首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 377 毫秒
1.
Centronuclear myopathy (CNM) is a rare congenital muscle disease characterized by fibers with prominent centralized nuclei in muscle biopsies. The disease is clinically heterogeneous, ranging from severe neonatal hypotonic phenotypes to adult-onset mild muscle weakness, and can have multiple modes of inheritance in association with various genes, including MTM1, DNM2, BIN1 and RYR1. Here we analyzed 18 sporadic patients with clinical and histological diagnosis of CNM and sequenced the DNM2 gene, which codes for the dynamin 2 protein. We found DNM2 missense mutations in two patients, both in exon 8, one known (p.E368K) and one novel (p.F372C), which is found in a position of presumed pathogenicity and appeared de novo. The patients had similar phenotypes characterized by neonatal signs followed by improvement and late childhood reemergence of slowly progressive generalized muscle weakness, elongated face with ptosis and ophthalmoparesis, and histology showing fibers with radiating sarcoplasmic strands (RSS). These patients were the only ones in the series to present this histological marker, which together with previous reports in the literature suggest that, when RSS are present, direct sequencing of DNM2 mutation hot spot regions should be the first step in the molecular diagnosis of CNM, even in sporadic cases.  相似文献   

2.
3.
We have identified 14 families with ataxia-telangiectasia (A-T) in which mutation of the ATM gene is associated with a less severe clinical and cellular phenotype (approximately 10%-15% of A-T families identified in the United Kingdom). In 10 of these families, all the homozygotes have a 137-bp insertion in their cDNA caused by a point mutation in a sequence resembling a splice-donor site. The second A-T allele has a different mutation in each patient. We show that the less severe phenotype in these patients is caused by some degree of normal splicing, which occurs as an alternative product from the insertion-containing allele. The level of the 137-bp PCR product containing the insertion was lowest in two patients who showed a later onset of cerebellar ataxia. A further four families who do not have this insertion have been identified. Mutations detected in two of four of these are missense mutations, normally rare in A-T patients. The demonstration of mutations giving rise to a slightly milder phenotype in A-T raises the interesting question of what range of phenotypes might occur in individuals in whom both mutations are milder. One possibility might be that individuals who are compound heterozygotes for ATM mutations are more common than we realize.  相似文献   

4.
Nemaline myopathy (NM) is a clinically and genetically heterogeneous disorder characterized by muscle weakness and the presence of nemaline bodies (rods) in skeletal muscle. Disease-causing mutations have been reported in five genes, each encoding a protein component of the sarcomeric thin filament. Recently, we identified mutations in the muscle alpha-skeletal-actin gene (ACTA1) in a subset of patients with NM. In the present study, we evaluated a new series of 35 patients with NM. We identified five novel missense mutations in ACTA1, which suggested that mutations in muscle alpha-skeletal actin account for the disease in approximately 15% of patients with NM. The mutations appeared de novo and represent new dominant mutations. One proband subsequently had two affected children, a result consistent with autosomal dominant transmission. The seven patients exhibited marked clinical variability, ranging from severe congenital-onset weakness, with death from respiratory failure during the 1st year of life, to a mild childhood-onset myopathy, with survival into adulthood. There was marked variation in both age at onset and clinical severity in the three affected members of one family. Common pathological features included abnormal fiber type differentiation, glycogen accumulation, myofibrillar disruption, and "whorling" of actin thin filaments. The percentage of fibers with rods did not correlate with clinical severity; however, the severe, lethal phenotype was associated with both severe, generalized disorganization of sarcomeric structure and abnormal localization of sarcomeric actin. The marked variability, in clinical phenotype, among patients with different mutations in ACTA1 suggests that both the site of the mutation and the nature of the amino acid change have differential effects on thin-filament formation and protein-protein interactions. The intrafamilial variability suggests that alpha-actin genotype is not the sole determinant of phenotype.  相似文献   

5.
Li S  Li J  Cheng J  Zhou B  Tong X  Dong X  Wang Z  Hu Q  Chen M  Hua ZC 《PloS one》2008,3(6):e2396
Here we report two unrelated Chinese families with congenital missing teeth inherited in an X-linked manner. We mapped the affected locus to chromosome Xp11-Xq21 in one family. In the defined region, both families were found to have novel missense mutations in the ectodysplasin-A (EDA) gene. The mutation of c.947A>G caused the D316G substitution of the EDA protein. The mutation of c.1013C>T found in the other family resulted in the Thr to Met mutation at position 338 of EDA. The EDA gene has been reported responsible for X-linked hypohidrotic ectodermal dysplasia (XLHED) in humans characterized by impaired development of hair, eccrine sweat glands, and teeth. In contrast, all the affected individuals in the two families that we studied here had normal hair and skin. Structural analysis suggests that these two novel mutants may account for the milder phenotype by affecting the stability of EDA trimers. Our results indicate that these novel missense mutations in EDA are associated with the isolated tooth agenesis and provide preliminary explanation for the abnormal clinical phenotype at a molecular structural level.  相似文献   

6.
Multiple osteochondromas (MO) is an autosomal-dominant inherited disorder. The two genes responsible (EXT1 and EXT2) have been identified. We investigated 12 MO families for phenotype details and the genetic basis by cosegregation and mutation analysis (seven novel pathogenic mutations [five frameshift, one splice site, and one gross deletion] and one novel missense polymorphism). We found EXT1 to be responsible in seven families (19 affected members) and EXT2 in four families (17 affected members). One family remains undetermined. We found a tendency to a more severe phenotype in EXT1 families. As a novel finding, we could identify a single parameter (ulna/height ratio) that separates EXT1 family from EXT2 family in our series.  相似文献   

7.
Mutations in the fibrillin-1 (FBN1) gene cause Marfan syndrome (MFS) and have been associated with a wide range of overlapping phenotypes. Clinical care is complicated by variable age at onset and the wide range of severity of aortic features. The factors that modulate phenotypical severity, both among and within families, remain to be determined. The availability of international FBN1 mutation Universal Mutation Database (UMD-FBN1) has allowed us to perform the largest collaborative study ever reported, to investigate the correlation between the FBN1 genotype and the nature and severity of the clinical phenotype. A range of qualitative and quantitative clinical parameters (skeletal, cardiovascular, ophthalmologic, skin, pulmonary, and dural) was compared for different classes of mutation (types and locations) in 1,013 probands with a pathogenic FBN1 mutation. A higher probability of ectopia lentis was found for patients with a missense mutation substituting or producing a cysteine, when compared with other missense mutations. Patients with an FBN1 premature termination codon had a more severe skeletal and skin phenotype than did patients with an inframe mutation. Mutations in exons 24-32 were associated with a more severe and complete phenotype, including younger age at diagnosis of type I fibrillinopathy and higher probability of developing ectopia lentis, ascending aortic dilatation, aortic surgery, mitral valve abnormalities, scoliosis, and shorter survival; the majority of these results were replicated even when cases of neonatal MFS were excluded. These correlations, found between different mutation types and clinical manifestations, might be explained by different underlying genetic mechanisms (dominant negative versus haploinsufficiency) and by consideration of the two main physiological functions of fibrillin-1 (structural versus mediator of TGF beta signalling). Exon 24-32 mutations define a high-risk group for cardiac manifestations associated with severe prognosis at all ages.  相似文献   

8.
Nemaline myopathy (NM) is a rare congenital muscle disorder primarily affecting skeletal muscles that results in neonatal death in severe cases as a result of associated respiratory insufficiency. NM is thought to be a disease of sarcomeric thin filaments as six of eight known genes whose mutation can cause NM encode components of that structure, however, recent discoveries of mutations in non-thin filament genes has called this model in question. We performed whole-exome sequencing and have identified recessive small deletions and missense changes in the Kelch-like family member 41 gene (KLHL41) in four individuals from unrelated NM families. Sanger sequencing of 116 unrelated individuals with NM identified compound heterozygous changes in KLHL41 in a fifth family. Mutations in KLHL41 showed a clear phenotype-genotype correlation: Frameshift mutations resulted in severe phenotypes with neonatal death, whereas missense changes resulted in impaired motor function with survival into late childhood and/or early adulthood. Functional studies in zebrafish showed that loss of Klhl41 results in highly diminished motor function and myofibrillar disorganization, with nemaline body formation, the pathological hallmark of NM. These studies expand the genetic heterogeneity of NM and implicate a critical role of BTB-Kelch family members in maintenance of sarcomeric integrity in NM.  相似文献   

9.
10.
11.
We studied 29 families with X-linked dominant CMT (CMTX1) neuropathy. Twenty-five families showed mutations in the coding region of the connexin32 (Cx32) gene. The mutations included five nonsense mutations, 17 missense mutations, two medium size deletions and one insertion. Most missense mutations showed a mild clinical phenotype and slowing of motor nerve conduction velocities. All five nonsense mutations, the larger deletion and the insertion showed severe clinical phenotype. Four CMTX1 families with mild clinical phenotype showed no point mutations of the Cx32 gene coding region. Two mutations of the non-coding region were identified. The first mutation was located in the nerve specific Cx32 promoter, the second mutation was located in the 5' untranslated region of the mRNA.  相似文献   

12.
"Autosomal dominant retinitis pigmentosa" (adRP) refers to a genetically heterogeneous group of retinal dystrophies, in which 54% of all cases can be attributed to 17 disease loci. Here, we describe the localization and identification of the photoreceptor cell-specific nuclear receptor gene NR2E3 as a novel disease locus and gene for adRP. A heterozygous mutation c.166G-->A (p.Gly56Arg) was identified in the first zinc finger of NR2E3 in a large Belgian family affected with adRP. Overall, this missense mutation was found in 3 families affected with adRP among 87 unrelated families with potentially dominant retinal dystrophies (3.4%), of which 47 were affected with RP (6.4%). Interestingly, affected members of these families display a novel recognizable NR2E3-related clinical subtype of adRP. Other mutations of NR2E3 have previously been shown to cause autosomal recessive enhanced S-cone syndrome, a specific retinal phenotype. We propose a different pathogenetic mechanism for these distinct dominant and recessive phenotypes, which may be attributed to the dual key role of NR2E3 in the regulation of photoreceptor-specific genes during rod development and maintenance.  相似文献   

13.
A young girl with a clinically moderate form of myotubular myopathy was found to carry a cytogenetically detectable deletion in Xq27-q28. The deletion had occurred de novo on the paternal X chromosome. It encompasses the fragile X (FRAXA) and Hunter syndrome (IDS) loci, and the DXS304 and DXS455 markers, in Xq27.3 and proximal Xq28. Other loci from the proximal half of Xq28 (DXS49, DXS256, DXS258, DXS305, and DXS497) were found intact. As the X-linked myotubular myopathy locus (MTM1) was previously mapped to Xq28 by linkage analysis, the present observation suggested that MTM1 is included in the deletion. However, a significant clinical phenotype is unexpected in a female MTM1 carrier. Analysis of inactive X-specific methylation at the androgen receptor gene showed that the deleted X chromosome was active in ~80% of leukocytes. Such unbalanced inactivation may account for the moderate MTM1 phenotype and for the mental retardation that later developed in the patient. This observation is discussed in relation to the hypothesis that a locus modulating X inactivation may lie in the region. Comparison of this deletion with that carried by a male patient with a severe Hunter syndrome phenotype but no myotubular myopathy, in light of recent linkage data on recombinant MTM1 families, led to a considerable refinement of the position of the MTM1 locus, to a region of ~600 kb, between DXS304 and DXS497.  相似文献   

14.
Crisponi syndrome is a severe autosomal recessive condition that is phenotypically characterized by abnormal, paroxysmal muscular contractions resembling neonatal tetanus, large face, broad nose, anteverted nares, camptodactyly, hyperthermia, and sudden death in most cases. We performed homozygosity mapping in five Sardinian and three Turkish families with Crisponi syndrome, using high-density single-nucleotide polymorphism arrays, and identified a critical region on chromosome 19p12-13.1. The most prominent candidate gene was CRLF1, recently found to be involved in the pathogenesis of cold-induced sweating syndrome type 1 (CISS1). CISS1 belongs to a group of conditions with overlapping phenotypes, also including cold-induced sweating syndrome type 2 and Stuve-Wiedemann syndrome. All these syndromes are caused by mutations of genes of the ciliary neurotrophic factor (CNTF)-receptor pathway. Here, we describe the identification of four different CRLF1 mutations in eight different Crisponi-affected families, including a missense mutation, a single-nucleotide insertion, and a nonsense and an insertion/deletion (indel) mutation, all segregating with the disease trait in the families. Comparison of the mutation spectra of Crisponi syndrome and CISS1 suggests that neither the type nor the location of the CRLF1 mutations points to a phenotype/genotype correlation that would account for the most severe phenotype in Crisponi syndrome. Other, still-unknown molecular factors may be responsible for the variable phenotypic expression of the CRLF1 mutations. We suggest that the syndromes can comprise a family of "CNTF-receptor-related disorders," of which Crisponi syndrome would be the newest member and allelic to CISS1.  相似文献   

15.
Acromesomelic dysplasia, type Maroteaux is a disorder characterized by disproportionate short stature predominantly affecting the middle and distal segments of the upper and lower limbs. It is an autosomal recessive disorder due to mutation in NPR2 gene which impairs skeletal growth. To screen the mutations in the gene NPR2, all of its coding exons and splice junction sites were PCR amplified from genomic DNA of affected individuals of four families and sequenced. Four homozygous mutations in four different families were identified. These include three novel mutations including a deletion frameshift mutation (p.Cys586Ter), one nonsense mutation (p.Arg479Ter), one missense mutation (p.Val187Asp) and one reported missense mutation (p.Tyr338Cys). The study describes phenotypes of Indian patients and expands the mutation spectrum of the disorder.  相似文献   

16.
The gene predisposing to neurofibromatosis type 2 (NF2) on human chromosome 22 has revealed a wide variety of different mutations in NF2 individuals. These patients display a marked variability in clinical presentation, ranging from very severe disease with numerous tumors at a young age to a relatively mild condition much later in life. To investigate whether this phenotypic heterogeneity is determined by the type of mutation in NF2, we have collected clinical information on 111 NF2 cases from 73 different families on whom we have performed mutation screening in this gene. Sixty-seven individuals (56.2%) from 41 of these kindreds revealed 36 different putative disease-causing mutations. These include 26 proposed protein-truncating alterations (frameshift deletions/insertions and nonsense mutations), 6 splice-site mutations, 2 missense mutations, 1 base substitution in the 3' UTR of the NF2 cDNA, and a single 3-bp in-frame insertion. Seventeen of these mutations are novel, whereas the remaining 19 have been described previously in other NF2 individuals or sporadic tumors. When individuals harboring protein-truncating mutations are compared with cases with single codon alterations, a significant correlation (P < .001) with clinical outcome is observed. Twenty-four of 28 patients with mutations that cause premature truncation of the NF2 protein, schwannomin, present with severe phenotypes. In contrast, all 16 cases from three families with mutations that affect only a single amino acid have mild NF2. These data provide conclusive evidence that a phenotype/genotype correlation exists for certain NF2 mutations.  相似文献   

17.
Charcot-Marie-Tooth (CMT) is a group of clinically and genetically heterogeneous inherited neuromuscular disorders. At present, more than 30 loci have been reported to be associated with CMT disease; point mutations in the mitofusin 2 (MFN2) gene is one of the most common causes. We studied a Chinese family with CMT disease in which the phenotype of affected individuals varied, and the weakness condition of the distal legs in males, except the proband, was less severe than in females in this family. Linkage analysis and PCR sequencing revealed a missense mutation (NM_014874.3:c.1066 A>G) in the MFN2 gene, resulting in an animo acid substitution of threonine to alanine in condon 356 (Thr356Ala). This is a novel phenotype and mutation for CMT family.  相似文献   

18.
SCN1A is the most relevant epilepsy gene. Mutations of SCN1A generate phenotypes ranging from the extremely severe form of Dravet syndrome (DS) to a mild form of generalized epilepsy with febrile seizures plus (GEFS+). Mosaic SCN1A mutations have been identified in rare familial DS. It is suspected that mosaic mutations of SCN1A may cause other types of familial epilepsies with febrile seizures (FS), which are more common clinically. Thus, we screened SCN1A mutations in 13 families with partial epilepsy with antecedent febrile seizures (PEFS+) using denaturing high-performance liquid chromatography and sequencing. The level of mosaicism was further quantified by pyrosequencing. Two missense SCN1A mutations with mosaic origin were identified in two unrelated families, accounting for 15.4% (2/13) of the PEFS+ families tested. One of the mosaic carriers with ~25.0% mutation of c.5768A>G/p.Q1923R had experienced simple FS; another with ~12.5% mutation of c.4847T>C/p.I1616T was asymptomatic. Their heterozygous children had PEFS+. Recurrent transmission occurred in both families, as noted in most of the families with germline mosaicism reported previously. The two mosaic mutations identified in this study are less destructive missense, compared with the more destructive truncating and splice-site mutations identified in the majority of previous studies. This is the first report of mosaic SCN1A mutations in families with probands that do not exhibit DS, but manifest only a milder phenotype. Therefore, such families with mild cases should be approached with caution in genetic counseling and the possibility of mosaicism origin associated with high recurrence risk should be excluded.  相似文献   

19.
Autosomal recessive lamellar ichthyosis is a clinically heterogeneous group of severe congenital keratinization disorders that is characterized by generalized hyperkeratosis and variable erythema. About half of the patients have mutations in the TGM1 gene, which encodes the keratinocyte transglutaminase. Linkage studies have shown that at least two further loci for autosomal recessive lamellar ichthyosis must exist. We present here two patients with lamellar ichthyosis caused by mutations in the TGM1 gene. The first patient is compound heterozygous for the novel missense mutation C53S and the splice mutation A3447G. The second patient, a child of consanguineous parents from Tunisia, is homozygous for the unknown nonsense mutation W263X. This is the first report of a mutation, C53S, that affects the region of the keratinocyte transglutaminase that is essential for anchorage of the enzyme to the plasma membrane. A novel, rapid in situ transglutaminase activity assay revealed the absence of keratinocyte transglutaminase activity in both patients. The mutations described are hence causative for the ichthyosis phenotype. Received: 27 October 1997 / Accepted: 24 November 1997  相似文献   

20.
Dysferlin protein (DYSF) is a ferlin family member found in sarcolemma and is involved in membrane repair, muscle differentiation, membrane fusion, etc. The deficiency of DYSF due to mutations is associated with different pathologic phenotypes including the autosomal recessive limb-girdle type 2B phenotype (LGMD2B), a distal anterior compartment myopathy (DMAT), and the Miyoshi myopathy (MM). In this study, we determined a missense mutation c.4253G>A on the DYSF gene in a Mexican family from an endogamic population. This mutation was assumed to be the cause of dystrophy because only homozygous individuals of the family manifest a clinical phenotype. Structural implications caused by G/D substitution at amino acid position 1418 are discussed in terms of potential importance of the dysferlin neighboring sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号