首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
观察了表皮生长因子受体及增殖细胞核抗原在生后1天至生后10月龄昆明种小鼠睾丸内的表达,结果表明:精原细胞及初级精线产细胞从生后第2周至生后4周龄DNA复制旺盛,增殖细胞核抗原免疫反应阳性细胞面密度于生后14天出现峰值。生长因子受体在间质细胞、精母细胞内均有表达。生后4周时,精母细胞表皮生长因子受体表达较强,便于表皮生长因子发挥调节细胞增殖、调亡的作用。  相似文献   

2.
Chorioamnionitis and mechanical ventilation are associated with bronchopulmonary dysplasia (BPD) in preterm infants. Mechanical ventilation at birth activates both inflammatory and acute phase responses. These responses can be partially modulated by previous exposure to intra-amniotic (IA) LPS or Ureaplasma parvum (UP). Epidermal growth factor receptor (EGFR) ligands participate in lung development, and angiotensin converting enzyme (ACE) 1 and ACE2 contribute to lung inflammation. We asked whether brief mechanical ventilation at birth altered EGFR and ACE pathways and if antenatal exposure to IA LPS or UP could modulate these effects. Ewes were exposed to IA injections of UP, LPS or saline multiple days prior to preterm delivery at 85% gestation. Lambs were either immediately euthanized or mechanically ventilated for 2 to 3 hr. IA UP and LPS cause modest changes in the EGFR ligands amphiregulin (AREG), epiregulin (EREG), heparin binding epidermal growth factor (HB-EGF), and betacellulin (BTC) mRNA expression. Mechanical ventilation greatly increased mRNA expression of AREG, EREG, and HB-EGF, with no additional increases resulting from IA LPS or UP. With ventilation AREG and EREG mRNA localized to cells in terminal airspace. EGFR mRNA also increased with mechanical ventilation. IA UP and LPS decreased ACE1 mRNA and increased ACE2 mRNA, resulting in a 4 fold change in the ACE1/ACE2 ratio. Mechanical ventilation with large tidal volumes increased both ACE1 and ACE2 expression. The alterations seen in ACE with IA exposures and EGFR pathways with mechanical ventilation may contribute to the development of BPD in preterm infants.  相似文献   

3.
目的:探讨表皮生长因子受体(EGFR)在肺内的表达对博莱霉素(BLM)诱导小鼠肺纤维化中上皮-间质转分化的影响。方法:将40只4~6周龄C57BLB/c雄性小鼠随机分为正常对照组(气管滴入PBS),纤维化组(气管滴入BLM 3 mg/kg),EGFRRNAi组(气管滴入BLM 3 mg/kg+气管滴入siRNA 20μl)和RNAi阴性对照组(气管滴入BLM 3 mg/kg+气管滴入siRNA阴性对照20μl)。实验第10天处死小鼠,收获肺组织,检测羟脯氨酸含量;采用逆转录-聚合酶链反应(RT-PCR)法检测EGFR和α平滑肌肌动蛋白(α-SMA)mRNA的表达;肺组织切片行HE染色观察肺组织病理改变,免疫组化染色检测EGFR和α-SMA表达。结果:纤维化组EGFR和α-SMA两者的mRNA和蛋白表达均较正常对照组显著增加;RNAi组肺病理损伤较纤维化组减轻,气道上皮下胶原沉积及肺羟脯氨酸含量减少(P<0.05),肺组织EGFR和α-SMA两者的mRNA和蛋白表达均较纤维化组显著下降(P<0.05)。结论:在博来霉素诱导的肺纤维化中EGFR RNAi抑制EGFR活化,下调α-SMA的表达,减轻了博莱霉素诱导的肺纤维化病理改变。其抑制肺纤维化病理过程可能与其抑制上皮-间质转分化(EMT)有关。  相似文献   

4.
大鼠脊髓损伤后表皮生长因子受体在脊髓的表达特点   总被引:1,自引:0,他引:1  
目的研究大鼠脊髓损伤(spinal cord injury,SCI)后表皮生长因子受体(epidermal growth factor re-ceptor,EGFR)在脊髓的表达特点及意义。方法健康成年雄性SD大鼠,随机分为4组(每组10只):假手术组,SCI术后3 d、7 d和14 d组。应用Basso Beattie Bresnahan(BBB)评分观察大鼠行为学改变;逆转录-聚合酶链反应(RT-PCR)检测损伤段脊髓组织中EGFR mRNA表达水平;免疫组织化学方法观察损伤段脊髓灰质中EGFR蛋白表达情况;并对EGFRmRNA及蛋白表达情况与BBB评分进行相关性分析。结果行为学观察发现大鼠脊髓损伤后下肢神经功能逐步恢复;RT-PCR结果显示EGFR mRNA在假手术组大鼠脊髓中微量表达,SCI术后3 d表达显著升高,随后趋于下降,14 d时仍高于假手术组(P<0.01);免疫组织化学染色显示损伤段脊髓灰质中EGFR阳性细胞数在损伤后3 d显著高于假手术组(P<0.01),随后趋于下降,但14 d时仍高于假手术组(P<0.01);EGFR mRNA及蛋白的表达均与BBB评分呈显著负相关(r=-0.956,P<0.05;r=-0.966,P<0.05)。结论EGFR在大鼠脊髓损伤后具有时相分布特点,且与动物行为呈负相关,提示其表达可能阻碍损伤后的神经功能恢复。  相似文献   

5.
Most cell lines derived from small cell lung carcinoma grow in an anchorage-independent manner; they neither possess epidermal growth factor binding activity nor express epidermal growth factor receptor (EGFR) mRNA. A variant AD320, which grew in an anchorage-dependent manner with altered morphology, was isolated from the small cell lung carcinoma cell line Lu134 by treatment with the demethylating agent 5-azacytidine. The analysis, using methylation-sensitive restriction enzymes, revealed that the methylation pattern was altered only in the structural region of the EGFR gene; EGFR mRNA and epidermal growth factor binding activity could be detected in the variant. In addition, drastic changes in gene expression including a decrease of creatine kinase B mRNA and an increase of c-myc mRNA were observed. The EGFR in the variant appeared to be an active part of the transmembrane signaling machinery since c-fos and c-jun mRNA accumulated after epidermal growth factor treatment, followed by EGFR and c-myc mRNA accumulation. A potent tumor promoter, 12-O-tetradecanoylphorbol-13-acetate, also induced EGFR mRNA. Thus, the inducible regulatory mechanism for the EGFR gene was activated in the variant even though the EGFR gene was constitutively expressed.  相似文献   

6.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is known to induce cell growth in various cell types via transactivation of epidermal growth factor receptor (EGFR). To investigate the involvement of HB-EGF and EGFR in cardiac remodeling after myocardial infarction (MI), we examined the expressions of mRNA and protein in rat hearts 6 weeks after MI-induction. Where increased expressions of HB-EGF mRNA and protein were observed, infarcted myocardium was replaced by extracellular matrix and interstitial fibroblasts. EGFR mRNA and protein expression did not show significant changes in sham-operated heart tissues, non-infarcted region, and infarcted region. In vitro study demonstrated that HB-EGF mRNA was expressed mainly in cultured fibroblasts rather than in myocytes. We suggest that the interaction between HB-EGF and EGFR transactivation is closely related to the proliferation of cardiac fibroblasts and cardiac remodeling after MI in an autocrine, paracrine, and juxtacrine manner.  相似文献   

7.
Epidermal growth factor (EGF) acts, in a dose dependent manner, as both a mitogen and an inhibitor of growth of the A431 squamous carcinoma cell line. gamma-interferon (IFN) also inhibits A431 cell growth. The dual effects of EGF on A431 growth and expression of the oncogenes, EGF receptor (EGFR) and Ha-ras, were evaluated with or without gamma-IFN. A mitogenic level (10pM) of EGF had no effect on expression of EGFR 10 kb mRNA or protein. gamma-IFN combined with 10pM EGF caused an initial drop in EGFR mRNA not reflected at the protein level; at 72 hours, the level of EGFR 10kb mRNA rose and inhibition of cell growth was observed. Treatment with a cytostatic amount (10nM) of EGF resulted in decreased expression of EGFR 10kb mRNA and protein within 24 hours; combined treatment with gamma-IFN caused rapid cell death. Expression of Ha-ras mRNA paralleled that of EGFR mRNA upon treatment with 10pM EGF and/or gamma-IFN, but differed with 10nM EGF.  相似文献   

8.
We examined transforming growth factor (TGF) alpha, epidermal growth factor (EGF) and EGF receptor (EGFR) expression and signaling in three drug resistant MCF-7 human breast cancer sublines and asked whether these pathways contribute to the drug resistance phenotype. In the resistant sublines, upregulation of both TGFalpha and EGFR mRNA was observed. In an apparent contrast with upregulated growth factor and receptor gene expression, the drug resistant sublines displayed a reduced growth rate. Defects in the EGFR signaling pathway cascade were found in all examined drug resistant sublines, including altered EGF-induced Shc, Raf-1, or mitogen-activated protein kinase phosphorylation. Induction of c-fos mRNA expression by EGF was impaired in the sublines compared to parental MCF-7 cells. In contrast, the induction of the stress-activated protein kinase activity was similar in both parental and drug resistant cells. Evaluating the link between the reduced growth rate and drug resistance, serum starvation experiments were performed. These studies demonstrated that a reduced proliferative activity resulted in a marked reduction in sensitivity to cytotoxic agents in the parental MCF-7 cells. We propose that the altered EGFR levels frequently observed in drug resistant breast cancer cells are associated with perturbations in the signaling pathway that mediate a reduced proliferative rate and thereby contribute to drug resistance.  相似文献   

9.
Remodeling of the cerebral vasculature contributes to the pathogenesis of cerebral ischemia. Remodeling is caused by increased smooth muscle proliferation and may be due to an increase in the responsiveness of vascular cells to epidermal growth factor (EGF). Aldosterone is a risk factor for stroke, and the literature suggests it may play a role in increasing the expression of the receptor for EGF (EGFR). We hypothesized that mRNA for the EGF-stimulated pathway would be elevated in the vasculature of stroke-prone spontaneously hypertensive rats (SHRSP) and that this and experimental ischemic cerebral infract size would be reduced by aldosterone inhibition with spironolactone. We found that spironolactone treatment reduced the size of cerebral infarcts after middle cerebral artery occlusion in SHRSP (51.69 +/- 3.60 vs. 22.00 +/- 6.69% of hemisphere-infarcted SHRSP vs. SHRSP + spironolactone P < 0.05). Expression of EGF and EGFR mRNA was higher in cerebral vessels and aorta from adult SHRSP compared with Wistar-Kyoto rats. Only the expression of EGFR mRNA was elevated in the young SHRSP. Spironolactone reduced the EGFR mRNA expression in the aorta (1.09 +/- 0.25 vs. 0.56 +/- 0.11 phosphorimage units SHRSP vs. SHRSP + spironolactone P < 0.05) but had no effect on EGF mRNA. In vitro incubation of aorta with aldosterone +/- spironolactone produced similar results, suggesting a direct effect of aldosterone. Thus spironolactone may reduce the size of cerebral infarcts via a reduction in the expression of the EGFR mRNA, leading to reduced remodeling.  相似文献   

10.
11.
12.
The EGFR (epidermal growth factor receptor) is involved in the oncogenesis of many tumors. In addition to the full-length EGFR (isoform a), normal and tumor cells produce soluble EGFR isoforms (sEGFR) that lack the intracellular domain. sEGFR isoforms b, c and d are encoded by EGFR variants 2 (v2), 3 (v3) and 4 (v4) mRNA resulting from gene alternative splicing. Accordingly, the results of EGFR protein expression analysis depend on the domain targeted by the antibodies. In meningiomas, EGFR expression investigations mainly focused on EGFR isoform a. sEGFR and EGFRvIII mutant, that encodes a constitutively active truncated receptor, have not been studied. In a 69 meningiomas series, protein expression was analyzed by immunohistochemistry using extracellular domain targeted antibody (ECD-Ab) and intracellular domain targeted antibody (ICD-Ab). EGFRv1 to v4 and EGFRvIII mRNAs were quantified by RT-PCR and EGFR amplification revealed by MLPA. Results were analyzed with respect to clinical data, tumor resection (Simpson grade), histological type, tumor grade, and patient outcome.Immunochemical staining was stronger with ECD-Ab than with ICD-Ab. Meningiomas expressed EGFRv1 to -v4 mRNAs but not EGFRvIII mutant. Intermediate or high ECD-Ab staining and high EGFRv1 to v4 mRNA levels were associated to a better progression free survival (PFS). PFS was also improved in women, when tumor resection was evaluated as Simpson 1 or 2, in grade I vs. grade II and III meningiomas and when Ki67 labeling index was lower than 10%. Our results suggest that, EGFR protein isoforms without ICD and their corresponding mRNA variants are expressed in meningiomas in addition to the whole isoform a. EGFRvIII was not expressed. High expression levels seem to be related to a better prognosis. These results indicate that the oncogenetic mechanisms involving the EGFR pathway in meningiomas could be different from other tumor types.  相似文献   

13.
14.
Spatiotemporal expression, endocrine regulation, and activation of epidermal growth factor receptor (EGFR) in the hamster ovary were evaluated by immunofluorescence and in situ hybridization localization. Whereas granulosa cells (GC) of primordial through large preantral (stage 6, 7-8 layers GC) follicles had low immunoreactivity, granulosa cells of antral follicles, theca, and interstitial cells had intense EGFR immunoreactivity. EGFR expression in GC of primordial and small preantral follicles increased progressively from estrous through proestrous, but a significant increase occurred in mural GC of antral follicles following the gonadotropin surge. Interstitial cells around small preantral follicles had strong immunofluorescence, and the intensity increased significantly in fully differentiated thecal cells. Distinct EGFR protein was localized in the nucleus of the oocytes and granulosa cells. FSH significantly stimulated EGFR expression in the GC, especially the mural GC, theca, and interstitial cells in hypophysectomized hamster. Estrogen stimulated EGFR expression in preantral GC as well as in interstitial cells. Progesterone and hCG effect was limited to theca and interstitial cells. EGFR expression correlated well with EGFR activation following endogenous or exogenous gonadotropin exposure. Receptor mRNA expression closely followed the protein expression, with increased mRNA expression in mural GC of antral follicles. These results suggest that low levels of EGF signal as a consequence of low levels of receptors in preantral GC may be critical for cell proliferation, but higher receptor density may evoke increased signal intensity due to activation of other intracellular signal pathways, which activate cellular processes related to granulosa, theca, and interstitial cell differentiation. The spatiotemporal cell type and follicle stage-specific expression of receptor mRNA and protein and EGFR activation is critically regulated by gonadotropins and ovarian steroids, primarily estradiol.  相似文献   

15.
The appearance of extracellular matrix molecules and their receptors represent key events in the differentiation of cells of the kidney. Steady-state mRNA levels for a laminin receptor, the laminin B1, B2, and A chains, and the alpha 1-chain of collagen IV (alpha 1[IV]), were examined in mouse kidneys at 16 d gestation and birth, when cell differentiation is active, and 1-3 wk after birth when this activity has subsided. Northern analysis revealed that mRNA expression of laminin receptor precedes the alpha 1(IV) and laminin B chains whereas laminin A chain mRNA expression was very low. In situ hybridization reflected this pattern and revealed the cells responsible for expression. At 16 d gestation, laminin receptor mRNA was elevated in cells of newly forming glomeruli and proximal and distal tubules of the nephrogenic zone located in the kidney cortex. These cells also expressed mRNA for alpha 1(IV) and laminin chains. At birth, mRNA expression of receptor and all chains remained high in glomeruli but was reduced in proximal and distal tubules. At 1 wk after birth, expression was located in the medulla over collecting ducts and loops of Henle. Little expression was detectable by 3 wk. These results suggest that cellular expression of steady-state mRNA for laminin receptor, laminin, and collagen IV is temporally linked, with laminin receptor expression proceeding first and thereafter subsiding.  相似文献   

16.
Gastric cancer is a major cause of cancer-related deaths in both men and women. The epidermal growth factor receptors are EGFR, HER2, HER3 and HER4. Of the four epidermal growth factor receptors, EGFR and HER2 are well-known oncogenes involved in gastric cancer. Little, however, is known about the role played by HER3 and HER4 in this disease. We obtained paired samples from the tumor and the adjacent normal tissue from the same patient undergoing surgery for gastric cancer. Using RT-qPCR, we quantified the mRNA expression of the four receptors including the HER4 splicing isoforms and all the ligands activating these receptors. Using immunohistochemistry, the protein expression of HER4 was also quantified. We found that HER2 mRNA expression was upregulated in the tumor tissue compared to the matched normal tissue (p = 0.0520). All ligands with affinity for EGFR were upregulated, whereas the expression of EGFR was unchanged. Interestingly, we found the mRNA expression of HER4 (p = 0.0002) and its ligand NRG4 (p = 0.0009) to be downregulated in the tumor tissue compared to the matched normal tissue. HER4 downregulation was demonstrated for all the alternatively spliced isoforms of this receptor. These results support the involvement of EGFR and HER2 in gastric cancer and suggest an interesting association of reduced HER4 expression with development of gastric cancer.  相似文献   

17.
In situ hybridization (ISH) and immunocytochemistry were used to localize sites of synthesis and deposition of the basement membrane glycoprotein laminin during development in the postimplantation mouse embryo and extraembryonic membranes. In addition, similar studies were performed on postnatal viscera during the first 20 days after birth. Up to 10 days post coitum, embryonic laminin synthesis was confined to parietal endoderm. In maternal tissue, intense laminin mRNA expression was detected in decidual cells in the mesometrial and antimesometrial endometrium at 5-7 days. At 10 days, uniform expression was still seen within the mesometrial endometrium, with higher levels around migrating trophoblast, but in the antimesometrial aspect expression was restricted to the basal zone. High levels of mRNA expression persisted in parietal endoderm throughout gestation but much lower levels were detected in visceral yolk sac. In the mature placenta, laminin mRNA expression was also found associated with fetal vessels in the labyrinth and giant cells at the fetal/maternal boundary. In the embryo, the external limiting membrane of the cerebral vesicles and spinal cord stained for laminin protein and detectable mRNA was found in the pia mater. Growing peripheral nerves and dorsal and ventral root fibres expressed laminin mRNA and stained for laminin protein. Laminin mRNA expression was found in ureteric buds and nephrogenic vesicles (but not in metanephric blastema) during early prenatal kidney development, and in glomeruli, Bowman's capsule, loops of Henle and collecting duct cells at later stages of development, and after birth. All these structures possessed laminin-rich basement membrane (BM). Laminin mRNA expression fell to below detectable levels in the kidney around weaning. In the gut, laminin expression and protein staining was confined to the muscularis externa and the lamina propria during embryogenesis. After birth, the muscularis externa, muscularis mucosa and lamina propria cells corresponding to fibroblasts had detectable laminin mRNA, but in adult gut no laminin mRNA could be demonstrated in any cell type. In liver, low levels of laminin mRNA were seen in the capsule and in periportal connective tissue. After birth, laminin mRNA was associated with intrahepatic bile channels; no laminin mRNA was detected in the parenchyma and protein deposition was restricted to blood sinus BM. In the adult liver, no laminin mRNA was detected in any cell type. The developing heart showed uniform expression of laminin mRNA from 12 days to before birth. Postnatally, labelling was restricted to connective tissue cells.  相似文献   

18.
Non-invasive monitoring may be useful after kidney transplantation (KT), particularly for predicting acute rejection (AR). It is less clear whether chronic allograft nephropathy (CAN) is also associated with changes in urine cells. To identify non-invasive markers of allograft function in kidney transplant patients (KTP), mRNA levels of AGT, TGF-beta1, EGFR, IFN-gamma, TSP-1, and IL-10 in urine (Ur) samples were studied using QRT-PCR. Ninety-five KTP and 111 Ur samples were evaluated. Patients (Pts) were divided as, within six months (N = 31), and with more than six months post-KT (N = 64). KTP with more than six months post-KT were classified as KTP with stable kidney function (SKF) (N = 32), KTP with SKF (creatinine < 2 mg/dL) and proteinuria > 500 mg/24 h (N = 18), and KTP with biopsy proven CAN (N = 14). F-test was used to test for equality of variances between groups. IL-10 mRNA was decreased in Ur samples from KTP with less than six months post-KT (P = 0.005). For KTR groups with more than six months post-KT, AGT and EGFR mRNA were statistically different among KTP with SKF, KTP with SKF and proteinuria, and CAN Pts (P = 0.003, and P = 0.01), with KTP with SKF having higher mean expression. TSP-1 mRNA levels also were significantly different among these three groups (P = 0.04), with higher expression observed in CAN Pts. Using the random forest algorithm, AGT, EGFR, and TGF-beta1 were identified as predictors of CAN, SKF, SKF with proteinuria. A characteristic pattern of mRNA levels in the different KTP groups was observed indicating that the mRNA levels in Ur cells might reflect allograft function.  相似文献   

19.
Cisplatin-induced hypomagnesemia is described in humans and rats, but the underlying mechanisms are still unclear. Recent studies have shown that epidermal growth factor (EGF) stimulates Mg2+ re-absorption in the distal convoluted tubule via the Mg2+ channel TRPM6. This study investigates the role of TRPM Mg2+ channels, claudines, and EGF in the Mg2+ homeostasis in a rat model of cisplatin-induced nephrotoxicity. Wistar rats were given 2.5 mg/kg cisplatin per week for 3 weeks and were euthanized 4 or 9 weeks after the first administration. The cisplatin treatment significantly increased the fractional excretion of Mg2+. Real-time RT-PCR and/or Western blots were performed to assess the renal expression TRPM6, TRPM7, claudin-16, claudin-19, EGF, EGF receptor (EGFR) and EGFR-pathway components. The renal mRNA expression of TRPM6 and EGF showed a significant decrease after cisplatin treatment, while the TRPM7, claudin-16 and EGFR expressions remained stable. The claudin-19 mRNA expression was significantly upregulated after cisplatin treatment. Western blotting confirmed the mRNA expression data for the claudins, but an showed upregulation of EGFR only at week 9. The role of the EGFR pathway, involving Pi3-AKT-Rac1, in cisplatin-induced nephropathy, could not be substantiated in further detail. This study shows that cisplatin treatment results in EGF and TRPM6 downregulation in the rat kidney, causing renal Mg2+ loss. Our results are in line with the hypothesis that EGF influences the renal expression or activation of TRPM6 and plays a significant role in Mg2+ loss in medication-induced nephropathy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号