T-state so that the mutant Hb is rather similar to the "R-state" even when deoxygenated. On the other hand, the mutation from tyrosine to histidine causes less drastic structural changes, and its quaternary and tertiary structures are almost the same as native deoxy-Hb A. This may be attributed to the formation of a new hydrogen bond between His alpha 1(42) and Asp beta 2(99). These observations indicate that the hydrogen bond formed between Tyr alpha 42 and Asp beta 99 is required to convert unliganded Hb to the T-state.  相似文献   

4.
Memapsin 2 (BACE1, β‐secretase), a membrane aspartic protease, functions in the cleavage of brain β‐amyloid precursor protein (APP) leading to the production of β‐amyloid. Because the excess level of β‐amyloid in the brain is a leading factor in Alzheimer's disease (AD), memapsin 2 is a major therapeutic target for inhibitor drugs. The substrate‐binding cleft of memapsin 2 accommodates 12 subsite residues, from P8 to P4′. We have determined the hydrolytic preference as relative kcat/KM (preference constant) in all 12 subsites and used these data to establish a predictive algorithm for substrate hydrolytic efficiency. Using the sequences from 12 reported memapsin 2 protein substrates, the predicted and experimentally determined preference constants have an excellent correlation coefficient of 0.97. The predictive model indicates that the hydrolytic preference of memapsin 2 is determined mainly by the interaction with six subsites (from P4 to P2′), a conclusion supported by the crystal structure B‐factors calculated for the various residues of transition‐state analogs bound to different memapsin 2 subsites. The algorithm also predicted that the replacement of the P3, P2, and P1 subsites of APP from Val, Lys, and Met, respectively, to Ile, Asp, and Phe, respectively, (APPIDF) would result in a highest hydrolytic rate for β‐amyloid‐generating APP variants. Because more β‐amyloid was produced from cells expressing APPIDF than those expressing APP with Swedish mutations, this designed APP variant may be useful in new memapsin 2 substrates or transgenic mice for AD studies.  相似文献   

5.
R Raag  T L Poulos 《Biochemistry》1991,30(10):2674-2684
X-ray crystal structures have been determined for complexes of cytochrome P-450CAM with the substrates camphane, adamantane, and thiocamphor. Unlike the natural substrate camphor, which hydrogen bonds to Tyr96 and is metabolized to a single product, camphane, adamantane and thiocamphor do not hydrogen bond to the enzyme and all are hydroxylated at multiple positions. Evidently the lack of a substrate-enzyme hydrogen bond allows substrates greater mobility in the active site, explaining this lower regiospecificity of metabolism as well as the inability of these substrates to displace the distal ligand to the heme iron. Tyr96 is a ligand, via its carbonyl oxygen atom, to a cation that is thought to stabilize the camphor-P-450CAM complex [Poulos, T. L., Finzel, B. C., & Howard, A. J. (1987) J. Mol. Biol. 195, 687-700]. The occupancy and temperature factor of the cationic site are lower and higher, respectively, in the presence of the non-hydrogen-bonding substrates investigated here than in the presence of camphor, underscoring the relationship between cation and substrate binding. Thiocamphor gave the most unexpected orientation in the active site of any of the substrates we have investigated to date. The orientation of thiocamphor is quite different from that of camphor. That is, carbons 5 and 6, at which thiocamphor is primarily hydroxylated [Atkins, W. M., & Sligar, S. G. (1988) J. Biol. Chem. 263, 18842-18849], are positioned near Tyr96 rather than near the heme iron. Therefore, the crystallographically observed thiocamphor-P-450CAM structure may correspond to a nonproductive complex. Disordered solvent has been identified in the active site in the presence of uncoupling substrates that channel reducing equivalents away from substrate hydroxylation toward hydrogen peroxide and/or "excess" water production. A buried solvent molecule has also been identified, which may promote uncoupling by moving from an internal location to the active site in the presence of highly mobile substrates.  相似文献   

6.
Thimet oligopeptidase (EC 3.4.24.15) is a zinc(II) endopeptidase implicated in the processing of numerous physiological peptides. Although its role in selecting and processing peptides is not fully understood, it is believed that flexible loop regions lining the substrate-binding site allow the enzyme to conform to substrates of varying structure. This study describes mutant forms of thimet oligopeptidase in which Gly or Tyr residues in the 599-611 loop region were replaced, individually and in combination, to elucidate the mechanism of substrate selection by this enzyme. Decreases in k(cat) observed on mutation of Tyr605 and Tyr612 demonstrate that these residues contribute to the efficient cleavage of most substrates. Modeling studies showing that a hinge-bend movement brings both Tyr612 and Tyr605 within hydrogen bond distance of the cleaved peptide bond supports this role. Thus, molecular modeling studies support a key role in transition state stabilization of this enzyme by Tyr605. Interestingly, kinetic parameters show that a bradykinin derivative is processed distinctly from the other substrates tested, suggesting that an alternative catalytic mechanism may be employed for this particular substrate. The data demonstrate that neither Tyr605 nor Tyr612 is necessary for the hydrolysis of this substrate. Relative to other substrates, the bradykinin derivative is also unaffected by Gly mutations in the loop. This distinction suggests that the role of Gly residues in the loop is to properly orientate these Tyr residues in order to accommodate varying substrate structures. This also opens up the possibility that certain substrates may be cleaved by an open form of the enzyme.  相似文献   

7.
Ermolieff J  Loy JA  Koelsch G  Tang J 《Biochemistry》2000,39(40):12450-12456
Memapsin 2 (beta-secretase), a membrane-anchored aspartic protease, is involved in the cleavage of beta-amyloid precursor protein to form beta-amyloid peptide. The primary structure of memapsin 2 suggests that it is synthesized in vivo as pro-memapsin 2 and converted to memapsin 2 by an activating protease [Lin et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 1456-1460]. To simulate this activation mechanism and to produce stable mature memapsin 2 for kinetic/specificity studies, we have investigated the activation of recombinant pro-memapsin 2 by several proteases with trypsin-like specificity. Clostripain, kallikrein, and trypsin increased the activity of pro-memapsin 2. Clostripain activation was accompanied by the cleavage of the pro region to form mainly two activation products, Leu(30p)- and Gly(45p)-memapsin 2. Another activation product, Leu(28p)-memapsin 2, was also purified. Kinetics of the activated memapsin 2 were compared with pro-memapsin 2 using two new fluorogenic substrates, Arg-Glu(5-[(2-aminoethyl)amino]naphthalene-1-sulfonic acid (EDANS))-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys(4-(4-dimethylaminophe nyl azo)benzoic acid (DABCYL))-Arg and (7-methoxycoumarin-4-yl)acetyl (MCA))-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys(2,4-dinitrophenyl (DNP)). These results establish that the activity of pro-memapsin 2 stems from a part-time and reversible uncovering of its active site by its pro region. Proteolytic removal of part of the pro-peptide at Leu(28p) or Gly(45p), which diminishes the affinity of the shortened pro-peptide to the active site, results in activated memapsin 2. These results also suggest that Glu(33p)-memapsin 2 observed in the cells expressing this enzyme [Vassar et al. (1999) Science 286, 735-741; Yan et al. (1999) Nature 402, 533-537] is an active intermediate of in vivo activation, or that the peptide Glu(33p)-Arg(44p) may serve a regulatory role.  相似文献   

8.
Transferrins bind Fe3+ very tightly in a closed interdomain cleft by the coordination of four protein ligands (Asp60, Tyr92, Tyr191, and His250 in ovotransferrin N-lobe) and of a synergistic anion, physiologically bidentate CO32-. Upon Fe3+ uptake, transferrins undergo a large scale conformational transition: the apo structure with an opening of the interdomain cleft is transformed into the closed holo structure, implying initial Fe3+ binding in the open form. To solve the Fe3+-loaded, domain-opened structure, an ovotransferrin N-lobe crystal that had been grown as the apo form was soaked with Fe3+-nitrilotriacetate, and its structure was solved at 2.1 A resolution. The Fe3+-soaked form showed almost exactly the same overall open structure as the iron-free apo form. The electron density map unequivocally proved the presence of an iron atom with the coordination by the two protein ligands of Tyr92-OH and Tyr191-OH. Other Fe3+ coordination sites are occupied by a nitrilotriacetate anion, which is stabilized through the hydrogen bonds with the peptide NH groups of Ser122, Ala123, and Gly124 and a side chain group of Thr117. There is, however, no clear interaction between the nitrilotriacetate anion and the synergistic anion binding site, Arg121.  相似文献   

9.
The crystal structure of holo hen ovotransferrin N-lobe refined at 1.65 A resolution has been obtained. The final model gave an R-factor of 0.173 in the resolution range between 10.0 and 1.65 A. The comparison of the structure with previous high-resolution apo and Fe(3+)-loaded, domain-opened intermediate structures provides new viewpoints on the domain closure mechanism upon Fe(3+) uptake in ovotransferrin N-lobe. Overall, conformational transition follows the common mechanism that has been first demonstrated for lactoferrin N-lobe; the domains 1 and 2 rotate 49.7 degrees as rigid bodies with a translation of 2.1 A around a screw-axis that passes through the two interdomain beta-strands (89-94 and 244-249). It is generally believed that the two strands display a hinge-like motion. Here, the latter strand indeed displays an ideal hinge nature: the segments 244-246 and 248-249 behave as a part of the rigid body of domain 2 and that of domain 1, respectively, and a sharp bend upon the domain closure is largely accounted for by the changes in the torsion angles phi and psi of Val247. We find, however, that the mode of the conformational change in the first beta-strand is much more complex. Two of the five inter beta-strand hydrogen bonds undergo crucial exchanges: from Ser91-N...Val247-O and Thr89-O...Ala249-N in the open apo and intermediate structures into Tyr92-N...Val247-O and Thr90-O...Ala249-N in the closed holo structure. These exchanges, which may be triggered in the intermediate state by modulation in the topological relation between the Fe(3+)-ligated hinge residue Tyr92-OH and the anion anchor residues of helix 5, are accompanied by a large conformational change and extensive hydrogen bonding rearrangements in a long stretch of segment of Glu82 to Tyr92. Such structural transition would work as a driving force for the domain closure, which highlights a "door closer"-like role, in addition to the canonical-hinge role, for the interdomain polypeptide segment pair. As an alternative hinge that secures the correct domain motion by being placed on a significant distance from the beta-strand hinge, we point out the participation of the van der Waals contacts formed between domain 1 residue of Met331 and domain 2 residues of Trp125, Ile129 and Trp140.  相似文献   

10.
Thermoactinomyces vulgaris R-47 alpha-amylase 2 (TVAII) can efficiently hydrolyze both starch and cyclomaltooligosaccharides (cyclodextrins). The crystal structure of an inactive mutant TVAII in a complex with maltohexaose was determined at a resolution of 2.1A. TVAII adopts a dimeric structure to form two catalytic sites, where substrates are found to bind. At the catalytic site, there are many hydrogen bonds between the enzyme and substrate at the non-reducing end from the hydrolyzing site, but few hydrogen bonds at the reducing end, where two aromatic residues, Trp356 and Tyr45, make effective interactions with a substrate. Trp356 drastically changes its side-chain conformation to achieve a strong stacking interaction with the substrate, and Tyr45 from another molecule forms a water-mediated hydrogen bond with the substrate. Kinetic analysis of the wild-type and mutant enzymes in which Trp356 and/or Tyr45 were replaced with Ala suggested that Trp356 and Tyr45 are essential to the catalytic reaction of the enzyme, and that the formation of a dimeric structure is indispensable for TVAII to hydrolyze both starch and cyclodextrins.  相似文献   

11.
Replacement of valine by tryptophan or tyrosine at position alpha96 of the alpha chain (alpha96Val), located in the alpha(1)beta(2) subunit interface of hemoglobin leads to low oxygen affinity hemoglobin, and has been suggested to be due to the extra stability introduced by an aromatic amino acid at the alpha96 position. The characteristic of aromatic amino acid substitution at the alpha96 of hemoglobin has been further investigated by producing double mutant r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp). r Hb (alpha42Tyr --> Phe) is known to exhibit almost no cooperativity in binding oxygen, and possesses high oxygen affinity due to the disruption of the hydrogen bond between alpha42Tyr and beta99Asp in thealpha(1)beta(2) subunit interface of deoxy Hb A. The second mutation, alpha96Val -->Trp, may compensate the functional defects of r Hb (alpha42Tyr --> Phe), if the stability due to the introduction of trypophan at the alpha 96 position is strong enough to overcome the defect of r Hb (alpha42Tyr --> Phe). Double mutant r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp) exhibited almost no cooperativity in binding oxygen and possessed high oxygen affinity, similarly to that of r Hb (alpha42Tyr --> Phe). (1)H NMR spectroscopic data of r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp) also showed a very unstable deoxy-quaternary structure. The present investigation has demonstrated that the presence of the crucible hydrogen bond between alpha 42Tyr and beta 99Asp is essential for the novel oxygen binding properties of deoxy Hb (alpha96Val --> Trp) .  相似文献   

12.
J H Lee  K Z Chang  V Patel  C J Jeffery 《Biochemistry》2001,40(26):7799-7805
Phosphoglucose isomerase (PGI, EC 5.3.1.9) catalyzes the interconversion of D-glucose 6-phosphate (G6P) and D-fructose 6-phosphate (F6P) and plays important roles in glycolysis and gluconeogenesis. Biochemical characterization of the enzyme has led to a proposed multistep catalytic mechanism. First, the enzyme catalyzes ring opening to yield the open chain form of the substrate. Then isomerization proceeds via proton transfer between C2 and C1 of a cis-enediol(ate) intermediate to yield the open chain form of the product. Catalysis proceeds in both the G6P to F6P and F6P to G6P directions, so both G6P and F6P are substrates. X-ray crystal structure analysis of rabbit and bacterial PGI has previously identified the location of the enzyme active site, and a recent crystal structure of rabbit PGI identified Glu357 as a candidate functional group for transferring the proton. However, it was not clear which active site amino acid residues catalyze the ring opening step. In this paper, we report the X-ray crystal structure of rabbit PGI complexed with the cyclic form of its substrate, D-fructose 6-phosphate, at 2.1 A resolution. The location of the substrate relative to the side chains of His388 suggest that His388 promotes ring opening by protonating the ring oxygen. Glu216 helps to position His388, and a water molecule that is held in position by Lys518 and Thr214 accepts a proton from the hydroxyl group at C2. Comparison to a structure of rabbit PGI with 5PAA bound indicates that ring opening is followed by loss of the protonated water molecule and conformational changes in the substrate and the protein so that a helix containing amino acids 513-520 moves in toward the substrate to form additional hydrogen bonds with the substrate.  相似文献   

13.
Hong L  Turner RT  Koelsch G  Shin D  Ghosh AK  Tang J 《Biochemistry》2002,41(36):10963-10967
The structure of the catalytic domain of human memapsin 2 bound to an inhibitor OM00-3 (Glu-Leu-Asp-LeuAla-Val-Glu-Phe, K(i) = 0.3 nM, the asterisk denotes the hydroxyethylene transition-state isostere) has been determined at 2.1 A resolution. Uniquely defined in the structure are the locations of S(3)' and S(4)' subsites, which were not identified in the previous structure of memapsin 2 in complex with the inhibitor OM99-2 (Glu-Val-Asn-LeuAla-Ala-Glu-Phe, K(i) = 1 nM). Different binding modes for the P(2) and P(4) side chains are also observed. These new structural elements are useful for the design of new inhibitors. The structural and kinetic data indicate that the replacement of the P(2)' alanine in OM99-2 with a valine in OM00-3 stabilizes the binding of P(3)' and P(4)'.  相似文献   

14.
He X  Zhu G  Koelsch G  Rodgers KK  Zhang XC  Tang J 《Biochemistry》2003,42(42):12174-12180
Memapsin 2 (beta-secretase) is a membrane-associated aspartic protease that initiates the hydrolysis of beta-amyloid precursor protein (APP) leading to the production of amyloid-beta and the onset of Alzheimer's disease (AD). Both memapsin 2 and APP are transported from the cell surface to endosomes where APP hydrolysis takes place. Thus, the intracellular transport mechanism of memapsin 2 is important for understanding the pathogenesis of AD. We have previously shown that the cytosolic domain of memapsin 2 contains an acid-cluster-dileucine (ACDL) motif that binds the VHS domain of GGA proteins (He et al. (2002) FEBS Lett. 524, 183-187). This mechanism is the presumed recognition step for the vesicular packaging of memapsin 2 for its transport to endosomes. The phosphorylation of a serine residue within the ACDL motif has been reported to regulate the recycling of memapsin 2 from early endosomes back to the cell surface. Here, we report a study on the memapsin 2/VHS domain interaction. Using isothermal titration calorimetry, the dissociation constant, K(d), values are 4.0 x 10(-4), 4.1 x 10(-4), and 3.1 x 10(-4) M for VHS domains from GGA1, GGA2, and GGA3, respectively. With the serine residue replaced by phosphoserine, the K(d) decreased about 10-, 4-, and 14-fold for the same three VHS domains. A crystal structure of the complex between memapsin 2 phosphoserine peptide and GGA1 VHS was solved at 2.6 A resolution. The side chain of the phosphoserine group does not interact with the VHS domain but forms an ionic interaction with the side chain of the C-terminal lysine of the ligand peptide. Energy calculation of the binding of native and phosphorylated peptides to VHS domains suggests that this intrapeptide ionic bond in solution may reduce the change in binding entropy and thus increase binding affinity.  相似文献   

15.
In the family-B DNA polymerase of bacteriophage RB69, the conserved aromatic palm-subdomain residues Tyr391 and Tyr619 interact with the last primer-template base-pair. Tyr619 interacts via a water-mediated hydrogen bond with the phosphate of the terminal primer nucleotide. The main-chain amide of Tyr391 interacts with the corresponding template nucleotide. A hydrogen bond has been postulated between Tyr391 and the hydroxyl group of Tyr567, a residue that plays a key role in base discrimination. This hydrogen bond may be crucial for forcing an infrequent Tyr567 rotamer conformation and, when the bond is removed, may influence fidelity. We investigated the roles of these residues in replication fidelity in vivo employing phage T4 rII reversion assays and an rI forward assay. Tyr391 was replaced by Phe, Met and Ala, and Tyr619 by Phe. The Y391A mutant, reported previously to decrease polymerase affinity for incoming nucleotides, was unable to support DNA replication in vivo, so we used an in vitro fidelity assay. Tyr391F/M replacements affect fidelity only slightly, implying that the bond with Tyr567 is not essential for fidelity. The Y391A enzyme has no mutator phenotype in vitro. The Y619F mutant displays a complex profile of impacts on fidelity but has almost the same mutational spectrum as the parental enzyme. The Y619F mutant displays reduced DNA binding, processivity, and exonuclease activity on single-stranded DNA and double-stranded DNA substrates. The Y619F substitution would disrupt the hydrogen bond network at the primer terminus and may affect the alignment of the 3' primer terminus at the polymerase active site, slowing chemistry and overall DNA synthesis.  相似文献   

16.
The transient opening of a backdoor in the active‐site wall of acetylcholinesterase, one of nature's most rapid enzymes, has been suggested to contribute to the efficient traffic of substrates and products. A crystal structure of Torpedo californica acetylcholinesterase in complex with the peripheral‐site inhibitor aflatoxin is now presented, in which a tyrosine at the bottom of the active‐site gorge rotates to create a 3.4‐Å wide exit channel. Molecular dynamics simulations show that the opening can be further enlarged by movement of Trp84. The crystallographic and molecular dynamics simulation data thus point to the interface between Tyr442 and Trp84 as the key element of a backdoor, whose opening permits rapid clearance of catalysis products from the active site. Furthermore, the crystal structure presented provides a novel template for rational design of inhibitors and reactivators, including anti‐Alzheimer drugs and antidotes against organophosphate poisoning.  相似文献   

17.
Flavocytochrome b2 catalyses the oxidation of L-lactate to pyruvate in yeast mitochondrial intermembrane space. Its flavoprotein domain is a member of a family of FMN-dependent 2-hydroxy-acid-oxidizing enzymes. Numerous solution studies suggest that the first step of the reaction consists of proton abstraction from lactate C2, leading to a carbanion that subsequently yields electrons to FMN. The crystal structure suggests that the enzyme base is His373, and that Tyr254 may be hydrogen bonded to the substrate hydroxyl. Studies carried out with the Y254F mutant [Dubois, J., Chapman, S.K., Mathews, F.S., Reid, G.A. & Lederer, F. (1990) Biochemistry 29, 6393-6400] showed that Tyr254 does not act as a base but stabilizes the transition state. As the mutation did not induce any change in substrate affinity, the question of the existence of the hydrogen bond in the Michaelis complex remained open. Similar results with glycolate oxidase, mutated at the same position, led to the suggestion that these enzymes actually operate via a hydride transfer mechanism [Macheroux, P., Kieweg, V., Massey, V., Soderlind, E., Stenberg, K. & Lindqvist, Y. (1993) Eur. J. Biochem. 213, 1047-1054]. In the present work, we have re-investigated the matter by analysing the properties of a Y254L mutant flavocytochrome b2, as well as the behaviour of the Y254F enzyme with two substrates other than lactate, and a series of inhibitors. The Y254L protein is less efficient with L-lactate than the wild-type enzyme by a factor of 500, but the substrate affinity is unchanged. In contrast, L-phenyllactate and mandelate, poor substrates (the latter acting more as an inhibitor), exhibit an increased affinity. In addition, the Y254L mutant enzyme is more efficient with phenyllactate than lactate as a substrate. In order to rationalize these observations, we have modelled phenyllactate and mandelate in the active site, using previously described modelling experiments with lactate as a starting point. The results indicate that mandelate cannot bind in an orientation allowing proton abstraction by His373, due to steric interference by the side chains of Ala198 and Leu230. It might possibly adopt a binding mode as proposed previously for lactate, which leads to a hydride transfer and with which the 198 and 230 side chains do not interfere. However, other researchers [Sinclair, R., Reid, G.A. & Chapman, S.K. (1998) Biochem. J. 333, 117-120] showed that A198G, L230A and A198G/L230A mutant enzymes exhibit a strongly improved mandelate dehydrogenase activity. These results indicate that relief of the steric crowding facilitates catalysis by enabling a better mandelate orientation at the active site, suggesting that its productive binding mode is similar to that proposed for lactate in the carbanion mechanism. The modelling studies therefore support the hypothesis of a carbanion mechanism for all substrates. In addition, we present the effect of the two mutations at position 254 on the binding of a number of competitive inhibitors (such as sulfite, D-lactate, propionate) and of inhibitors that are known to bind at the active site both when the flavin is oxidized and when it is in the semiquinone state (propionate, oxalate and L-lactate at high concentrations). Unexpectedly, the results indicate that the integrity of Tyr254 is necessary for the binding of these inhibitors at the semiquinone stage.  相似文献   

18.
The catalytic pentad of tyrosine recombinases, that assists the tyrosine nucleophile, includes a conserved histidine/tryptophan (His/Trp-III). Flp and Cre harbor tryptophan at this position; most of their kin recombinases display histidine. Contrary to the conservation rule, Flp(W330F) is a much stronger recombinase than Flp(W330H). The hydrophobicity of Trp330 or Phe330 is utilized in correctly positioning Tyr343 during the strand cleavage step of recombination. Why then is phenylalanine almost never encountered in the recombinase family at this conserved position? Using exogenous nucleophiles and synthetic methylphosphonate or 5'-thiolate substrates, we decipher that Trp330 also assists in the activation of the scissile phosphate and the departure of the 5'-hydroxyl leaving group. These two functions are consistent with the hydrogen bonding property of Trp330 as well as its location in structures of the Flp recombination complexes. However, van der Waals contact between Trp330 and Arg308 may also be important for the phosphate activation step. A structure based suppression strategy permits the inactive variant Flp(W330A) to be rescued by a second site mutation A339M. Modeling alanine and methionine at positions 330 and 339, respectively, in the Flp crystal structure suggests a plausible mechanism for active site restoration. Successful suppression suggests the possibility of evolving, by design, new active site configurations for tyrosine recombination.  相似文献   

19.
The aspartic protease renin (REN) catalyses the rate-limiting step in the Renin–Angiotensin–Aldosterone System (RAAS), which regulates cardiovascular and renal homoeostasis in living organisms. Renin blockage is therefore an attractive therapeutic strategy for the treatment of hypertension. Herein, computational approaches were used to provide a structural characterization of the binding site, flap opening and dynamic rearrangements of REN in the key conserved residues and water molecules, with the binding of a dodecapeptide substrate or different inhibitors. All these structural insights during catalysis may assist future studies in developing novel strategies for REN inactivation. Our molecular dynamics simulations of several unbound-REN and bound-REN systems indicate similar flexible-segments plasticity with larger fluctuations in those belonging to the C-domain (exposed to the solvent). These segments are thought to assist the flap opening and closure to allow the binding of the substrate and catalytic water molecules. The unbound-REN simulation suggests that the flap can acquire three different conformations: closed, semi-open and open. Our results indicate that the semi-open conformation is already sufficient and appropriate for the binding of the angiotensinogen (Ang) tail, thus contributing to the high specificity of REN, and that both semi-open and open flap conformations are present in free and complexed enzymes. We additionally observed that the Tyr75–Trp39 H-bond has an important role in assisting flap movement, and we highlight several conserved water molecules and amino acids that are essential for the proper catalytic activity of REN.  相似文献   

20.
Memapsin 2 (beta-secretase) is the membrane-anchored aspartic protease that initiates the cleavage of beta-amyloid precursor protein (APP), leading to the production of amyloid-beta (Abeta), a major factor in the pathogenesis of Alzheimer's disease. The active site of memapsin 2 has been shown, with kinetic data and crystal structures, to bind to eight substrate residues (P(4)-P(4)'). We describe here that the addition of three substrate residues from P(7) to P(5) strongly influences the hydrolytic activity by memapsin 2 and these subsites prefer hydrophobic residues, especially tryptophan. A crystal structure of memapsin 2 complexed with a statine-based inhibitor spanning P(10)-P(4)' revealed the binding positions of P(5)-P(7) residues. Kinetic studies revealed that the addition of these substrate residues contributes to the decrease in K(m) and increase in k(cat) values, suggesting that these residues contribute to both substrate recognition and transition-state binding. The crystal structure of a new inhibitor, OM03-4 (K(i) = 0.03 nM), bound to memapsin 2 revealed the interaction of a tryptophan with the S(6) subsite of the protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号