首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascularization in tissue engineering   总被引:1,自引:0,他引:1  
Tissue engineering has been an active field of research for several decades now. However, the amount of clinical applications in the field of tissue engineering is still limited. One of the current limitations of tissue engineering is its inability to provide sufficient blood supply in the initial phase after implantation. Insufficient vascularization can lead to improper cell integration or cell death in tissue-engineered constructs. This review will discuss the advantages and limitations of recent strategies aimed at enhancing the vascularization of tissue-engineered constructs. We will illustrate that combining the efforts of different research lines might be necessary to obtain optimal results in the field.  相似文献   

2.
组织工程三大要素为种子细胞、支架材料和信号分子,干细胞因其多分化潜能成为热门的种子细胞。血管化问题是制约工程化组织应用于临床的问题之一。利用干细胞构建组织工程血管的手段之一是在分离培养得到足够的种子细胞后,通过生长因子、细胞外基质、外力作用、其他细胞等的调控实现内皮向分化。只有实现了成功的血管构建,工程化组织才能正常的发挥作用。近年来不少国内外专家学者通过细胞联合培养的方法,观察细胞间的相互作用对血管构建的影响,结果表明,细胞联合培养在血管的形成、存活、稳定方面起到了重要的作用,为组织工程血管化提供了有效的途径,本文就部分细胞联合培养在血管构建中的作用作一综述。  相似文献   

3.
《Biotechnology advances》2017,35(6):782-791
Multi-cellular spheroids mimic the complex three-dimensional environment of natural tissues. Accordingly, they are also used as vascularization units in angiogenesis research and regenerative medicine. Spheroid sprouting assays are versatile in vitro models for the analysis of molecular and cellular determinants of blood vessel development, including different endothelial cell phenotypes, pro- and anti-angiogenic factors as well as cell-matrix and cell-cell interactions. In tissue engineering, spheroids serve in vivo as paracrine stimulators of angiogenesis and building blocks for the generation of prevascularized microtissues and branched vascular trees in macrotissues. Rapid progress in the automatized high-throughput production of spheroids currently provides the conditions for a widespread use of these applications in future drug discovery and bioengineering of functional organ substitutes.  相似文献   

4.
Engineering vascularized skeletal muscle tissue   总被引:13,自引:0,他引:13  
One of the major obstacles in engineering thick, complex tissues such as muscle is the need to vascularize the tissue in vitro. Vascularization in vitro could maintain cell viability during tissue growth, induce structural organization and promote vascularization upon implantation. Here we describe the induction of endothelial vessel networks in engineered skeletal muscle tissue constructs using a three-dimensional multiculture system consisting of myoblasts, embryonic fibroblasts and endothelial cells coseeded on highly porous, biodegradable polymer scaffolds. Analysis of the conditions for induction and stabilization of the vessels in vitro showed that addition of embryonic fibroblasts increased the levels of vascular endothelial growth factor expression in the construct and promoted formation and stabilization of the endothelial vessels. We studied the survival and vascularization of the engineered muscle implants in vivo in three different models. Prevascularization improved the vascularization, blood perfusion and survival of the muscle tissue constructs after transplantation.  相似文献   

5.
Tissue engineering is a new domain, which allows some very unique studies of many human physiological mechanisms. This technology, based on cell capacity to reproduce a three-dimensional tissue with or without the help of biomaterials, is an interesting approach to study cells in an environment quite similar to the in vivo context. This article summarizes the LOEX's (laboratory of experimental organogenesis) scientific endeavor in tissue engineering in order to better understand some physiological or pathological mechanisms. Thus wound healing, stem cells, graft vascularization and cell interactions are domains where tissue engineering has already made a significant impact.  相似文献   

6.
骨组织工程血管化的研究进展   总被引:1,自引:0,他引:1  
血管化是组织工程骨成活的关键,组织工程骨的血管化过程与生理情况下的血管发生相似,但又有其独特性,并受多种因素影响。基于对组织工程骨血管化过程的认识,研究者通过联合细胞培养、促血管化生长因子、显微外科等方法重建血运。本文综述了当前骨组织工程的血管化研究进展。  相似文献   

7.
Achieving successful vascularization remains one of the main problems in bone tissue engineering. After scaffold implantation, the growth of capillaries into the porous construct may be too slow to provide adequate nutrients to the cells in the scaffold interior and this inhibits tissue formation in the scaffold core. Often, prior to implantation, a controlled cell culture environment is used to stimulate cell proliferation and, once in place, the mechanical environment acting on the tissue construct is determined by the loading conditions at the implantation site. To what extent do cell seeding conditions and the construct loading environment have an effect on scaffold vascularization and tissue growth? In this study, a mechano-biological model for tissue differentiation and blood vessel growth was used to determine the influence of cell seeding on vascular network development and tissue growth inside a regular-structured bone scaffold under different loading conditions. It is predicted that increasing the number of cells seeded homogeneously reduces the rate of vascularization and the maximum penetration of the vascular network, which in turn reduces bone tissue formation. The seeding of cells in the periphery of the scaffold was predicted to be beneficial for vascularization and therefore for bone growth; however, tissue formation occurred more slowly during the first weeks after implantation compared to homogeneous seeding. Low levels of mechanical loading stimulated bone formation while high levels of loading inhibited bone formation and capillary growth. This study demonstrates the feasibility of computational design approaches for bone tissue engineering.  相似文献   

8.
Tissue engineering of bone: the reconstructive surgeon's point of view   总被引:8,自引:0,他引:8  
Bone defects represent a medical and socioeconomic challenge. Different types of biomaterials are applied for reconstructive indications and receive rising interest. However, autologous bone grafts are still considered as the gold standard for reconstruction of extended bone defects. The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. Tissue engineering is, according to its historic definition, an "interdisciplinary field that applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function". It is based on the understanding of tissue formation and regeneration and aims to rather grow new functional tissues than to build new spare parts. While reconstruction of small to moderate sized bone defects using engineered bone tissues is technically feasible, and some of the currently developed concepts may represent alternatives to autologous bone grafts for certain clinical conditions, the reconstruction of large-volume defects remains challenging. Therefore vascularization concepts gain on interest and the combination of tissue engineering approaches with flap prefabrication techniques may eventually allow application of bone-tissue substitutes grown in vivo with the advantage of minimal donor site morbidity as compared to conventional vascularized bone grafts. The scope of this review is the introduction of basic principles and different components of engineered bioartificial bone tissues with a strong focus on clinical applications in reconstructive surgery. Concepts for the induction of axial vascularization in engineered bone tissues as well as potential clinical applications are discussed in detail.  相似文献   

9.
Principals of neovascularization for tissue engineering   总被引:31,自引:0,他引:31  
The goals in tissue engineering include the replacement of damaged, injured or missing body tissues with biological compatible substitutes such as bioengineered tissues. However, due to an initial mass loss after implantation, improved vascularization of the regenerated tissue is essential. Recent advances in understanding the process of blood vessel growth has offered significant tools for therapeutic neovascularization. Several angiogenic growth factors including vascular endothelial cell growth factor (VEGF) and basic fibroblast growth factor (bFGF) were used for vascularization of ischemic tissues. Three approaches have been used for vascularization of bioengineered tissue: incorporation of angiogenic factors in the bioengineered tissue, seeding endothelial cells with other cell types and prevascularization of matrices prior to cell seeding. This paper reviews the process of blood vessel growth and tissue vascularization, and discuss strategies for efficient vascularization of engineered tissues.  相似文献   

10.
In summary, microfluidic-BioMEMS platforms are increasingly contributing to tissue engineering in many different ways. First, the accurate control of the cell environment in settings suitable for cell screening and with imaging compatibility is greatly advancing our ability to optimize cell sources for a variety of tissue-engineering applications. Second, the microfluidic technology is ideal for the formation of perfusable networks, either to study their stability and maturation or to use these networks as templates for engineering vascularized tissues. Third, the approaches based on microfluidic and BioMEMS devices enable engineering and the study of minimally functional modules of complex tissues, such as liver sinusoid, kidney nephron, and lung bronchiole. This brief article highlighted some of the unique advantages of this elegant technology using representative examples of tissue-engineering research. We focused on some of the universal needs of the area of tissue engineering: tissue vascularization, faithful recapitulation in vitro of functional units of our tissues and organs, and predictable selection and differentiation of stem cells that are being addressed using the power and versatility of microfluidic-BioMEMS platforms.  相似文献   

11.
Tissue engineering of musculoskeletal tissues often involves the in vitro manipulation and culture of progenitor cells, growth factors and biomaterial scaffolds. Though in vitro tissue engineering has greatly increased our understanding of cellular behavior and cell-material interactions, this methodology is often unable to recreate tissue with the hierarchical organization and vascularization found within native tissues. Accordingly, investigators have focused on alternative in vivo tissue engineering strategies, whereby the traditional triad (cells, growth factors, scaffolds) or a combination thereof are directly implanted at the damaged tissue site or within ectopic sites capable of supporting neo-tissue formation. In vivo tissue engineering may offer a preferential route for regeneration of musculoskeletal and other tissues with distinct advantages over in vitro methods based on the specific location of endogenous cultivation, recruitment of autologous cells, and patient-specific regenerated tissues.  相似文献   

12.
To achieve the goals of engineering large complex tissues, and possibly internal organs, vascularization of the regenerating tissue is essential. To maintain the initial volume after implantation of regenerated tissue, improved vascularization is considered to be important. Recent advances in understanding the process of blood vessel growth has offered significant tools for the neovascularization of bioengineered tissues and therapeutic angiogenesis. Several angiogenic growth factors including vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and hepatocyte growth factor (HGF) were used for vascularization of ischemic tissues. Other approaches such as prevascularization of the scaffold, prior to cell seeding, and incorporation of endothelial cells in the bioengineered tissue showed encouraging results. In this article, we will review recent advances in angiogenic growth factors, and discuss the role of these growth factors and endothelial cells in therapeutic angiogenesis and tissue engineering.  相似文献   

13.
组织工程和再生医学是基础研究和转化医学的热点,传统的组织工程和再生医学方法依赖体外构建组织、外源性干细胞移植至靶部位等方法,尽管这些方法在体外细胞研究、动物研究中证实可以达到组织修复和再生等作用,然而,临床实践尚存在一定问题,无法有效转化。基于干细胞、发育生物学、免疫学、生物工程和材料科学的最新进展,新一代体内再生的医学疗法,即自体疗法得以应用。自体疗法是一种基于优化内源性组织反应,利用干细胞和内源性组织微环境,促进组织愈合和再生的策略。本文将对自体疗法的概念、作用、微环境及优化自体疗法途径做一综述。  相似文献   

14.
The current need for bone grafts in orthopedic and reconstructive surgery cannot be satisfied by autologous tissue transplant due to its limited availability and significant associated morbidity. Tissue engineering approaches could supply sufficient amounts of bone substitutes by exploiting the ability to harvest autologous osteogenic progenitors associated with suitable porous materials. However, the generation of clinically relevant‐sized constructs is critically hampered by limited vascularization, with consequent engraftment and survival only of a thin outer shell, upon in vivo implantation. To overcome this limitation, different non‐mutually exclusive approaches have recently been developed to promote or accelerate graft vascularization, from angiogenic growth factor gene delivery to surgical pre‐vascularization of the construct before implantation. A simple, promising strategy involves the co‐culture of vasculogenic cells to form an intrinsic vascular network inside the graft in vitro, which can rapidly anastomose with the host blood vessels in vivo. Recent data have shown that adipose tissue‐derived stromal vascular fraction (SVF) may provide an efficient, convenient, and autologous source for both osteogenic and endothelial cells. When SVF progenitors were cultured in appropriate bioreactor systems and ectopically implanted, a functional vascular network connected to the host was formed concomitantly to bone formation. Future studies should aim at demonstrating that this approach effectively supports survival of scaled up cell‐based bone grafts at an orthotopic site. The procedure should also be adapted to become compatible with an intra‐operative timeline and complemented with the definition of suitable potency markers, to facilitate its development into a simplified, reproducible, and cost‐effective clinical treatment. J. Cell. Physiol. 225: 348–353, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Microfluidic systems have emerged as revolutionary new platform technologies for a range of applications, from consumer products such as inkjet printer cartridges to lab-on-a-chip diagnostic systems. Recent developments have opened the door to a new set of opportunities for microfluidic systems, in the field of tissue and organ engineering. Advances in the design of physiologically relevant structures and networks, fabrication processes for biomaterials suitable for in vivo use, and techniques for scaling towards large, three-dimensional constructs, are converging towards therapeutic applications of microfluidic technologies in engineering complex tissues and organs. These advances herald a new generation of microfluidics-based approaches designed for specific tissue and organ applications, incorporating microvascular networks, structures for transport and filtration, and a three-dimensional microenvironment suitable for supporting phenotypic cell behavior, tissue function, and implantation and host integration.  相似文献   

16.
Owing to its dual impact on tissue engineering (neovascularization of tissue implants) and cancer treatment (prevention of tumor-induced vascularization), management and elucidation of vascularization phenomena remain clinical priorities. Using a variety of primary human cells and (neoplastic) cell lines assembled in microtissues by gravity-enforced self-aggregation in hanging drops we (i) studied size and age-dependent VEGF production of microtissues in comparison to isogenic monolayer cultures, (ii) characterized the self-organization and VEGF-production potential of mixed-cell spheroids, (iii) analyzed VEGF-dependent capillary formation of human umbilical vein endothelial cells (HUVECs) cells coated onto several human primary cell spheroids, and (iv) profiled endostatin action on vascularization in human microtissues. Precise understanding of vascularization in human microtissues may foster advances in clinical tissue implant engineering, tumor treatment, as well as drug discovery and drug-function analysis.  相似文献   

17.
Vascularization is fundamental for large‐scale tissue engineering. Most of the current vascularization strategies including microfluidics and three‐dimensional (3D) printing aim to precisely fabricate microchannels for individual microvessels. However, few studies have examined the remodeling capacity of the microvessels in the engineered constructs, which is important for transplantation in vivo. Here we present a method for patterning microvessels in a directional ice‐templated scaffold of decellularized porcine kidney extracellular matrix. The aligned microchannels made by directional ice templating allowed for fast and efficient cell seeding. The pure decellularized matrix without any fixatives or cross‐linkers maximized the potential of tissue remodeling. Dramatical microvascular remodeling happened in the scaffold in 2 weeks, from small primary microvessel segments to long patterned microvessels. The majority of the microvessels were aligned in parallel and interconnected with each other to form a network. This method is compatible with other engineering techniques, such as microfluidics and 3D printing, and multiple cell types can be co‐cultured to make complex vascularized tissue and organ models.  相似文献   

18.
Stahl A  Wu X  Wenger A  Klagsbrun M  Kurschat P 《FEBS letters》2005,579(24):5338-5342
Survival of tissue transplants generated in vitro is strongly limited by the slow process of graft vascularization in vivo. A method to enhance graft vascularization is to establish a primitive vascular plexus within the graft prior to transplantation. Endothelial cells (EC) cultured as multicellular spheroids within a collagen matrix form sprouts resembling angiogenesis in vitro. However, osteoblasts integrated into the graft suppress EC sprouting. This inhibition depends on direct cell-cell-interactions and is characteristic of mature ECs isolated from preexisting vessels. In contrast, sprouting of human blood endothelial progenitor cells is not inhibited by osteoblasts, making these cells suitable for tissue engineering of pre-vascularized bone grafts.  相似文献   

19.
Tissue engineering scaffolds play a critical role in regulating the reconstructed human tissue development. Various types of scaffolds have been developed in recent years, including fibrous matrix and foam-like scaffolds. The design of scaffold materials has been investigated extensively. However, the design of physical structure of the scaffold, especially fibrous matrices, has not received much attention. This paper compares the different characteristics of fibrous and foam-like scaffolds, and reviews regulatory roles of important scaffold properties, including surface geometry, scaffold configuration, pore structure, mechanical property and bioactivity. Tissue regeneration, cell organization, proliferation and differentiation under different microstructures were evaluated. The importance of proper scaffold selection and design is further discussed with the examples of bone tissue engineering and stem cell tissue engineering. This review addresses the importance of scaffold microstructure and provides insights in designing appropriate scaffold structure for different applications of tissue engineering.  相似文献   

20.
The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号