首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron and iron complexes stimulate lipid peroxidation and formation of malondialdehyde (MDA). We have studied the effects of Fe2+ and ascorbate on mitochondrial permeability transition induced by phosphate and Ca2+. Iron is necessary for detectable MDA formation, but only Ca2+ and phosphate are necessary for the induction of membrane potential loss (Deltapsi) and Ca2+ release. Keeping the iron at a constant concentration and varying the Ca2+ level changed the mitochondrial Ca2+ retention times, but not the amount of MDA formation. The antioxidant butylated hydroxytoluene at low concentrations prevented MDA formation, but not mitochondrial Ca2+ release. Preincubation of mitochondria with Fe2+ decreased Ca2+ retention time in a concentration-dependent manner and facilitated Ca2+-stimulated MDA accumulation. Thus, Ca2+ phosphate-induced mitochondrial permeability transition (MPT) can be separated mechanistically from MDA accumulation. Lipid peroxidation products do not appear to participate in the initial phase of the permeability transition, but sensitize mitochondria toward MPT.  相似文献   

2.
Parallel efflux of Ca2+ and Pi in energized rat liver mitochondria.   总被引:2,自引:2,他引:0       下载免费PDF全文
Addition of Ruthenium Red to energized rat liver mitochondria that have previously accumulated Ca2+ and phosphate from the external medium induces a parallel efflux of both these ions. Mersalyl or dithioerythritol, which decrease Ruthenium Red-insensitive Ca2+ efflux, also decrease phosphate efflux to the same extent. Conversely diazenedicarboxylic acid bis(NN-dimethylamide) (DDBA), which increases the Ruthenium Red-induced Ca2+ efflux concurrently increases phosphate release. Dithioerythritol and DDBA, reducing and oxidizing agents of thiol groups respectively, modify Ca2+ and Pi efflux without penetrating the mitochondrial inner membrane. Under all the adopted conditions the membrane potential is preserved. The release of resting respiration and the parallel efflux of Mg2+ and adenine nucleotides, events closely correlated to Ca2+ cycling, are equally prevented either by mersalyl, which inhibits phosphate transport, or dithioerythritol; DDBA has the opposite effect. These findings and the observation that suggest that Ca2+ and phosphate transport in energized liver mitochondria are closely related and dependent on the redox state of membrane-bound thiol groups.  相似文献   

3.
Mitochondrial permeability transition, due to opening of the permeability transition pore (PTP), is triggered by Ca2+ in conjunction with an inducing agent such as phosphate. However, incubation of rat liver mitochondria in the presence of low micromolar concentrations of Ca2+ and millimolar concentrations of phosphate is known to also cause net efflux of matrix adenine nucleotides via the ATP-Mg/Pi carrier. This raises the possibility that adenine nucleotide depletion through this mechanism contributes to mitochondrial permeability transition. Results of this study show that phosphate-induced opening of the mitochondrial PTP is, at least in part, secondary to depletion of the intramitochondrial adenine nucleotide content via the ATP-Mg/Pi carrier. Delaying net adenine nucleotide efflux from mitochondria also delays the onset of phosphate-induced PTP opening. Moreover, mitochondria that are depleted of matrix adenine nucleotides via the ATP-Mg/Pi carrier show highly increased susceptibility to swelling induced by high Ca2+ concentration, atractyloside, and the prooxidant tert-butylhydroperoxide. Thus the ATPMg/Pi carrier, by regulating the matrix adenine nucleotide content, can modulate the sensitivity of rat liver mitochondria to undergo permeability transition. This has important implications for hepatocytes under cellular conditions in which the intramitochondrial adenine nucleotide pool size is depleted, such as in hypoxia or ischemia, or during reperfusion when the mitochondria are exposed to increased oxidative stress.  相似文献   

4.
Accumulation of Ca2+ by rat liver mitochondria in the presence of inorganic phosphate results in spontaneous activation of respiration accompanied by a progressive loss of the accumulated cation. The lipid peroxidation inhibitor, ionol, completely prevents and reverses the Ca2+/phosphate-induced loss of accumulated Ca2+ and restores the respiration to state 4 level without having any effect on the rate of Ca2+ accumulation and respiration in the presence of an uncoupler. No correlation between the ionol-dependent loss of Ca2+ and the formation of malonic dialdehyde in mitochondria was found. The measurements of delta psi across the inner mitochondrial membrane during a progressive loss of Ca2+ suggest that the Ca2+/phosphate-induced "uncoupling" is mainly due to the appearance of electrogenic fluxes (but not Ca2+ cycling) which is under control of some products of initial steps of lipid peroxidation.  相似文献   

5.
Upon the addition of inorganic phosphate, isolated rat-heart mitochondria released endogenous adenine nucleotides. To elucidate the mechanism of this phosphate-induced efflux, we evaluated the relative roles of three inner mitochondrial membrane carriers: the adenine nucleotide translocase, the phosphate/hydroxyl exchanger, and the dicarboxylate carrier. Atractyloside (a specific inhibitor of the adenine nucleotide translocase) prevented this efflux, but did not inhibit mitochondrial swelling. Inhibitors of the phosphate/hydroxyl exchanger (200 microM n-ethylmaleimide and 10 microM mersalyl) did not inhibit phosphate-induced efflux. 200 microM mersalyl (which inhibited both the phosphate/hydroxyl exchanger and the dicarboxylate carrier) inhibited the rate of efflux approx. 65% Phenylsuccinate and 2-n-butylmalonate (inhibitors of the dicarboxylate carrier) partially inhibited phosphate-induced efflux and adenine nucleotide translocase activity. Mersalyl (200 microM) had no effect on adenine nucleotide translocase activity. Partial inhibition of the adenine nucleotide translocase by phenylsuccinate and butylmalonate could not explain the extent of inhibition of phosphate-efflux by these agents. Moreover, the rates of adenine nucleotide efflux in the presence of phenylsuccinate, butylmalonate, or mersalyl correlated well with the ability of these agents to inhibit succinate-supported respiration. We conclude that phosphate-induced efflux of adenine nucleotides from rat heart mitochondria occurs over the adenine nucleotide translocase, and that the site of action of the phosphate is not the phosphate/hydroxyl exchanger, but is likely the dicarboxylate carrier.  相似文献   

6.
Phosphoenolpyruvate was found to depress extra oxygen consumption associated with Ca2+ -induced respiratory jump by rat heart mitochondria. Addition of phosphoenolpyruvate to mitochondria which have accumulated Ca2+ in the presence of glutamate and inorganic phosphate causes the release of Ca2+ from mitochondria. The phosphoenolpyruvate-stimulated Ca2+ efflux can be observed with mitochondria loaded with low initial Ca2+ concentration (0.12 mM) in the incubation medium. Measurements of mitochondrial H+ translocation produced by addition of Ca2+ to respiring mitochondria show that phosphoenolpyruvate depresses H+ ejection and enhances H+ uptake by mitochondria. The Ca2+ -releasing effect of phosphoenolpyruvate was found to be significantly stronger than that produced by rotenone when added to mitochondria loaded with Ca2+ in the presence of glutamate and inorganic phosphate. Dithiothreitol cannot overcome the effect of phosphoenolpyruvate on mitochondrial Ca2+ transport.  相似文献   

7.
Ca2+-release pathways from Ca2+-preloaded mitochondria of the yeast Endomyces magnusii were studied. In the presence of phosphate as a permeant anion, Ca2+ was released from respiring mitochondria only after massive cation loading at the onset of anaerobiosis. Intensive aeration of the mitochondrial suspension rapidly inhibited the efflux of Ca2+ and induced its reuptake. The Ca2+ release was not affected by cyclosporin A, an inhibitor of the nonselective permeability transition of mammalian mitochondria. With acetate as the permeant anion, a spontaneous net Ca2+ efflux began after uptake of about 75% of the added cation. The rate of this efflux was insensitive to cyclosporin A, aeration, and Na+ and was proportional to the Ca2+ load. The Ca2+ release was inhibited by La3+, Mn2+, Mg2+, TPP+, and nigericin (in the presence of KCl) and activated by spermine and hypotonicity. We conclude that Ca2+ efflux from preloaded E. magnusii mitochondria is very similar to the Na+-independent specific pathway for Ca2+ release operative in mitochondria from nonexcitable mammalian tissues.  相似文献   

8.
Bongkrekic acid and atractyloside, inhibitors of adenine nucleotide translocase, do not inhibit Ca2+ uptake and H+ production by pig heart mitochondria. However, bongkrekic acid, but not atractyloside, inhibits dinitrophenol-induced Ca2+ efflux and H+ uptake. Conversely, ruthenium red blocks Ca2+ uptake and H+ production but does not prevent dinitrophenol-induced Ca2+ efflux and H+ uptake by mitochondria. These results suggest that mitochondrial Ca2+ uptake and release exist as two independent pathways. The efflux of Ca2+ from mitochondria is mediated by a bongkrekic acid sensitive component which is apparently not identical to the ruthenium red sensitive Ca2+ uptake carrier.  相似文献   

9.
Ruthenium red-insensitive, uncoupler-stimulated release of Ca2+ from Ehrlich ascites tumor cell mitochondria is much slower than from rat liver mitochondria under comparable conditions. In the presence of Pi and at moderate or high Ca2+ loads, ruthenium red-insensitive Ca2+ efflux elicited with uncoupler is approximately 20 times more rapid for rat liver than Ehrlich cell mitochondria. This is attributed to resistance of tumor mitochondria to damage by Ca2+ due to a high level of endogenous Mg2+ that also attenuates Ca2+ efflux. Calcium release from rat liver and tumor mitochondria is inhibited by exogenous Mg2+. This applies to ruthenium red-insensitive spontaneous Ca2+ efflux associated with Ca2+ uptake and uncoupling, and (b) ruthenium red-insensitive Ca2+ release stimulated by uncoupling agent. The endogenous Mg2+ level of Ehrlich tumor mitochondria is approximately three times that of rat liver mitochondria. Endogenous Ca2+ is also much greater (six fold) in Ehrlich tumor mitochondria compared to rat liver. Despite the quantitative difference in endogenous Mg2+, the properties of internal Mg2+ are much the same for rat liver and Ehrlich cell mitochondria. Ehrlich ascites tumor mitochondria exhibit slow, metabolically dependent Mg2+ release and rapid limited release of Mg2+ during Ca2+ uptake. Both have been observed with rat liver and other types of mitochondria. The proportions of apparently "bound" and "free" Mg2+ (inferred from release by the ionophore, A23187) do not differ significantly between tumor and liver mitochondria. Thus, the endogenous Mg2+ of tumor mitochondria has no unusual features but is simply elevated substantially. Ruthenium red-insensitive Ca2+ efflux, when expressed as a function of the intramitochondrial Ca2+/Mg2+ ratio, is quite similar for tumor and rat liver. It is proposed, therefore, that endogenous Mg2+ is a major regulatory factor responsible for differences in the sensitivity to damage by Ca2+ and Ca2+ release by Ehrlich ascites tumor mitochondria compared to mitochondria from normal tissues.  相似文献   

10.
Mechanism of sodium independent calcium efflux from rat liver mitochondria   总被引:1,自引:0,他引:1  
On the basis of primarily two types of observations, it has been suggested that the Na+-independent Ca2+ efflux mechanism of rat liver mitochondria is a passive Ca2+-2H+ exchanger. First, when a pulse of acid is added to a suspension of mitochondria loaded with Ca2+, a pulse of intramitochondrial Ca2+ is often released, even in the presence of the inhibitor of mitochondrial Ca2+ influx, ruthenium red. Second, at a pH near 7, the stoichiometry of Ca2+ released to H+ taken up by Ca2+-loaded mitochondria, following treatment with ruthenium red, has been observed to be 1:2. This evidence for a Ca2+-2H+ exchanger is reexamined here by studying the release of Ca2+ upon acidification of the medium by addition of buffer, the dependence of liver mitochondrial Ca2+ efflux on external medium pH and intramitochondrial pH, and the Ca2+-Ca2+ exchange properties of the Ca2+ efflux mechanism. These studies show no pulse of mitochondrial Ca2+ efflux when pH is abruptly lowered by addition of buffer. The stoichiometry between Ca2+ and H+ fluxes is found to be highly pH dependent. The reported 1:2 stoichiometry between Ca2+ efflux and H+ influx is only observed at one pH. Furthermore, the rate of Ca2+ efflux from mitochondria is found to increase only very slightly at most as suspension pH is decreased. The rate of Ca2+ efflux is not found to increase with increasing intramitochondrial pH. Finally, no Ca2+-Ca2+ isotope exchange can be demonstrated over the Na+-independent efflux mechanism (i.e., in the presence of ruthenium red). It is concluded that these data do not support the hypothesis that the Na+-independent Ca2+ efflux mechanism is a passive Ca2+-2H+ exchanger.  相似文献   

11.
The effects of pentobarbitone on the transport of 45Ca2+ by rat brain mitochondria were studied, using the Ruthenium Red-EGTA quench technique. In the presence of succinate and inorganic phosphate, mitochondria rapidly accumulate 45Ca2+. Pentobarbitone (0.1-1.0 mM) stimulates the initial rate of Ca2+ transport. In contrast, pentobarbitone (1 mM) did not affect the NaCl (50 mM)-induced efflux of 45Ca2+ from mitochondria. Dibucaine (60 micro M), a clinically used local anaesthetic, inhibits both 45Ca2+ uptake an efflux. The results suggest that barbiturate stimulation of mitochondrial Ca2+ uptake may, in combination with effects on other Ca2+ sequestering processes, contribute to the inhibitor of transmitter release observed at a number of synapses.  相似文献   

12.
Phosphate efflux from uncoupled rat liver mitochondria was completely inhibited when mersalyl plus butylmalonate and ATP were added to a sucrose suspending medium. Despite the total retention of phosphate a calcium efflux was observed even in presence of ruthenium red. Under the above conditions no phosphate is transported in association with the ADP/ATP carrier. While mersalyl completely blocked the phosphate release induced by ruthenium red or EGTA from coupled mitochondria it only partially inhibited the CA2+-efflux. The inhibition of Ca2+ efflux was almost completely abolished in the presence of acetate. The existence of a co-transport of Ca2+ associated with phosphate is discussed.  相似文献   

13.
The mechanism by which a number of agents such as hydroperoxides, inorganic phosphate, azodicarboxylic acid bis(dimethylamide) (diamide), 2-methyl-1,4-naphthoquinone (menadione) and aging, induce Ca2+ release from rat liver mitochondria has been analyzed by following Ca2+ fluxes in parallel with K+ fluxes, matrix swelling and triphenylmethylphosphonium fluxes (as an index of transmembrane potential). Addition of hydroperoxides causes a cycle of Ca2+ efflux and reuptake and an almost parallel cycle of delta psi depression. The hydroperoxide-induced delta psi depression is biphasic. The first phase is rapid and insensitive to ATP and is presumably due to activation of the transhydrogenase reaction during the metabolization of the hydroperoxides. The second phase is slow and markedly inhibited by ATP and presumably linked to the activation of a Ca2+-dependent reaction. The slow phase of delta psi depression is paralleled by matrix K+ release and mitochondrial swelling. Nupercaine and ATP reduce or abolish also K+ release and swelling. Inorganic phosphate, diamide, menadione or aging also cause a process of Ca2+ efflux which is paralleled by a slow delta psi depression, K+ release and swelling. All these processes are reduced or abolished by Nupercaine and ATP. The slow delta psi depression following addition of hydroperoxide and diamide is largely reversible at low Ca2+ concentration but tends to become irreversible at high Ca2+ concentration. The delta psi depression increases with the increase of hydroperoxide, diamide and menadione concentration, but is irreversible only in the latter case. Addition of ruthenium red before the hydroperoxides reduces the extent of the slow but not of the rapid phase of delta psi depression. Addition of ruthenium red after the hydroperoxides results in a slow increase of delta psi. Such an effect differs from the rapid increase of delta psi due to ruthenium-red-induced inhibition of Ca2+ cycling in A23187-supplemented mitochondria. Metabolization of hydroperoxides and diamide is accompanied by a cycle of reversible pyridine nucleotide oxidation. Above certain hydroperoxide and diamide concentrations the pyridine nucleotide oxidation becomes irreversible. Addition of menadione results always in an irreversible nucleotide oxidation. The kinetic correlation between Ca2+ efflux and delta psi decline suggests that hydroperoxides, diamide, menadione, inorganic phosphate and aging cause, in the presence of Ca2+, an increase of the permeability for protons of the inner mitochondrial membrane. This is followed by Ca2+ efflux through a pathway which is not the H+/Ca2+ exchange.  相似文献   

14.
Mitochondria of the yeast Endomyces magnusii were examined for the presence of a Ca2+- and phosphate-induced permeability of the inner mitochondrial membrane (pore). For this purpose, coupled mitochondria were incubated under conditions known to induce the permeability transition pore in animal mitochondria, i.e., in the presence of high concentrations of Ca2+ and P(i), prooxidants (t-butylhydroperoxide), oxaloacetate, atractyloside (an inhibitor of ADP/ATP translocator), SH-reagents, by depletion of adenine nucleotide pools, and deenergization of the mitochondria. Large amplitude swelling, collapse of the membrane potential, and efflux of the accumulated Ca2+ were used as parameters for demonstrating pore induction. E. magnusii mitochondria were highly resistant to the above-mentioned substances. Deenergization of mitochondria or depletion of adenine nucleotide pools have no effect on low-amplitude swelling or the other parameters. Cyclosporin A, a specific inhibitor of the nonspecific permeability transition in animal mitochondria, did not affect the parameters measured. It is thus evident that E. magnusii mitochondria lack a functional Ca2+-dependent pore, or possess a pore differently regulated as compared to that of mammalian mitochondria.  相似文献   

15.
Calcium release pathways in Ca(2+)-preloaded mitochondria from the yeast Endomyces magnusii were studied. In the presence of phosphate as a permeant anion, Ca(2+) was released from respiring mitochondria only after massive cation loading at the onset of anaerobiosis. Ca(2+) release was not affected by cyclosporin A, an inhibitor of the mitochondrial permeability transition. Aeration of the mitochondrial suspension inhibited the efflux of Ca(2+) and induced its re-uptake. With acetate as the permeant anion, a spontaneous net Ca(2+) efflux set in after uptake of approximately 150 nmol of Ca(2+)/mg of protein. The rate of this efflux was proportional to the Ca(2+) load and insensitive to aeration, protonophorous uncouplers, and Na(+) ions. Ca(2+) efflux was inhibited by La(3+), Mn(2+), Mg(2+), tetraphenylphosphonium, inorganic phosphate, and nigericin and stimulated by hypotonicity, spermine, and valinomycin in the presence of 4 mm KCl. Atractyloside and t-butyl hydroperoxide were without effect. Ca(2+) efflux was associated with contraction, but not with mitochondrial swelling. We conclude that the permeability transition pore is not involved in Ca(2+) efflux in preloaded E. magnusii mitochondria. The efflux occurs via an Na(+)-independent pathway, in many ways similar to the one in mammalian mitochondria.  相似文献   

16.
This communication describes experiments showing that safranine, at the concentrations usually employed as a probe of mitochondrial membrane potential, causes significant undesirable side effects on Ca2+ transport by liver mitochondria. The major observations are: (i) safranine potentiates the spontaneous Ca2+ release from liver mitochondria induced by phosphate or acetoacetate. This is paralelled by potentiation of the release of state-4 respiration and of the rate of mitochondrial swelling, indicating a generalized effect of the dye on the mitochondrial membrane; (ii) the efflux of mitochondrial Ca2+ stimulated by hydroperoxide is irreversible in the presence of safranine even if membrane stabilizers such as Mg2+ and ATP are present. It is concluded that the use of safranine to monitor the changes in membrane potential during Ca2+ transport by mitochondria should be avoided or special care be taken.  相似文献   

17.
A previous communication (Pereira da Silva, L., Bernardes, C.F. and Vercesi, A.E. (1984) Biochem. Biophys. Res. Commun. 124, 80-86) presented evidence that lasalocid-A, at concentrations far below those required to act as a Ca2+ ionophore, significantly inhibits Ca2+ efflux from liver mitochondria. In the present work we have studied the mechanism of this inhibition in liver and heart mitochondria. It was observed that lasalocid-A (25-250 nM), like nigericin, promotes the electroneutral exchange of K+ for H+ across the inner mitochondrial membrane and as a consequence can cause significant alterations in delta pH and delta psi. An indirect effect of these changes that might lead to inhibition of mitochondrial Ca2+ release was ruled out by experiments showing that the three observed patterns of lasalocid-A effect depend on the size of the mitochondrial Ca2+ load. At low Ca2+ loads (5-70 nmol Ca2+/mg protein), under experimental conditions in which Ca2+ release is supposed to be mediated by a Ca2+/2H+ antiporter, the kinetic data indicate that lasalocid-A inhibits the efflux of the cation by a competitive mechanism. The Ca2+/2Na+ antiporter, the dominant pathway for Ca2+ efflux from heart mitochondria, is not affected by lasalocid-A. At intermediate Ca2+ loads (70-110 nmol Ca2+/mg protein), lasalocid-A slightly stimulates Ca2+ release. This effect appears to be due to an increase in membrane permeability caused by the displacement of a pool of membrane bound Mg2+ possibly involved in the maintenance of membrane structure. Finally, at high Ca2+ loads (110-140 nmol Ca2+/mg protein) lasalocid-A enhances Ca2+ retention by liver mitochondria even in the presence of Ca2(+)-releasing agents such as phosphate and oxidants of the mitochondrial pyridine nucleotides. The maintenance of a high membrane potential under these conditions may indicate that lasalocid-A is a potent inhibitor of the Ca2(+)-induced membrane permeabilization. Nigericin, whose chemical structure resembles that of lasalocid-A, caused similar results.  相似文献   

18.
At high K+ concentration, the effect of phosphate on Ca2+ uptake and release was studied in isolated rat liver mitochondria. Phosphate stimulated uptake at moderately high Ca2+ concentration, and inhibited release at high pH. At low pH, phosphate accelerated Ca2+ release. Ca2+ was released after a lag phase. The time of onset and the velocity of Ca2+ release depended on Ca2+ concentration. Ca2+ release was associated with mitochondrial swelling and destruction of the permeability barrier for sucrose and for chloride. Mg2+ inhibited Ca2+ release and the accompanying events. Ruthenium red and EGTA protected mitochondria from the destructive Ca2+ release and induced an immediate, slow release of Ca2+ and phosphate. Destructive Ca2+ release depended on the time of preincubation of respiration-inhibited mitochondria in the presence of Ca2+, prior to respiration-initiated Ca2+ uptake. The presence of phosphate and mitochondrial energization antagonized the destructive effect of calcium ions. Ca2+ release by acetoacetate also depended on pH. At pH 6.8, phosphate-stimulated Ca2+ release by acetoacetate, while it inhibited the acetoacetate effect at pH 7.6. The results suggest that an essential cause for the destruction of mitochondrial integrity is an increase in the intramitochondrial concentration of free calcium ions under the influence of phosphate.  相似文献   

19.
The rate of uncoupler-induced Ca2+ efflux from rat liver mitochondria is increased by acetate and decreased by phosphate. This effect depends on a shift of the apparent Km, which is increased by phosphate and decreased by acetate, while the Vmax is not modified. The modification of the apparent Km by permeant anions presumably reflects changes in the concentration of matrix free Ca2+. A major part of uncoupler-induced Ca2+ efflux is sensitive to Ruthenium Red, the specific inhibitor of the Ca2+ uniporter , but an apparent insensitivity is observed when the H+ permeability is rate limiting in the process of Ca2+ efflux. The titer of uncoupler required for maximal stimulation of Ca2+ efflux increases with the Ca2+ load and may be 1-2 orders of magnitude higher than that required for maximal stimulation of respiration. On the other hand, when the uncoupler concentration is raised above 10(-6) M, the process of Ca2+ efflux becomes again Ruthenium Red insensitive. The Ruthenium Red inhibition of uncoupler-induced Ca2+ efflux is time dependent, in that the degree of inhibition exerted by low amounts of Ruthenium Red increases with the incubation time. Since the inhibition of the rate of Ca2+ influx undergoes a parallel relief, it is possible that Ruthenium Red moves from the cytosolic to the matrix side of the inner membrane. It is concluded that, in native mitochondria, uncoupler-induced Ca2+ efflux occurs via reversal of the uniport Ca2+ carrier, and not through activation of an independent pathway.  相似文献   

20.
Ca2+ efflux from rat liver mitochondria can occur when endogenous nicotinamide nucleotides are oxidized. It is suggested that nicotinamide nucleotide induced by acetoacetate sensitizes the mitochondria to damaage resulting from the accumulation of Ca2+ in the presence of Pi. Thus, acetoacetate-induced Ca2+ efflux is associated with a loss of respiratory control. Both the effluxes induced by acetoacetate and by high Ca2+ accumulation are prevented by ATP plus oligomycin, although these agents do not prevent the endoagenous nicotinamide nucleotides from becoming oxidized on addition of acetoacetate. Acetoacetate addition only results in Ca2+ release if the Ca2+ and Pi concentration are above a critical value. The acetoacetate-induced Ca2+ effflux is exactly paralled by the virtually complete collapse of the membrane potential. The presence of acetoacetate decreases the concentration of total Ca2+ necessary to induced mitochondrial damage by about 130 nmol of Ca2+/mg of protein. It is concluded that acetoacetate-induced efflux occurs by reversal of the Ca2+ uniporter after the collapse of the membrane potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号