首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PML nuclear bodies (NBs) are subnuclear structures whose integrity is compromised in certain human diseases, including leukemia and neurodegenerative disorders. Infection by a number of DNA viruses similarly triggers the reorganization of these structures, suggesting an important role for the NBs in the viral infection process. While expression of the adenovirus E4 ORF3 protein leads to only a moderate redistribution of PML to filamentous structures, the herpes simplex virus (HSV) ICP0 protein and the cytomegalovirus (CMV) IE1 protein both induce a complete disruption of the NB structure. Recently, we and others have shown that the NB proteins PML and Sp100 are posttranslationally modified by covalent linkage with the ubiquitin-related SUMO-1 protein and that this modification may promote the assembly of these structures. Here we show that the HSV ICP0 and CMV IE1 proteins specifically abrogate the SUMO-1 modification of PML and Sp100, whereas the adenovirus E4 ORF3 protein does not affect this process. The potential of ICP0 and IE1 to alter SUMO-1 modification is directly linked to their capacity to disassemble NBs, thus strengthening the role for SUMO-1 conjugation in maintenance of the structural integrity of the NBs. This observation supports a model in which ICP0 and IE1 disrupt the NBs either by preventing the formation or by degrading of the SUMO-1-modified PML and Sp100 protein species. Finally, we show that the IE1 protein itself is a substrate for SUMO-1 modification, thus representing the first viral protein found to undergo this new type of posttranslational modification.  相似文献   

2.
Promyelocytic leukemia protein (PML) is the core component of PML-nuclear bodies (PML NBs). The small ubiquitin-like modifier (SUMO) system (and, in particular, SUMOylation of PML) is a critical component in the formation and regulation of PML NBs. SUMO protease SENP6 has been shown previously to be specific for SUMO-2/3-modified substrates and shows preference for SUMO polymers. Here, we further investigate the substrate specificity of SENP6 and show that it is also capable of cleaving mixed chains of SUMO-1 and SUMO-2/3. Depletion of SENP6 results in accumulation of endogenous SUMO-2/3 and SUMO-1 conjugates, and immunofluorescence analysis shows accumulation of SUMO and PML in an increased number of PML NBs. Although SENP6 depletion drastically increases the size of PML NBs, the organizational structure of the body is not affected. Mutation of the catalytic cysteine of SENP6 results in its accumulation in PML NBs, and biochemical analysis indicates that SUMO-modified PML is a substrate of SENP6.  相似文献   

3.
Promyelocytic leukemia nuclear bodies (PML‐NBs) are multiprotein complexes that include PML protein and localize in nuclear foci. PML‐NBs are implicated in multiple stress responses, including apoptosis, DNA repair, and p53‐dependent growth inhibition. ALT‐associated PML bodies (APBs) are specialized PML‐NBs that include telomere‐repeat binding‐factor TRF1 and are exclusively in telomerase‐negative tumors where telomere length is maintained through alternative (ALT) recombination mechanisms. We compared cell‐cycle and p53 responses in ALT‐positive cancer cells (U2OS) exposed to ionizing radiation (IR) or the p53 stabilizer Nutlin‐3a. Both IR and Nutlin‐3a caused growth arrest and comparable induction of p53. However, p21, whose gene p53 activates, displayed biphasic induction following IR and monophasic induction following Nutlin‐3a. p53 was recruited to PML‐NBs 3–4 days after IR, approximately coincident with the secondary p21 increase. These p53/PML‐NBs marked sites of apparently unrepaired DNA double‐strand breaks (DSBs), identified by colocalization with phosphorylated histone H2AX. Both Nutlin‐3a and IR caused a large increase in APBs that was dependent on p53 and p21 expression. Moreover, p21, and to a lesser extent p53, was recruited to APBs in a fraction of Nutlin‐3a‐treated cells. These data indicate (1) p53 is recruited to PML‐NBs after IR that likely mark unrepaired DSBs, suggesting p53 may either be further activated at these sites and/or function in their repair; (2) p53–p21 pathway activation increases the percentage of APB‐positive cells, (3) p21 and p53 are recruited to ALT‐associated PML‐NBs after Nutlin‐3a treatment, suggesting that they may play a previously unrecognized role in telomere maintenance. J. Cell. Biochem. 111: 1280–1290, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
5.
6.
早幼粒白血病蛋白核体(promyelocytic leukaemia nuclear bodies,PMLNBs)是哺乳动物细胞中普遍存在的一种亚核结构,广泛参与如转录调节、基因组稳定性维持、抗病毒、细胞凋亡、肿瘤抑制等一系列的生物学事件.SUMO(smallubiquitinmodifier)修饰是蛋白质翻译后修饰领域中的研究热点,SUMO修饰对PML核体的形成与降解都发挥着重要作用.近年来研究发现,人的E3泛素连接酶RNF4(RING finger protein4),可促进依赖SUMO-2/3修饰的PML核体的泛素化连接,并且ATO(三氧化二砷)可加速其对PML核体的降解.荧光共振能量转移(fluorescence resonance energy transfer,FRET)技术可完全应用于活细胞内PML核体和SUMO蛋白之间在时间和空间上的精确互作.因此,更深入地研究PML核体形成和降解的机理以及在这个过程中重要蛋白质之间的相互作用具有重要而深远的意义.  相似文献   

7.
PML nuclear bodies (NBs) are dynamic intranuclear structures harboring numerous transiently or permanently localized proteins. PML, the NBs' organizer, is directly induced by interferon, and its expression is critical for antiviral host defense. We describe herein the molecular events following poliovirus infection that lead to PML-dependent p53 activation and protection against virus infection. Poliovirus infection induces PML phosphorylation through the extracellular signal-regulated kinase pathway, increases PML SUMOylation, and induces its transfer from the nucleoplasm to the nuclear matrix. These events result in the recruitment of p53 to PML NBs, p53 phosphorylation on Ser15, and activation of p53 target genes leading to the induction of apoptosis. Moreover, the knock-down of p53 by small interfering RNA results in higher poliovirus replication, suggesting that p53 participates in antiviral defense. This effect, which requires the presence of PML, is transient since poliovirus targets p53 by inducing its degradation in a proteasome- and MDM2-dependent manner. Our results provide evidence of how poliovirus counteracts p53 antiviral activity by regulating PML and NBs, thus leading to p53 degradation.  相似文献   

8.
Mx proteins are interferon-induced large GTPases, some of which have antiviral activity against a variety of viruses. The murine Mx1 protein accumulates in the nucleus of interferon-treated cells and is active against members of the Orthomyxoviridae family, such as the influenza viruses and Thogoto virus. The mechanism by which Mx1 exerts its antiviral action is still unclear, but an involvement of undefined nuclear factors has been postulated. Using the yeast two-hybrid system, we identified cellular proteins that interact with Mx1 protein. The Mx1 interactors were mainly nuclear proteins. They included Sp100, Daxx, and Bloom's syndrome protein (BLM), all of which are known to localize to specific subnuclear domains called promyelocytic leukemia protein nuclear bodies (PML NBs). In addition, components of the SUMO-1 protein modification system were identified as Mx1-interacting proteins, namely the small ubiquitin-like modifier SUMO-1 and SAE2, which represents subunit 2 of the SUMO-1 activating enzyme. Analysis of the subcellular localization of Mx1 and some of these interacting proteins by confocal microscopy revealed a close spatial association of Mx1 with PML NBs. This suggests a role of PML NBs and SUMO-1 in the antiviral action of Mx1 and may allow us to discover novel functions of this large GTPase.  相似文献   

9.
10.
Approximately 10% of gastric carcinomas (GC) are comprised of cells latently infected with Epstein-Barr virus (EBV); however, the mechanism by which EBV contributes to the development of this malignancy is unclear. We have investigated the cellular effects of the only EBV nuclear protein expressed in GC, EBNA1, focusing on promyelocytic leukemia (PML) nuclear bodies (NBs), which play important roles in apoptosis, p53 activation, and tumor suppression. AGS GC cells infected with EBV were found to contain fewer PML NBs and less PML protein than the parental EBV-negative AGS cells, and these levels were restored by silencing EBNA1. Conversely, EBNA1 expression was sufficient to induce the loss of PML NBs and proteins in AGS cells. Consistent with PML functions, EBNA1 expression decreased p53 activation and apoptosis in response to DNA damage and resulted in increased cell survival. In addition, EBNA1 mutants unable to bind CK2 kinase or ubiquitin-specific protease 7 had decreased ability to induce PML loss and to interfere with p53 activation. PML levels in EBV-positive and EBV-negative GC biopsy specimens were then compared by immunohistochemistry. Consistent with the results in the AGS cells, EBV-positive tumors had significantly lower PML levels than EBV-negative tumors. The results indicate that EBV infection of GC cells leads to loss of PML NBs through the action of EBNA1, resulting in impaired responses to DNA damage and promotion of cell survival. Therefore, PML disruption by EBNA1 is one mechanism by which EBV may contribute to the development of gastric cancer.  相似文献   

11.
12.
13.
The SP100 protein, together with PML, represents a major constituent of the PML-SP100 nuclear bodies (NBs). The function of these ubiquitous subnuclear structures, whose integrity is compromised in pathological situations such as acute promyelocytic leukemia (APL) or DNA virus infection, remains poorly understood. There is little evidence for the occurrence of actual physiological processes within NBs. The two NB proteins PML and SP100 are covalently modified by the ubiquitin-related SUMO-1 modifier, and recent work indicates that this modification is critical for the regulation of NB dynamics. In exploring the functional relationships between NBs and chromatin, we have shown previously that SP100 interacts with members of the HP1 family of nonhistone chromosomal proteins and that a variant SP100 cDNA encodes a high-mobility group (HMG1/2) protein. Here we report the isolation of a further cDNA, encoding the SP100C protein, that contains the PHD-bromodomain motif characteristic of chromatin proteins. We further show that TIF1alpha, a chromatin-associated factor with homology to both PML and SP100C, is also modified by SUMO-1. Finally, in vitro experiments indicate that SUMO modification of SP100 enhances the stability of SP100-HP1 complexes. Taken together, our results suggest an association of SP100 and its variants with the chromatin compartment and, further, indicate that SUMO modification may play a regulatory role in the functional interplay between the nuclear bodies and chromatin.  相似文献   

14.
15.
The PML tumor suppressor is the founding component of the multiprotein nuclear structures known as PML nuclear bodies (PML-NBs), which control several cellular functions including apoptosis and antiviral effects. The ubiquitin specific protease USP7 (also called HAUSP) is known to associate with PML-NBs and to be a tight binding partner of two herpesvirus proteins that disrupt PML NBs. Here we investigated whether USP7 itself regulates PML-NBs. Silencing of USP7 was found to increase the number of PML-NBs, to increase the levels of PML protein and to inhibit PML polyubiquitylation in nasopharyngeal carcinoma cells. This effect of USP7 was independent of p53 as PML loss was observed in p53-null cells. PML-NBs disruption was induced by USP7 overexpression independently of its catalytic activity and was induced by either of the protein interaction domains of USP7, each of which localized to PML-NBs. USP7 also disrupted NBs formed from some single PML isoforms, most notably isoforms I and IV. CK2α and RNF4, which are known regulators of PML, were dispensable for USP7-associated PML-NB disruption. The results are consistent with a novel model of PML regulation where a deubiquitylase disrupts PML-NBs through recruitment of another cellular protein(s) to PML NBs, independently of its catalytic activity.  相似文献   

16.
MAGE-A genes are a subfamily of the melanoma antigen genes (MAGEs), whose expression is restricted to tumor cells of different origin and normal tissues of the human germline. Although the specific function of individual MAGE-A proteins is being currently explored, compelling evidence suggest their involvement in the regulation of different pathways during tumor progression. We have previously reported that MageA2 binds histone deacetylase (HDAC)3 and represses p53-dependent apoptosis in response to chemotherapeutic drugs. The promyelocytic leukemia (PML) tumor suppressor is a regulator of p53 acetylation and function in cellular senescence. Here, we demonstrate that MageA2 interferes with p53 acetylation at PML-nuclear bodies (NBs) and with PMLIV-dependent activation of p53. Moreover, a fraction of MageA2 colocalizes with PML-NBs through direct association with PML, and decreases PMLIV sumoylation through an HDAC-dependent mechanism. This reduction in PML post-translational modification promotes defects in PML-NBs formation. Remarkably, we show that in human fibroblasts expressing RasV12 oncogene, MageA2 expression decreases cellular senescence and increases proliferation. These results correlate with a reduction in NBs number and an impaired p53 response. All these data suggest that MageA2, in addition to its anti-apoptotic effect, could have a novel role in the early progression to malignancy by interfering with PML/p53 function, thereby blocking the senescence program, a critical barrier against cell transformation.  相似文献   

17.
18.
19.
Promyelocytic leukemia (PML) nuclear bodies (PML-NBs) are the nuclear structure consisting of various proteins such as PML, SUMO-1, and p53. PML-NBs are implicated in the regulation of tumor suppression, antiviral responses, and apoptosis. In this study, we searched for bioactive metabolites that would promote the formation of PML-NBs in tumor cells. As a result, methyl 2,5-dihydromethylcinnimate (2,5-MeC), a tyrosine kinase inhibitor, enhanced expression and/or stability of PML proteins and induced PML-NB formation in p53 null H1299 cells established from non-small cell lung cancer (NSCLC) and wild-type p53-expressing U2OS cells derived from osteosarcoma. Furthermore, it enhanced apoptosis by exogenously expressed wild type p53 and the expression of p53-responsive genes, such as PUMA and p21, in H1299 cells. 2,5-MeC also activated endogenous p53 and induced apoptosis in U2OS cells. The results suggest that 2,5-MeC is likely to be a promising candidate drug for the clinical treatment of terminal cancer-expressing wild-type p53.  相似文献   

20.
Functional interaction of p53 and BLM DNA helicase in apoptosis   总被引:1,自引:0,他引:1  
The Bloom syndrome (BS) protein, BLM, is a member of the RecQ DNA helicase family that also includes the Werner syndrome protein, WRN. Inherited mutations in these proteins are associated with cancer predisposition of these patients. We recently discovered that cells from Werner syndrome patients displayed a deficiency in p53-mediated apoptosis and WRN binds to p53. Here, we report that analogous to WRN, BLM also binds to p53 in vivo and in vitro, and the C-terminal domain of p53 is responsible for the interaction. p53-mediated apoptosis is defective in BS fibroblasts and can be rescued by expression of the normal BLM gene. Moreover, lymphoblastoid cell lines (LCLs) derived from BS donors are resistant to both gamma-radiation and doxorubicin-induced cell killing, and sensitivity can be restored by the stable expression of normal BLM. In contrast, BS cells have a normal Fas-mediated apoptosis, and in response to DNA damage normal accumulation of p53, normal induction of p53 responsive genes, and normal G(1)-S and G(2)-M cell cycle arrest. BLM localizes to nuclear foci referred to as PML nuclear bodies (NBs). Cells from Li-Fraumeni syndrome patients carrying p53 germline mutations and LCLs lacking a functional p53 have a decreased accumulation of BLM in NBs, whereas isogenic lines with functional p53 exhibit normal accumulation. Certain BLM mutants (C1055S or Delta133-237) that have a reduced ability to localize to the NBs when expressed in normal cells can impair the localization of wild type BLM to NBs and block p53-mediated apoptosis, suggesting a dominant-negative effect. Taken together, our results indicate both a novel mechanism of p53 function by which p53 mediates nuclear trafficking of BLM to NBs and the cooperation of p53 and BLM to induce apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号