首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In voltage-dependent Shaker K+ channels, charged residues E293 in transmembrane segment S2 and R365, R368, and R371 in S4 contribute significantly to the gating charge movement that accompanies activation. Using an intragenic suppression strategy, we have now probed for structural interaction between transmembrane segments S2, S3, and S4 in Shaker channels. Charge reversal mutations of E283 in S2 and K374 in S4 disrupt maturation of the protein. Maturation was specifically and efficiently rescued by second-site charge reversal mutations, indicating that electrostatic interactions exist between E283 in S2 and R368 and R371 in S4, and between K374 in S4 and E293 in S2 and D316 in S3. Rescued subunits were incorporated into functional channels, demonstrating that a native structure was restored. Our data indicate that K374 interacts with E293 and D316 within the same subunit. These electrostatic interactions mediate the proper folding of the protein and are likely to persist in the native structure. Our results raise the possibility that the S4 segment is tilted relative to S2 and S3 in the voltage-sensing domain of Shaker channels. Such an arrangement might provide solvent access to voltage-sensing residues, which we find to be highly tolerant of mutations.  相似文献   

2.
Myers MP  Khanna R  Lee EJ  Papazian DM 《FEBS letters》2004,568(1-3):110-116
In Shaker K(+) channels, formation of an electrostatic interaction between two charged residues, D316 and K374 in transmembrane segments S3 and S4, respectively, is a key step in voltage sensor biogenesis. Mutations D316K and K374E disrupt formation of the voltage sensor and lead to endoplasmic reticulum retention. We have now investigated the fates of these misfolded proteins. Both are significantly less stable than the wild-type protein. D316K is degraded by cytoplasmic proteasomes, whereas K374E is degraded by a lactacystin-insensitive, non-proteasomal pathway. Our results suggest that the D316K and K374E proteins are misfolded in recognizably different ways, an observation with implications for voltage sensor biogenesis.  相似文献   

3.
The selectivity filter of the cation channel TRPM4   总被引:5,自引:0,他引:5  
Transient receptor potential channel melastatin subfamily (TRPM) 4 and its close homologue, TRPM5, are the only two members of the large transient receptor potential superfamily of cation channels that are impermeable to Ca(2+). In this study, we located the TRPM4 selectivity filter and investigated possible structural elements that render it Ca(2+)-impermeable. Based on homology with known cation channel pores, we identified an acidic stretch of six amino acids in the loop between transmembrane helices TM5 and TM6 ((981)EDMDVA(986)) as a potential selectivity filter. Substitution of this six-amino acid stretch with the selectivity filter of TRPV6 (TIIDGP) resulted in a functional channel that combined the gating hallmarks of TRPM4 (activation by Ca(2+), voltage dependence) with TRPV6-like sensitivity to block by extracellular Ca(2+) and Mg(2+) as well as Ca(2+) permeation. Neutralization of Glu(981) resulted in a channel with normal permeability properties but a strongly reduced sensitivity to block by intracellular spermine. Neutralization of Asp(982) yielded a functional channel that exhibited extremely fast desensitization (tau < 5 s), possibly indicating destabilization of the pore. Neutralization of Asp(984) resulted in a non-functional channel with a dominant negative phenotype when coexpressed with wild type TRPM4. Combined neutralization of all three acidic residues resulted in a functional channel whose voltage dependence was shifted toward very positive potentials. Substitution of Gln(977) by a glutamate, the corresponding residue in divalent cation-permeable TRPM channels, altered the monovalent cation permeability sequence and resulted in a pore with moderate Ca(2+) permeability. Our findings delineate the selectivity filter of TRPM channels and provide the first insight into the molecular basis of monovalent cation selectivity.  相似文献   

4.
Chen D  Frey PA  Lepore BW  Ringe D  Ruzicka FJ 《Biochemistry》2006,45(42):12647-12653
Lysine 2,3-aminomutase (LAM) from Clostridium subterminale SB4 catalyzes the interconversion of (S)-lysine and (S)-beta-lysine by a radical mechanism involving coenzymatic actions of S-adenosylmethionine (SAM), a [4Fe-4S] cluster, and pyridoxal 5'-phosphate (PLP). The enzyme contains a number of conserved acidic residues and a cysteine- and arginine-rich motif, which binds iron and sulfide in the [4Fe-4S] cluster. The results of activity and iron, sulfide, and PLP analysis of variants resulting from site-specific mutations of the conserved acidic residues and the arginine residues in the iron-sulfide binding motif indicate two classes of conserved residues of each type. Mutation of the conserved residues Arg134, Asp293, and Asp330 abolishes all enzymatic activity. On the basis of the X-ray crystal structure, these residues bind the epsilon-aminium and alpha-carboxylate groups of (S)-lysine. However, among these residues, only Asp293 appears to be important for stabilizing the [4Fe-4S] cluster. Members of a second group of conserved residues appear to stabilize the structure of LAM. Mutations of arginine 130, 135, and 136 and acidic residues Glu86, Asp165, Glu236, and Asp172 dramatically decrease iron and sulfide contents in the purified variants. Mutation of Asp96 significantly decreases iron and sulfide content. Arg130 or Asp172 variants display no detectable activity, whereas variants mutated at the other positions display low to very low activities. Structural roles are assigned to this latter class of conserved amino acids. In particular, a network of hydrogen bonded interactions of Arg130, Glu86, Arg135, and the main chain carbonyl groups of Cys132 and Leu55 appears to stabilize the [4Fe-4S] cluster.  相似文献   

5.
Voltage-gated sodium (NaV) channels mediate electrical excitability in animals. Despite strong sequence conservation among the voltage-sensor domains (VSDs) of closely related voltage-gated potassium (KV) and NaV channels, the functional contributions of individual side chains in Nav VSDs remain largely enigmatic. To this end, natural and unnatural side chain substitutions were made in the S2 hydrophobic core (HC), the extracellular negative charge cluster (ENC), and the intracellular negative charge cluster (INC) of the four VSDs of the skeletal muscle sodium channel isoform (NaV1.4). The results show that the highly conserved aromatic side chain constituting the S2 HC makes distinct functional contributions in each of the four NaV domains. No obvious cation–pi interaction exists with nearby S4 charges in any domain, and natural and unnatural mutations at these aromatic sites produce functional phenotypes that are different from those observed previously in Kv VSDs. In contrast, and similar to results obtained with Kv channels, individually neutralizing acidic side chains with synthetic derivatives and with natural amino acid substitutions in the INC had little or no effect on the voltage dependence of activation in any of the four domains. Interestingly, countercharge was found to play an important functional role in the ENC of DI and DII, but not DIII and DIV. These results suggest that electrostatic interactions with S4 gating charges are unlikely in the INC and only relevant in the ENC of DI and DII. Collectively, our data highlight domain-specific functional contributions of highly conserved side chains in NaV VSDs.  相似文献   

6.
HERG1 K(+) channels are critical for modulating the duration of the cardiac action potential. The role of hERG1 channels in maintaining electrical stability in the heart derives from their unusual gating properties: slow activation and fast inactivation. HERG1 channel inactivation is intrinsically voltage sensitive and is not coupled to activation in the same way as in the Shaker family of K(+) channels. We recently proposed that the S4 transmembrane domain functions as the primary voltage sensor for hERG1 activation and inactivation and that distinct regions of S4 contribute to each gating process. In this study, we tested the hypothesis that S4 rearrangements underlying activation and inactivation gating may be associated with distinct cooperative interactions between a key residue in the S4 domain (R531) and acidic residues in neighboring regions (S1 - S3 domains) of the voltage sensing module. Using double-mutant cycle analysis, we found that R531 was energetically coupled to all acidic residues in S1-S3 during activation, but was coupled only to acidic residues near the extracellular portion of S2 and S3 (D456, D460 and D509) during inactivation. We propose that hERG1 activation involves a cooperative conformational change involving the entire voltage sensing module, while inactivation may involve a more limited interaction between R531 and D456, D460 and D509.  相似文献   

7.
Much of the catalytic power of trypsin is derived from the unusual buried, charged side chain of Asp102. A polar cave provides the stabilization for maintaining the buried charge, and it features the conserved amino acid Ser214 adjacent to Asp102. Ser214 has been replaced with Ala, Glu, and Lys in rat anionic trypsin, and the consequences of these changes have been determined. Three-dimensional structures of the Glu and Lys variant trypsins reveal that the new 214 side chains are buried. The 2.2-A crystal structure (R = 0.150) of trypsin S214K shows that Lys214 occupies the position held by Ser214 and a buried water molecule in the buried polar cave. Lys214-N zeta is solvent inaccessible and is less than 5 A from the catalytic Asp102. The side chain of Glu214 (2.8 A, R = 0.168) in trypsin S214E shows two conformations. In the major one, the Glu carboxylate in S214E forms a hydrogen bond with Asp102. Analytical isoelectrofocusing results show that trypsin S214K has a significantly different isoelectric point than trypsin, corresponding to an additional positive charge. The kinetic parameter kcat demonstrates that, compared to trypsin, S214K has 1% of the catalytic activity on a tripeptide amide substrate and S214E is 44% as active. Electrostatic potential calculations provide corroboration of the charge on Lys214 and are consistent with the kinetic results, suggesting that the presence of Lys214 has disturbed the electrostatic potential of Asp102.  相似文献   

8.
The vanilloid transient receptor potential channel TRPV1 is a tetrameric six-transmembrane segment (S1-S6) channel that can be synergistically activated by various proalgesic agents such as capsaicin, protons, heat, or highly depolarizing voltages, and also by 2-aminoethoxydiphenyl borate (2-APB), a common activator of the related thermally gated vanilloid TRP channels TRPV1, TRPV2, and TRPV3. In these channels, the conserved charged residues in the intracellular S4-S5 region have been proposed to constitute part of a voltage sensor that acts in concert with other stimuli to regulate channel activation. The molecular basis of this gating event is poorly understood. We mutated charged residues all along the S4 and the S4-S5 linker of TRPV1 and identified four potential voltage-sensing residues (Arg(557), Glu(570), Asp(576), and Arg(579)) that, when specifically mutated, altered the functionality of the channel with respect to voltage, capsaicin, heat, 2-APB, and/or their interactions in different ways. The nonfunctional charge-reversing mutations R557E and R579E were partially rescued by the charge-swapping mutations R557E/E570R and D576R/R579E, indicating that electrostatic interactions contribute to allosteric coupling between the voltage-, temperature- and capsaicin-dependent activation mechanisms. The mutant K571E was normal in all aspects of TRPV1 activation except for 2-APB, revealing the specific role of Lys(571) in chemical sensitivity. Surprisingly, substitutions at homologous residues in TRPV2 or TRPV3 had no effect on temperature- and 2-APB-induced activity. Thus, the charged residues in S4 and the S4-S5 linker contribute to voltage sensing in TRPV1 and, despite their highly conserved nature, regulate the temperature and chemical gating in the various TRPV channels in different ways.  相似文献   

9.
The structures of nitrogenase Fe proteins with defined amino acid substitutions in the previously implicated nucleotide-dependent signal transduction pathways termed switch I and switch II have been determined by X-ray diffraction methods. In the Fe protein of nitrogenase the nucleotide-dependent switch regions are responsible for communication between the sites responsible for nucleotide binding and hydrolysis and the [4Fe-4S] cluster of the Fe protein and the docking interface that interacts with the MoFe protein upon macromolecular complex formation. In this study the structural characterization of the Azotobacter vinelandii nitrogenase Fe protein with Asp at position 39 substituted by Asn in MgADP-bound and nucleotide-free states provides an explanation for the experimental observation that the altered Fe proteins form a trapped complex subsequent to a single electron transfer event. The structures reveal that the substitution allows the formation of a hydrogen bond between the switch I Asn39 and the switch II Asp125. In the structure of the native enzyme the analogous interaction between the side chains of Asp39 and Asp125 is precluded due to electrostatic repulsion. These results suggest that the electrostatic repulsion between Asp39 and Asp125 is important for dissociation of the Fe protein:MoFe protein complex during catalysis. In a separate study, the structural characterization of the Fe protein with Asp129 substituted by Glu provides the structural basis for the observation that the Glu129-substituted variant in the absence of bound nucleotides has biochemical properties in common with the native Fe protein with bound MgADP. Interactions of the longer Glu side chain with the phosphate binding loop (P-loop) results in a similar conformation of the switch II region as the conformation that results from the binding of the phosphate of ADP to the P-loop.  相似文献   

10.
Koide A  Jordan MR  Horner SR  Batori V  Koide S 《Biochemistry》2001,40(34):10326-10333
It is generally considered that electrostatic interactions on the protein surface, such as ion pairs, contribute little to protein stability, although they may play important roles in conformational specificity. We found that the tenth fibronectin type III domain of human fibronectin (FNfn10) is more stable at acidic pH than neutral pH, with an apparent midpoint of transition near pH 4. Determination of pK(a)'s for all the side chain carboxyl groups of Asp and Glu residues revealed that Asp 23 and Glu 9 have an upshifted pK(a). These residues and Asp 7 form a negatively charged patch on the surface of FNfn10, with Asp 7 centrally located between Asp 23 and Glu 9, suggesting repulsive electrostatic interactions among these residues at neutral pH. Mutant proteins, D7N and D7K, in which Asp 7 was replaced with Asn and Lys, respectively, exhibited a modest but significant increase in stability at neutral pH, compared to the wild type, and they no longer showed pH dependence of stability. The pK(a)'s of Asp 23 and Glu 9 in these mutant proteins shifted closer to their respective unperturbed values, indicating that the unfavorable electrostatic interactions have been reduced in the mutant proteins. Interestingly, the wild-type and mutant proteins were all stabilized to a similar degree by the addition of 1 M sodium chloride at both neutral and acidic pH, suggesting that the repulsive interactions between the carboxyl groups cannot be effectively shielded by 1 M sodium chloride. These results indicate that repulsive interactions between like charges on the protein surface can destabilize a protein, and protein stability can be significantly improved by relieving these interactions.  相似文献   

11.
Wang CH  Xie ZL  Lv JW  Yu ZD  Shao SL 《生理学报》2012,64(4):379-386
This paper was aimed to study conserved motifs of voltage sensing proteins (VSPs) and establish a voltage sensing model. All VSPs were collected from the Uniprot database using a comprehensive keyword search followed by manual curation, and the results indicated that there are only two types of known VSPs, voltage gated ion channels and voltage dependent phosphatases. All the VSPs have a common domain of four helical transmembrane segments (TMS, S1-S4), which constitute the voltage sensing module of the VSPs. The S1 segment was shown to be responsible for membrane targeting and insertion of these proteins, while S2-S4 segments, which can sense membrane potential, for protein properties. Conserved motifs/residues and their functional significance of each TMS were identified using profile-to-profile sequence alignments. Conserved motifs in these four segments are strikingly similar for all VSPs, especially, the conserved motif [RK]-X(2)-R-X(2)-R-X(2)-[RK] was presented in all the S4 segments, with positively charged arginine (R) alternating with two hydrophobic or uncharged residues. Movement of these arginines across the membrane electric field is the core mechanism by which the VSPs detect changes in membrane potential. The negatively charged aspartate (D) in the S3 segment is universally conserved in all the VSPs, suggesting that the aspartate residue may be involved in voltage sensing properties of VSPs as well as the electrostatic interactions with the positively charged residues in the S4 segment, which may enhance the thermodynamic stability of the S4 segments in plasma membrane.  相似文献   

12.
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels have a transmembrane topology that is highly similar to voltage-gated K(+) channels, yet HCN channels open in response to membrane hyperpolarization instead of depolarization. The structural basis for the "inverted" voltage dependence of HCN gating and how voltage sensing by the S1-S4 domains is coupled to the opening of the intracellular gate formed by the S6 domain are unknown. Coupling could arise from interaction between specific residues or entire transmembrane domains. We previously reported that the mutation of specific residues in the S4-S5 linker of HCN2 (i.e. Tyr-331 and Arg-339) prevented normal channel closure presumably by disruption of a crucial interaction with the activation gate. Here we hypothesized that the C-linker, a carboxyl terminus segment that connects S6 to the cyclic nucleotide binding domain, interacts with specific residues of the S4-S5 linker to mediate coupling. The recently solved structure of the C-linker of HCN2 indicates that an alpha-helix (the A'-helix) is located near the end of each S6 domain, the presumed location of the activation gate. Ala-scanning mutagenesis of the end of S6 and the A'-helix identified five residues that were important for normal gating as mutations disrupted channel closure. However, partial deletion of the C-linker indicated that the presence of only two of these residues was required for normal coupling. Further mutation analyses suggested that a specific electrostatic interaction between Arg-339 of the S4-S5 linker and Asp-443 of the C-linker stabilizes the closed state and thus participates in the coupling of voltage sensing and activation gating in HCN channels.  相似文献   

13.
P2X receptors are ATP-gated cation channels expressed in nerve, muscle, bone, glands, and the immune system. The seven family members display variable Ca2+ permeabilities that are amongst the highest of all ligand-gated channels (Egan and Khakh, 2004). We previously reported that polar residues regulate the Ca2+ permeability of the P2X2 receptor (Migita et al., 2001). Here, we test the hypothesis that the formal charge of acidic amino acids underlies the higher fractional Ca2+ currents (Pf%) of the rat and human P2X1 and P2X4 subtypes. We used patch-clamp photometry to measure the Pf% of HEK-293 cells transiently expressing a range of wild-type and genetically altered receptors. Lowering the pH of the extracellular solution reduced the higher Pf% of the P2X1 receptor but had no effect on the lower Pf% of the P2X2 receptor, suggesting that ionized side chains regulate the Ca2+ flux of some family members. Removing the fixed negative charges found at the extracellular ends of the transmembrane domains also reduced the higher Pf% of P2X1 and P2X4 receptors, and introducing these charges at homologous positions increased the lower Pf% of the P2X2 receptor. Taken together, the data suggest that COO- side chains provide an electrostatic force that interacts with Ca2+ in the mouth of the pore. Surprisingly, the glutamate residue that is partly responsible for the higher Pf% of the P2X1 and P2X4 receptors is conserved in the P2X3 receptor that has the lowest Pf% of all family members. We found that neutralizing an upstream His45 increased Pf% of the P2X3 channel, suggesting that this positive charge masks the facilitation of Ca2+ flux by the neighboring Glu46. The data support the hypothesis that formal charges near the extracellular ends of transmembrane domains contribute to the high Ca2+ permeability and flux of some P2X receptors.  相似文献   

14.
A new theory termed tunnel-acid-group-potential (TAGPT), which explains the effects of pHo and pHi on the ion conductance through different membrane channels, is presented. It is suggested that shifts in pHo and pHi change the values of negative charges generated by acid groups of side chains of some polar (Glu, Asp) amino acid residues lining the tunnel part of the channel. The resulting electrostatic field modification affects the heights of rate-limiting energy barriers (for ion transport) in the transition zones between the tunnel and the vestibules, which changes the channel conductance.  相似文献   

15.
The structure of aconitase   总被引:15,自引:0,他引:15  
A H Robbins  C D Stout 《Proteins》1989,5(4):289-312
The crystal structure of the 80,000 Da Fe-S enzyme aconitase has been solved and refined at 2.1 A resolution. The protein contains four domains; the first three from the N-terminus are closely associated around the [3Fe-4S] cluster with all three cysteine ligands to the cluster being provided by the third domain. Association of the larger C-terminal domain with the first three domains creates an extensive cleft leading to the Fe-S cluster. Residues from all four domains contribute to the active site region, which is defined by the Fe-S cluster and a bound SO4(2-) ion. This region of the structure contains 4 Arg, 3 His, 3 Ser, 2 Asp, 1 Glu, 3 Asn, and 1 Gln residues, as well as several bound water molecules. Three of these side chains reside on a three-turn 3(10) helix in the first domain. The SO4(2-) ion is bound 9.3 A from the center of the [3Fe-4S] cluster by the side chains of 2 Arg and 1 Gln residues. Each of 3 His side chains in the putative active site is paired with Asp or Glu side chains.  相似文献   

16.
Phosphate ions are known to complex guanidinium groups, which are the side chains of arginine. Voltage gated channels that allow passage of ions through cell membranes, producing, for example the nerve impulse, are in many cases composed of four domains, each with six transmembrane segments. The S4 transmembrane segments of these channels have arginines placed in such a way that they would be expected to complex phosphate. Known phosphate-arginine complexes are reasonably strong. Here, an ab initio calculation reinforces the expectation that a strong complex could form. As a consequence, if the S4 moved, it would carry either no charge, or at most half of what is expected from fully charged arginines. This suggests that it may be necessary to rethink voltage gating models in which the gating current is produced by physical motion of the S4 transmembrane segments.  相似文献   

17.
In voltage-gated K(+) channels (Kv), membrane depolarization promotes a structural reorganization of each of the four voltage sensor domains surrounding the conducting pore, inducing its opening. Although the crystal structure of Kv1.2 provided the first atomic resolution view of a eukaryotic Kv channel, several components of the voltage sensors remain poorly resolved. In particular, the position and orientation of the charged arginine side chains in the S4 transmembrane segments remain controversial. Here we investigate the proximity of S4 and the pore domain in functional Kv1.2 channels in a native membrane environment using electrophysiological analysis of intersubunit histidine metallic bridges formed between the first arginine of S4 (R294) and residues A351 or D352 of the pore domain. We show that histidine pairs are able to bind Zn(2+) or Cd(2+) with high affinity, demonstrating their close physical proximity. The results of molecular dynamics simulations, consistent with electrophysiological data, indicate that the position of the S4 helix in the functional open-activated state could be shifted by approximately 7-8 A and rotated counterclockwise by 37 degrees along its main axis relative to its position observed in the Kv1.2 x-ray structure. A structural model is provided for this conformation. The results further highlight the dynamic and flexible nature of the voltage sensor.  相似文献   

18.
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels contribute to pacemaking activity in specialized neurons and cardiac myocytes. HCN channels have a structure similar to voltage-gated K(+) channels but have a much larger putative S4 transmembrane domain and open in response to membrane hyperpolarization instead of depolarization. As an initial attempt to define the structural basis of HCN channel gating, we have characterized the functional roles of the charged residues in the S2, S3, and S4 transmembrane domains. The nine basic residues and a single Ser in S4 were mutated individually to Gln, and the function of mutant channels was analyzed in Xenopus oocytes using two-microelectrode voltage clamp techniques. Surface membrane expression of hemagglutinin-epitope-tagged channel proteins was examined by chemiluminescence. Our results suggest that 1) Lys-291, Arg-294, Arg-297, and Arg-300 contribute to the voltage dependence of gating but not to channel folding or trafficking to the surface membrane; 2) Lys-303 and Ser-306 are essential for gating, but not for channel folding/trafficking; 3) Arg-312 is important for folding but not gating; and 4) Arg-309, Arg-315, and Arg-318 are crucial for normal protein folding/trafficking and may charge-pair with Asp residues located in the S2 and S3 domains.  相似文献   

19.
Outward movement of the voltage sensor is coupled to activation in voltage-gated ion channels; however, the precise mechanism and structural basis of this gating event are poorly understood. Potential insight into the coupling mechanism was provided by our previous finding that mutation to Lys of a single residue (Asp(540)) located in the S4-S5 linker endowed HERG (human ether-a-go-go-related gene) K(+) channels with the unusual ability to open in response to membrane depolarization and hyperpolarization in a voltage-dependent manner. We hypothesized that the unusual hyperpolarization-induced gating occurred through an interaction between Lys(540) and the C-terminal end of the S6 domain, the region proposed to form the activation gate. Therefore, we mutated six residues located in this region of S6 (Ile(662)-Tyr(667)) to Ala in D540K HERG channels. Mutation of Arg(665), but not the other five residues, prevented hyperpolarization-dependent reopening of D540K HERG channels. Mutation of Arg(665) to Gln or Asp also prevented reopening. In addition, D540R and D540K/R665K HERG reopened in response to hyperpolarization. Together these findings suggest that a single residue (Arg(665)) in the S6 domain interacts with Lys(540) by electrostatic repulsion to couple voltage sensing to hyperpolarization-dependent opening of D540K HERG K(+) channels. Moreover, our findings suggest that the C-terminal ends of S4 and S6 are in close proximity at hyperpolarized membrane potentials.  相似文献   

20.
Human multidrug and toxic compound extrusion 1 (hMATE1) is an electroneutral H(+)/organic cation exchanger responsible for the final excretion step of structurally unrelated toxic organic cations in kidney and liver. To elucidate the molecular basis of the substrate recognition by hMATE1, we substituted the glutamate residues Glu273, Glu278, Glu300, and Glu389, which are conserved in the transmembrane regions, for alanine or aspartate and examined the transport activities of the resulting mutant proteins using tetraethylammonium (TEA) and cimetidine as substrates after expression in human embryonic kidney 293 (HEK-293) cells. All of these mutants except Glu273Ala were fully expressed and present in the plasma membrane of the HEK-293 cells. TEA transport activity in the mutant Glu278Ala was completely absent. Both Glu300Ala and Glu389Ala and all aspartate mutants exhibited significantly decreased activity. Glu273Asp showed higher affinity for cimetidine, whereas it has reduced affinity to TEA. Glu278Asp showed decreased affinity to cimetidine. Both Glu300Asp and Glu389Asp had lowered affinity to TEA, whereas the affinity of Glu389Asp to cimetidine was fourfold higher than that of the wild-type transporter with about a fourfold decrease in V(max) value. Both Glu273Asp and Glu300Asp had altered pH dependence for TEA uptake. These results suggest that all of these glutamate residues are involved in binding and/or transport of TEA and cimetidine but that their individual roles are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号