首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Distal hereditary motor neuropathies (dHMN) are a group of inherited peripheral nerve disorders characterized by length-dependent motor neuron weakness and subsequent muscle atrophy. Missense mutations in the gene encoding small heat shock protein HSPB1 (HSP27) have been associated with hereditary neuropathies including dHMN. HSPB1 is a member of the small heat shock protein (sHSP) family characterized by a highly conserved α-crystallin domain that is critical to their chaperone activity. In this study, we modeled HSPB1 mutant-induced neuropathies in Drosophila using a human HSPB1S135F mutant that has a missense mutation in its α-crystallin domain. Overexpression of the HSPB1 mutant produced no significant defect in the Drosophila development, however, a partial reduction in the life span was observed. Further, the HSPB1 mutant gene induced an obvious loss of motor activity when expressed in Drosophila neurons. Moreover, suppression of histone deacetylase 6 (HDAC6) expression, which has critical roles in HSPB1 mutant-induced axonal defects, successfully rescued the motor defects in the HSPB1 mutant Drosophila model.  相似文献   

2.
C Kim  H Choi  ES Jung  W Lee  S Oh  NL Jeon  I Mook-Jung 《PloS one》2012,7(8):e42983
Even though the disruption of axonal transport is an important pathophysiological factor in neurodegenerative diseases including Alzheimer's disease (AD), the relationship between disruption of axonal transport and pathogenesis of AD is poorly understood. Considering that α-tubulin acetylation is an important factor in axonal transport and that Aβ impairs mitochondrial axonal transport, we manipulated the level of α-tubulin acetylation in hippocampal neurons with Aβ cultured in a microfluidic system and examined its effect on mitochondrial axonal transport. We found that inhibiting histone deacetylase 6 (HDAC6), which deacetylates α-tubulin, significantly restored the velocity and motility of the mitochondria in both anterograde and retrograde axonal transports, which would be otherwise compromised by Aβ. The inhibition of HDAC6 also recovered the length of the mitochondria that had been shortened by Aβ to a normal level. These results suggest that the inhibition of HDAC6 significantly rescues hippocampal neurons from Aβ-induced impairment of mitochondrial axonal transport as well as mitochondrial length. The results presented in this paper identify HDAC6 as an important regulator of mitochondrial transport as well as elongation and, thus, a potential target whose pharmacological inhibition contributes to improving mitochondrial dynamics in Aβ treated neurons.  相似文献   

3.
The distal hereditary motor neuropathies (dHMNs) are a clinically and genetically heterogeneous group of disorders that primarily affect motor neurons, without significant sensory involvement. New dHMN genes continue to be identified. There are now 11 causative genes described for dHMN, and an additional five genetic loci with unidentified genes. This genetic heterogeneity has further delineated the classification of dHMN, which was previously classified according to mode of inheritance, age at onset, and additional complicating features. Some overlap between phenotypically distinct forms of dHMN is also apparent. The mutated genes identified to-date in dHMN include HSPB1, HSPB8, HSPB3, DCTN1, GARS, PLEKHG5, BSCL2, SETX, IGHMBP2, ATP7A and TRPV4. The pathogenesis of mutations remains to be fully elucidated, however common pathogenic mechanisms are emerging. These include disruption of axonal transport, RNA processing defects, protein aggregation and inclusion body formation, disrupted calcium channel activity, and loss of neuroprotective signalling. Some of these dHMN genes are also mutated in Charcot-Marie-Tooth (CMT) disease and spinal muscular atrophy (SMA). This review examines the growing number of identified dHMN genes, discusses recent insights into the functions of these genes and possible pathogenic mechanisms, and looks at the increasing overlap between dHMN and the other neuropathies CMT2 and SMA.  相似文献   

4.
Charcot-Marie-Tooth disease (CMT) represents a group of neurodegenerative disorders typically characterised by demyelination (CMT1) or distal axon degeneration (CMT2) of motor and sensory neurons. The majority of CMT2 cases are caused by mutations in mitofusin 2 (MFN2); an essential gene encoding a protein responsible for fusion of the mitochondrial outer membrane. The mechanism of action of MFN2 mutations is still not fully resolved. To investigate a role for loss of Mfn2 function in disease we investigated an ENU-induced nonsense mutation in zebrafish MFN2 and characterised the phenotype of these fish at the whole organism, pathological, and subcellular level. We show that unlike mice, loss of MFN2 function in zebrafish leads to an adult onset, progressive phenotype with predominant symptoms of motor dysfunction similar to CMT2. Mutant zebrafish show progressive loss of swimming associated with alterations at the neuro-muscular junction. At the cellular level, we provide direct evidence that mitochondrial transport along axons is perturbed in Mfn2 mutant zebrafish, suggesting that this is a key mechanism of disease in CMT. The progressive phenotype and pathology suggest that zebrafish will be useful for further investigating the disease mechanism and potential treatment of axonal forms of CMT. Our findings support the idea that MFN2 mutation status should be investigated in patients presenting with early-onset recessively inherited axonal CMT.  相似文献   

5.

Background

Mutations in heat shock 27 kDa protein 1 (HSP27 or HSPB1) cause distal hereditary motor neuropathy (dHMN) or Charcot-Marie-Tooth disease type 2 F (CMT2F) according to unknown factors. Mutant HSP27 proteins affect axonal transport by reducing acetylated tubulin.

Results

We generated a transgenic mouse model overexpressing HSP27-S135F mutant protein driven by Cytomegalovirus (CMV) immediate early promoter. The mouse phenotype was similar to dHMN patients in that they exhibit motor neuropathy. To determine the phenotypic aberration of transgenic mice, behavior test, magnetic resonance imaging (MRI), electrophysiological study, and pathology were performed. Rotarod test showed that founder mice exhibited lowered motor performance. MRI also revealed marked fatty infiltration in the anterior and posterior compartments at calf level. Electrophysiologically, compound muscle action potential (CMAP) but not motor nerve conduction velocity (MNCV) was reduced in the transgenic mice. Toluidine staining with semi-thin section of sciatic nerve showed the ratio of large myelinated axon fiber was reduced, which might cause reduced locomotion in the transgenic mice. Electron microscopy also revealed abundant aberrant myelination. Immunohistochemically, neuronal dysfunctions included elevated level of phosphorylated neurofilament and reduced level of acetylated tubulin in the sural nerve of transgenic mice. There was no additional phenotype besides motor neuronal defects.

Conclusions

Overexpression of HSP27-S135F protein causes peripheral neuropathy. The mouse model can be applied to future development of therapeutic strategies for dHMN or CMT2F.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0154-y) contains supplementary material, which is available to authorized users.  相似文献   

6.
Mutations in spastin are the most common cause of hereditary spastic paraplegia (HSP) but the mechanisms by which mutant spastin induces disease are not clear. Spastin functions to regulate microtubule organisation, and because of the essential role of microtubules in axonal transport, this has led to the suggestion that defects in axonal transport may underlie at least part of the disease process in HSP. However, as yet there is no direct evidence to support this notion. Here we analysed axonal transport in a novel mouse model of spastin-induced HSP that involves a pathogenic splice site mutation, which leads to a loss of spastin protein. A mutation located within the same splice site has been previously described in HSP. Spastin mice develop gait abnormalities that correlate with phenotypes seen in HSP patients and also axonal swellings containing cytoskeletal proteins, mitochondria and the amyloid precursor protein (APP). Pathological analyses of human HSP cases caused by spastin mutations revealed the presence of similar axonal swellings. To determine whether mutant spastin influenced axonal transport we quantified transport of two cargoes, mitochondria and APP-containing membrane bound organelles, in neurons from mutant spastin and control mice, using time-lapse microscopy. We found that mutant spastin perturbs anterograde transport of both cargoes. In neurons with axonal swellings we found that the mitochondrial axonal transport defects were exacerbated; distal to axonal swellings both anterograde and retrograde transport were severely reduced. These results strongly support a direct role for defective axonal transport in the pathogenesis of HSP because of spastin mutation.  相似文献   

7.
Tang BS  Zhao GH  Luo W  Xia K  Cai F  Pan Q  Zhang RX  Zhang FF  Liu XM  Chen B  Zhang C  Shen L  Jiang H  Long ZG  Dai HP 《Human genetics》2005,116(3):222-224
Charcot-Marie-Tooth (CMT) disease is the most common inherited motor and sensory neuropathy. We have previously described a large Chinese CMT family and assigned the locus underlying the disease (CMT2L; OMIM 608673) to chromosome 12q24. Here, we report a novel c.423GT (Lys141Asn) missense mutation of small heat-shock protein 22-kDa protein 8 (encoded by HSPB8), which is also responsible for distal hereditary motor neuropathy type (dHMN) II. No disease-causing mutations have been identified in another 114 CMT families.  相似文献   

8.
Kinesin-1 is a motor protein that moves stepwise along microtubules by employing dimerized kinesin heavy chain (Khc) subunits that alternate cycles of microtubule binding, conformational change, and ATP hydrolysis. Mutations in the Drosophila Khc gene are known to cause distal paralysis and lethality preceded by the occurrence of dystrophic axon terminals, reduced axonal transport, organelle-filled axonal swellings, and impaired action potential propagation. Mutations in the equivalent human gene, Kif5A, result in similar problems that cause hereditary spastic paraplegia (HSP) and Charcot-Marie-Tooth type 2 (CMT2) distal neuropathies. By comparing the phenotypes and the complementation behaviors of a large set of Khc missense alleles, including one that is identical to a human Kif5A HSP allele, we identified three routes to suppression of Khc phenotypes: nutrient restriction, genetic background manipulation, and a remarkable intramolecular complementation between mutations known or likely to cause reciprocal changes in the rate of microtubule-stimulated ADP release by kinesin-1. Our results reveal the value of large-scale complementation analysis for gaining insight into protein structure-function relationships in vivo and point to possible paths for suppressing symptoms of HSP and related distal neuropathies.  相似文献   

9.
The development of morphological neuronal polarity starts by the formation and elongation of an axon. At the same time the axon initial segment (AIS) is generated and creates a diffusion barrier which differentiate axon and somatodendritic compartment. Different structural and functional proteins that contribute to the generation of neuronal action potential are concentrated at the axon initial segment. While axonal elongation is controlled by signalling pathways that regulate cytoskeleton through microtubule associated proteins and tubulin modifications, the microtubule cytoskeleton under the AIS is mostly unknown. Thus, understanding which proteins modify tubulin, where in the neuron and at which developmental stage is crucial to understanding how morphological and functional neuronal polarity is achieved. In this study performed in mice and using a well established model of murine cultured hippocampal neurons, we report that the tubulin deacetylase HDAC6 is localized at the distal region of the axon, and its inhibition with TSA or tubacin slows down axonal growth. Suppression of HDAC6 expression with HDAC6 shRNAs or expression of a non-active mutant of HDAC6 also reduces axonal length. Furthermore, HDAC6 inhibition or suppression avoids the concentration of ankyrinG and sodium channels at the axon initial segment (AIS). Moreover, treatment of mouse cultured hippocampal neurons with detergents to eliminate the soluble pool of microtubules identified a pool of detergent resistant acetylated microtubules at the AIS, not present at the rest of the axon. Inhibition or suppression of HDAC6 increases acetylation all along the axon and disrupts the specificity of AIS cytoskeleton, modifying the axonal distal gradient localization of KIF5C to a somatodendritic and axonal localization. In conclusion, our results reveal a new role of HDAC6 tubulin deacetylase as a regulator of microtubule characteristics in the axon distal region where axonal elongation takes place, and allowing the development of acetylated microtubules microdomains where HDAC6 is not concentrated, such as the axon initial segment.  相似文献   

10.
A K141N missense mutation in heat shock protein (HSP) B8, which belongs to the small HSP family, causes distal hereditary motor neuropathy, which is characterized by the formation of inclusion bodies in cells. Although the HSPB8 gene causes hereditary motor neuropathy, obvious expression of HSPB8 is also observed in other tissues, such as the heart. The effects of a single mutation in HSPB8 upon the heart were analyzed using rat neonatal cardiomyocytes. Expression of HSPB8 K141N by adenoviral infection resulted in increased HSPB8-positive aggregates around nuclei, whereas no aggregates were observed in myocytes expressing wild-type HSPB8. HSPB8-positive aggresomes contained amyloid oligomer intermediates that were detected by a specific anti-oligomer antibody (A11). Expression of HSPB8 K141N induced slight cellular toxicity. Recombinant HSPB8 K141N protein showed reactivity against the anti-oligomer antibody, and reactivity of the mutant HSPB8 protein was much higher than that of wild-type HSPB8 protein. To extend our in vitro study, cardiac-specific HSPB8 K141N transgenic (TG) mice were generated. Echocardiography revealed that the HSPB8 K141N TG mice exhibited mild hypertrophy and apical fibrosis as well as slightly reduced cardiac function, although no phenotype was detected in wild-type HSPB8 TG mice. A single point mutation of HSPB8, such as K141N, can cause cardiac disease.  相似文献   

11.

Background

Charcot-Marie-Tooth disease type 2 (CMT2) is a clinically and genetically heterogeneous group of inherited axonal neuropathies. The aim of this study was to extensively investigate the mutational spectrum of CMT2 in a cohort of patients of Han Chinese.

Methodology and Principal Findings

Genomic DNA from 36 unrelated Taiwanese CMT2 patients of Han Chinese descent was screened for mutations in the coding regions of the MFN2, RAB7, TRPV4, GARS, NEFL, HSPB1, MPZ, GDAP1, HSPB8, DNM2, AARS and YARS genes. Ten disparate mutations were identified in 14 patients (38.9% of the cohort), including p.N71Y in AARS (2.8%), p.T164A in HSPB1 (2.8%), and p.[H256R]+[R282H] in GDAP1 (2.8%) in one patient each, three NEFL mutations in six patients (16.7%) and four MFN2 mutations in five patients (13.9%). The following six mutations were novel: the individual AARS, HSPB1 and GDAP1 mutations and c.475-1G>T, p.L233V and p.E744M mutations in MFN2. An in vitro splicing assay revealed that the MFN2 c.475-1G>T mutation causes a 4 amino acid deletion (p.T159_Q162del). Despite an extensive survey, the genetic causes of CMT2 remained elusive in the remaining 22 CMT2 patients (61.1%).

Conclusions and Significance

This study illustrates the spectrum of CMT2 mutations in a Taiwanese CMT2 cohort and expands the number of CMT2-associated mutations. The relevance of the AARS and HSPB1 mutations in the pathogenesis of CMT2 is further highlighted. Moreover, the frequency of the NEFL mutations in this study cohort was unexpectedly high. Genetic testing for NEFL and MFN2 mutations should, therefore, be the first step in the molecular diagnosis of CMT2 in ethnic Chinese.  相似文献   

12.
Cell motility and adhesion involves dynamic microtubule (MT) acetylation/deacetylation, a process regulated by enzymes as HDAC6, a major cytoplasmic α-tubulin deacetylase. We identify G protein-coupled receptor kinase 2 (GRK2) as a key novel stimulator of HDAC6. GRK2, which levels inversely correlate with the extent of α-tubulin acetylation in epithelial cells and fibroblasts, directly associates with and phosphorylates HDAC6 to stimulate α-tubulin deacetylase activity. Remarkably, phosphorylation of GRK2 itself at S670 specifically potentiates its ability to regulate HDAC6. GRK2 and HDAC6 colocalize in the lamellipodia of migrating cells, leading to local tubulin deacetylation and enhanced motility. Consistently, cells expressing GRK2-K220R or GRK2-S670A mutants, unable to phosphorylate HDAC6, exhibit highly acetylated cortical MTs and display impaired migration and protrusive activity. Finally, we find that a balanced, GRK2/HDAC6-mediated regulation of tubulin acetylation differentially modulates the early and late stages of cellular spreading. This novel GRK2/HDAC6 functional interaction may have important implications in pathological contexts.  相似文献   

13.
Histone deacetylase 6 (HDAC6) is a tubulin deacetylase that regulates protein aggregation and turnover. Mutations in Cu/Zn superoxide dismutase (SOD1) linked to familial amyotrophic lateral sclerosis (ALS) make the mutant protein prone to aggregation. However, the role of HDAC6 in mutant SOD1 aggregation and the ALS etiology is unclear. Here we report that HDAC6 knockdown increased mutant SOD1 aggregation in cultured cells. Different from its known role in mediating the degradation of poly-ubiquitinated proteins, HDAC6 selectively interacted with mutant SOD1 via two motifs similar to the SOD1 mutant interaction region (SMIR) that we identified previously in p62/sequestosome 1. Expression of the aggregation-prone mutant SOD1 increased α-tubulin acetylation, and the acetylation-mimicking K40Q α-tubulin mutant promoted mutant SOD1 aggregation. Our results suggest that ALS-linked mutant SOD1 can modulate HDAC6 activity and increase tubulin acetylation, which, in turn, facilitates the microtubule- and retrograde transport-dependent mutant SOD1 aggregation. HDAC6 impairment might be a common feature in various subtypes of ALS.  相似文献   

14.
Acetylation of α-tubulin was studied in cultures of human hepatocytes under the influence of selective inhibitors of histone deacetylases HDAC6 and SIRT-2 — tubastatin A and 2-(3-phenethoxyphenylamino)benzamide, respectively. It was found that in hepatocyte cell line HepG2 acetylated α-tubulin is accumulated preferentially on inhibition of HDAC6 but not of SIRT-2. Under the same conditions, no acetylation of α-tubulin was observed in hepatocyte cell line Huh7. However, the inhibition of HDAC6 with tubastatin A led to hyperacetylation of α-tubulin and simultaneously to decrease in viral RNA concentration in hepatocyte cell line Huh7-luc/neo, which supports propagation of the full genome replicon of hepatitis C virus. The correlation between these two processes points to HDAC6 as a promising cellular target for therapy of hepatitis C.  相似文献   

15.
We present for the first time that histone deacetylase 6 (HDAC6) regulates EGFR degradation and trafficking along microtubules in Pkd1 mutant renal epithelial cells. HDAC6, the microtubule-associated α-tubulin deacetylase, demonstrates increased expression and activity in Pkd1 mutant mouse embryonic kidney cells. Targeting HDAC6 with a general HDAC inhibitor, trichostatin (TSA), or a specific HDAC6 inhibitor, tubacin, increased the acetylation of α-tubulin and downregulated the expression of EGFR in Pkd1 mutant renal epithelial cells. HDAC6 was co-localized with EGF induced endocytic EGFR and endosomes, respectively. Inhibition of the activity of HDAC6 accelerated the trafficking of EGFR from early endosomes to late endosomes along the microtubules. Without EGF stimulation EGFR was randomly distributed while after stimulation with EGF for 30 min, EGFR was accumulated around α-tubulin labeled microtubule bundles. These data suggested that the Pkd1 mutation induced upregulation of HDAC6 might act to slow the trafficking of EGFR from early endosomes to late endosomes along the microtubules for degradation through deacetylating α-tubulin. In addition, inhibition of HDAC activity decreased the phosphorylation of ERK1/2, the downstream target of EGFR axis, and normalized EGFR localization from apical to basolateral in Pkd1 knockout mouse kidneys. Thus, targeting HDAC6 to downregulate EGFR activity may provide a potential therapeutic approach to treat polycystic kidney disease.  相似文献   

16.

Background

Endothelial barrier dysfunction (EBD) involves microtubule disassembly and enhanced cell contractility. Histone deacetylase 6 (HDAC6) deacetylates α-tubulin, and thereby destabilizes microtubules. This study investigates a role for HDAC6 in EBD.

Methods

EBD was induced with thrombin ± HDAC6 inhibitors (tubacin and MC1575), and assessed by transendothelial electrical resistance (TEER). Markers for microtubule disassembly (α-tubulin and acetylated α-tubulin) and contraction (phosphorylated myosin light chain 2, P-MLC2) were measured using immunoblots and immunofluorescence.

Results and conclusion

Thrombin induced a ∼50% decrease in TEER that was abrogated by the HDAC6 inhibitors. Moreover, inhibition of HDAC6 diminished edema in the lung injured by lipopolysaccharide. Lastly, inhibition of HDAC6 attenuated thrombin-induced microtubule disassembly and P-MLC2. Our results suggest that HDAC6 can be targeted to limit EBD.  相似文献   

17.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterized by motoneuron degeneration and muscle paralysis. Although the precise pathogenesis of ALS remains unclear, mutations in Cu/Zn superoxide dismutase (SOD1) account for approximately 20-25% of familial ALS cases, and transgenic mice overexpressing human mutant SOD1 develop an ALS-like phenotype. Evidence suggests that defects in axonal transport play an important role in neurodegeneration. In Legs at odd angles (Loa) mice, mutations in the motor protein dynein are associated with axonal transport defects and motoneuron degeneration. Here, we show that retrograde axonal transport defects are already present in motoneurons of SOD1(G93A) mice during embryonic development. Surprisingly, crossing SOD1(G93A) mice with Loa/+ mice delays disease progression and significantly increases life span in Loa/SOD1(G93A) mice. Moreover, there is a complete recovery in axonal transport deficits in motoneurons of these mice, which may be responsible for the amelioration of disease. We propose that impaired axonal transport is a prime cause of neuronal death in neurodegenerative disorders such as ALS.  相似文献   

18.
Histone deacetylase 6 (HDAC6) is well known for its ability to promote cell migration through deacetylation of its cytoplasmic substrates such as α-tubulin. However, how HDAC6 itself is regulated to control cell motility remains elusive. Previous studies have shown that one third of extracellular signal-regulated kinase (ERK) is associated with the microtubule cytoskeleton in cells. Yet, no connection between HDAC6 and ERK has been discovered. Here, for the first time, we reveal that ERK binds to and phosphorylates HDAC6 to promote cell migration via deacetylation of α-tubulin. We have identified two novel ERK-mediated phosphorylation sites: threonine 1031 and serine 1035 in HDAC6. Both sites were phosphorylated by ERK1 in vitro, whereas Ser-1035 was phosphorylated in response to the activation of EGFR-Ras-Raf-MEK-ERK signaling pathway in vivo. HDAC6-null mouse embryonic fibroblasts rescued by the nonphosphorylation mimicking mutant displayed significantly reduced cell migration compared with those rescued by the wild type. Consistently, the nonphosphorylation mimicking mutant exerted lower tubulin deacetylase activity in vivo compared with the wild type. These data indicate that ERK/HDAC6-mediated cell motility is through deacetylation of α-tubulin. Overall, our results suggest that HDAC6-mediated cell migration could be governed by EGFR-Ras-Raf-MEK-ERK signaling.  相似文献   

19.
The kinesin heavy chain isoform 5A (KIF5A) gene, which encodes a microtubule-based motor protein, plays an important role in the transport of organelles in the nerve cells. Mutations in the KIF5A showed a wide phenotypic spectrum from hereditary spastic paraplegia (HSP) to axonal Charcot–Marie–Tooth peripheral neuropathy type 2 (CMT2). This study identified three pathogenic KIF5A mutations in Korean CMT2 patients by whole exome sequencing. Two mutations (p.Arg204Trp and p.Arg280His) were previously reported, but p.Leu558Pro was determined to be a novel de novo mutation. All the mutations were not observed in the healthy controls and were located in highly conserved domains among vertebrate species. The p.Arg204Trp mutation was identified from a CMT2 patient with additional complex phenotypes of HSP, ataxia, fatigability and pyramidal sign, but the p.Arg280His and p.Leu588Pro mutations were identified in each axonal CMT2 patient. The p.Arg204Trp mutation was previously reported in a HSP patient with no CMT symptom. The p.Arg280His mutation was reported in a CMT2 patient, which was similarly with our case. However, it was also once reported in a HSP patient with pes cavus. As the first report in Korea, this study identified three KIF5A mutations as the underlying cause of axonal peripheral neuropathy with or without the HSP phenotype. We confirmed a wide inter- and intra-allelic phenotypic spectrum by the mutations in the KIF5A.  相似文献   

20.
Charcot-Marie-Tooth disease type 2A (CMT2A) is caused by mutations in the gene MFN2 and is one of the most common inherited peripheral neuropathies. Mfn2 is one of two mammalian mitofusin GTPases that promote mitochondrial fusion and maintain organelle integrity. It is not known how mitofusin mutations cause axonal degeneration and CMT2A disease. We used the conserved yeast mitofusin FZO1 to study the molecular consequences of CMT2A mutations on Fzo1 function in vivo and in vitro. One mutation (analogous to the CMT2A I213T substitution in the GTPase domain of Mfn2) not only abolishes GTP hydrolysis and mitochondrial membrane fusion but also reduces Mdm30-mediated ubiquitylation and degradation of the mutant protein. Importantly, complexes of wild type and the mutant Fzo1 protein are GTPase active and restore ubiquitylation and degradation of the latter. These studies identify diverse and unexpected effects of CMT2A mutations, including a possible role for mitofusin ubiquitylation and degradation in CMT2A pathogenesis, and provide evidence for a novel link between Fzo1 GTP hydrolysis, ubiquitylation, and mitochondrial fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号