首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The circadian clock in the suprachiasmatic nuclei (SCN) is composed of thousands of oscillator neurons, each of which is dependent on the cell‐autonomous action of a defined set of circadian clock genes. A major question is still how these individual oscillators are organized into a biological clock producing a coherent output that is able to time all the different daily changes in behavior and physiology. We investigated which anatomical connections and neurotransmitters are used by the biological clock to control the daily release pattern of a number of hormones. The picture that emerged shows projections contacting target neurons in the medial hypothalamus surrounding the SCN. The activity of these pre‐autonomic and neuro‐endocrine target neurons is controlled by differentially timed waves of, among others, vasopressin, GABA, and glutamate release from SCN terminals. Together our data indicate that, with regard to the timing of their main release period within the light‐dark (LD) cycle, at least 4 subpopulations of SCN neurons should be discerned. The different subgroups do not necessarily follow the phenotypic differences among SCN neurons. Thus, different subgroups can be found within neuron populations containing the same neurotransmitter. Remarkably, a similar distinction of 4 differentially timed subpopulations of SCN neurons was recently also discovered in experiments determining the temporal patterns of rhythmicity in individual SCN neurons by way of the electrophysiology or clock gene expression. Moreover, the specialization of the SCN may go as far as a single body structure; i.e., the SCN seems to contain neurons that specifically target the liver, pineal, and adrenal.  相似文献   

2.
The circadian clock in the suprachiasmatic nuclei (SCN) is composed of thousands of oscillator neurons, each dependent on the cell-autonomous action of a defined set of circadian clock genes. A major question is still how these individual oscillators are organized into a biological clock that produces a coherent output capable of timing all the different daily changes in behavior and physiology. We investigated which anatomical connections and neurotransmitters are used by the biological clock to control the daily release pattern of a number of hormones. The picture that emerged shows projections contacting target neurons in the medial hypothalamus surrounding the SCN. The activity of these pre-autonomic and neuro-endocrine target neurons is controlled by differentially timed waves of vasopressin, GABA, and glutamate release from SCN terminals, among other factors. Together our data indicate that, with regard to the timing of their main release period within the LD cycle, at least four subpopulations of SCN neurons should be discernible. The different subgroups do not necessarily follow the phenotypic differences among SCN neurons. Thus, different subgroups can be found within neuron populations containing the same neurotransmitter. Remarkably, a similar distinction of four differentially timed subpopulations of SCN neurons was recently also discovered in experiments determining the temporal patterns of rhythmicity in individual SCN neurons by way of the electrophysiology or clock gene expression. Moreover, the specialization of the SCN may go as far as a single body structure, i.e., the SCN seems to contain neurons that specifically target the liver, pineal gland, and adrenal gland.  相似文献   

3.
The circadian clock in the suprachiasmatic nuclei (SCN) is composed of thousands of oscillator neurons, each dependent on the cell‐autonomous action of a defined set of circadian clock genes. A major question is still how these individual oscillators are organized into a biological clock that produces a coherent output capable of timing all the different daily changes in behavior and physiology. We investigated which anatomical connections and neurotransmitters are used by the biological clock to control the daily release pattern of a number of hormones. The picture that emerged shows projections contacting target neurons in the medial hypothalamus surrounding the SCN. The activity of these pre‐autonomic and neuro‐endocrine target neurons is controlled by differentially timed waves of vasopressin, GABA, and glutamate release from SCN terminals, among other factors. Together our data indicate that, with regard to the timing of their main release period within the LD cycle, at least four subpopulations of SCN neurons should be discernible. The different subgroups do not necessarily follow the phenotypic differences among SCN neurons. Thus, different subgroups can be found within neuron populations containing the same neurotransmitter. Remarkably, a similar distinction of four differentially timed subpopulations of SCN neurons was recently also discovered in experiments determining the temporal patterns of rhythmicity in individual SCN neurons by way of the electrophysiology or clock gene expression. Moreover, the specialization of the SCN may go as far as a single body structure, i.e., the SCN seems to contain neurons that specifically target the liver, pineal gland, and adrenal gland.  相似文献   

4.
SCN outputs and the hypothalamic balance of life   总被引:1,自引:0,他引:1  
The circadian clock in the suprachiasmatic nucleus (SCN) is composed of thousands of oscillator neurons, each dependent on the cell-autonomous action of a defined set of circadian clock genes. Still, the major question remains how these individual oscillators are organized into a biological clock producing a coherent output able to time all the different daily changes in behavior and physiology. In the present review, the authors discuss the anatomical connections and neurotransmitters used by the SCN to control the daily rhythms in hormone release. The efferent SCN projections mainly target neurons in the medial hypothalamus surrounding the SCN. The activity of these preautonomic and neuroendocrine target neurons is controlled by differentially timed waves of, among others, vasopressin, GABA, and glutamate release from SCN terminals. Together, the data on the SCN control of neuroendocrine rhythms provide clear evidence not only that the SCN consists of phenotypically (i.e., according to neurotransmitter content) different subpopulations of neurons but also that subpopulations should be distinguished (within phenotypically similar groups of neurons) based on the acrophase of their (electrical) activity. Moreover, the specialization of the SCN may go as far as a single body structure, that is, the SCN seems to contain neurons that specifically target the liver, pineal, and adrenal.  相似文献   

5.
The mammalian SCN contains a biological clock that drives remarkably precise circadian rhythms in vivo and in vitro. Recent advances have revealed molecular and cellular mechanisms required for the generation of these daily rhythms and their synchronization between SCN neurons and to the environmental light cycle. This review of the evidence for a cell-autonomous circadian pacemaker within specialized neurons of the SCN focuses on 6 genes implicated within the pace making mechanism, an additional 4 genes implicated in pathways from the pacemaker, and the intercellular and intracellular mechanisms that synchronize SCN neurons to each other and to solar time.  相似文献   

6.
7.
Liu C  Reppert SM 《Neuron》2000,25(1):123-128
The master clock in the suprachiasmatic nuclei (SCN) is composed of multiple, single-cell circadian clocks. We test the postulate that these individual "clock cells" can be synchronized to each other by the inhibitory transmitter gamma-aminobutyric acid (GABA). For these experiments, we monitored the firing rate rhythm of individual clock cells on fixed multielectrode plates in culture and tested the effects of GABA. The results show that the daily variation in responsiveness of the SCN to phase-shifting agents is manifested at the level of individual neurons. Moreover, GABA, acting through A-type receptors, can both phase shift and synchronize clock cells. We propose that GABA is an important synchronizer of SCN neurons in vivo.  相似文献   

8.
Every day, we experience profound changes in our mental and physical condition as body and brain alternate between states of high activity during the waking day and rest during night-time sleep. The fundamental evolutionary adaptation to these profound daily changes in our physiological state is an endogenous 24-h clock. This biological clock enables us to prepare ourselves to these daily changes, instead of only being able to show a passive and delayed response. During the past decade, enormous progress has been made in determining possible molecular components of the biological clock. An important question remains, however, regarding how the rhythmic signal from the biological clock is spread throughout the body to control its physiology and behavior. Indeed, ultimately, the only raison d'etre for the biological clock is its output (Green 1998). In the present review, we propose that the main mechanism for the spreading time-of-day information throughout the body consists of different circadian waves of suprachiasmatic nucleus (SCN) transmitter release, directed to a restricted number of specific SCN target areas, and affecting both neuroendocrine mechanisms and the peripheral autonomic nervous system.  相似文献   

9.
10.
Daily rhythms in mammals are controlled by the circadian system, which is a collection of biological clocks regulated by a central pacemaker within the suprachiasmatic nucleus (SCN) of the anterior hypothalamus. Changes in SCN function have pronounced consequences for behaviour and physiology; however, few studies have examined whether individual differences in circadian behaviour reflect changes in SCN function. Here, PERIOD2::LUCIFERASE mice were exposed to a behavioural assay to characterize individual differences in baseline entrainment, rate of re-entrainment and free-running rhythms. SCN slices were then collected for ex vivo bioluminescence imaging to gain insight into how the properties of the SCN clock influence individual differences in behavioural rhythms. First, individual differences in the timing of locomotor activity rhythms were positively correlated with the timing of SCN rhythms. Second, slower adjustment during simulated jetlag was associated with a larger degree of phase heterogeneity among SCN neurons. Collectively, these findings highlight the role of the SCN network in determining individual differences in circadian behaviour. Furthermore, these results reveal novel ways that the network organization of the SCN influences plasticity at the behavioural level, and lend insight into potential interventions designed to modulate the rate of resynchronization during transmeridian travel and shift work.  相似文献   

11.
Many daily biological rhythms are governed by an innate timekeeping mechanism or clock. Endogenous, temperature-compensated circadian clocks have been localized to discrete sites within the nervous systems of a number of organisms. In mammals, the master circadian pacemaker is the bilaterally paired suprachiasmatic nucleus (SCN) in the anterior hypothalamus. The SCN is composed of multiple single cell oscillators that must synchronize to each other and the environmental light schedule. Other tissues, including those outside the nervous system, have also been shown to express autonomous circadian periodicities. This review examines 1) how intracellular regulatory molecules function in the oscillatory mechanism and in its entrainment to environmental cycles; 2) how individual SCN cells interact to create an integrated tissue pacemaker with coherent metabolic, electrical, and secretory rhythms; and 3) how such clock outputs are converted into temporal programs for the whole organism.  相似文献   

12.
The molecular clockwork in mammals involves various clock genes with specific temporal expression patterns. Synchronization of the master circadian clock located in the suprachiasmatic nucleus (SCN) is accomplished mainly via daily resetting of the phase of the clock by light stimuli. Phase shifting responses to light are correlated with induction of Per1, Per2 and Dec1 expression and a possible reduction of Cry2 expression within SCN cells. The timing of peripheral oscillators is controlled by the SCN when food is available ad libitum. Time of feeding, as modulated by temporal restricted feeding, is a potent 'Zeitgeber' (synchronizer) for peripheral oscillators with only weak synchronizing influence on the SCN clockwork. When restricted feeding is coupled with caloric restriction, however, timing of clock gene expression is altered within the SCN, indicating that the SCN function is sensitive to metabolic cues. The components of the circadian timing system can be differentially synchronized according to distinct, sometimes conflicting, temporal (time of light exposure and feeding) and homeostatic (metabolic) cues.  相似文献   

13.
The mammalian biological clock, located in the hypothalamic suprachiasmatic nuclei (SCN), imposes its temporal structure on the organism via neural and endocrine outputs. To further investigate SCN control of the autonomic nervous system we focused in the present study on the daily rhythm in plasma glucose concentrations. The hypothalamic paraventricular nucleus (PVN) is an important target area of biological clock output and harbors the pre-autonomic neurons that control peripheral sympathetic and parasympathetic activity. Using local administration of GABA and glutamate receptor (ant)agonists in the PVN at different times of the light/dark-cycle we investigated whether daily changes in the activity of autonomic nervous system contribute to the control of plasma glucose and plasma insulin concentrations. Activation of neuronal activity in the PVN of non-feeding animals, either by administering a glutamatergic agonist or a GABAergic antagonist, induced hyperglycemia. The effect of the GABA-antagonist was time dependent, causing increased plasma glucose concentrations only when administered during the light period. The absence of a hyperglycemic effect of the GABA-antagonist in SCN-ablated animals provided further evidence for a daily change in GABAergic input from the SCN to the PVN. On the other hand, feeding-induced plasma glucose and insulin responses were suppressed by inhibition of PVN neuronal activity only during the dark period. These results indicate that the pre-autonomic neurons in the PVN are controlled by an interplay of inhibitory and excitatory inputs. Liver-dedicated sympathetic pre-autonomic neurons (responsible for hepatic glucose production) and pancreas-dedicated pre-autonomic parasympathetic neurons (responsible for insulin release) are controlled by inhibitory GABAergic contacts that are mainly active during the light period. Both sympathetic and parasympathetic pre-autonomic PVN neurons also receive excitatory inputs, either from the biological clock (sympathetic pre-autonomic neurons) or from non-clock areas (para-sympathetic pre-autonomic neurons), but the timing information is mainly provided by the GABAergic outputs of the biological clock.  相似文献   

14.
The mammalian suprachiasmatic nucleus (SCN) is the major endogenous pacemaker that coordinates various daily rhythms including locomotor activity and autonomous and endocrine responses, through a neuronal and humoral influence. In the present study we examined the behavior of dispersed individual SCN neurons obtained from 1- to 3-day-old rats cultured on multi-microelectrode arrays (MEAs). SCN neurons were identified by immunolabeling for the neuropeptides arginine-vasopressin (AVP) and vasoactive intestinal polypeptide (VIP). Single SCN neurons cultured at low density onto an MEA can express firing rate patterns with different circadian phases. In these cultures we observed rarely synchronized firing patterns on adjacent electrodes. This suggests that, in cultures of low cell densities, SCN neurons function as independent pacemakers. To investigate whether individual pacemakers can be influenced independently by phase-shifting stimuli, we applied melatonin (10 pM to 100 nM) for 30 min at different circadian phases and continuously monitored the firing rate rhythms. Melatonin could elicit phase-shifting responses in individual clock cells which had no measurable input from other neurons. In several neurons, phase-shifts occurred with a long delay in the second or third cycle after melatonin treatment, but not in the first cycle. Phase-shifts of isolated SCN neurons were also observed at times when the SCN showed no sensitivity to these phase-shifting stimuli in recordings from brain slices. This finding suggests that the neuronal network plays an essential role in the control of phase-shifts.  相似文献   

15.
A population of interconnected neurons of the mammalian suprachiasmatic nuclei (SCN) controls circadian rhythms in physiological functions. In turn, a circadian rhythm of individual neurons is driven by intracellular processes, which via activation of specific membrane channels, produce circadian modulation of electrical firing rate. Yet the membrane target(s) of the cellular clock have remained enigmatic. Previously, subthreshold voltage-dependent cation (SVC) channels have been proposed as the membrane target of the cellular clock responsible for circadian modulation of the firing rate in SCN neurons. We tested this hypothesis with computational modeling based on experimental results from on-cell recording of SVC channel openings in acutely isolated SCN neurons and long-term continuous recording of activity from dispersed SCN neurons in a multielectrode array dish (MED). The model reproduced the circadian behavior if the number of SVC channels or their kinetics were modulated in accordance with protein concentration in a model of the intracellular clock (Scheper et al., 1999. J. Neurosci. 19, 40-47). Such modulation changed the average firing rate of the model neuron from zero (“subjective-night” silence) up to 18 Hz (“subjective-day” peak). Furthermore, the variability of interspike intervals (ISI) and the circadian pattern of firing rate (i.e. silence-to-activity ratio and shape of circadian peaks) are in reasonable agreement with experimental data obtained in dispersed SCN neurons in MED. These results suggest that the variability of ISI in intact SCN neurons is mostly due to stochastic single-channel openings, and that the circadian pattern of the firing rate is specified by threshold properties of dependence of the spontaneous firing rate on the number of single channels (R-N relationship). This plausible mathematical modeling supports the hypothesis that SVC channels could be a critical element in circadian modulation of firing rate in SCN neurons.  相似文献   

16.
The mammalian suprachiasmatic nucleus (SCN) is the major endogenous pacemaker that coordinates various daily rhythms including locomotor activity and autonomous and endocrine responses, through a neuronal and humoral influence. In the present study we examined the behavior of dispersed individual SCN neurons obtained from 1‐ to 3‐day‐old rats cultured on multi‐microelectrode arrays (MEAs). SCN neurons were identified by immunolabeling for the neuropeptides arginine‐vasopressin (AVP) and vasoactive intestinal polypeptide (VIP). Single SCN neurons cultured at low density onto an MEA can express firing rate patterns with different circadian phases. In these cultures we observed rarely synchronized firing patterns on adjacent electrodes. This suggests that, in cultures of low cell densities, SCN neurons function as independent pacemakers. To investigate whether individual pacemakers can be influenced independently by phase‐shifting stimuli, we applied melatonin (10 pM to 100 nM) for 30 min at different circadian phases and continuously monitored the firing rate rhythms. Melatonin could elicit phase‐shifting responses in individual clock cells which had no measurable input from other neurons. In several neurons, phase‐shifts occurred with a long delay in the second or third cycle after melatonin treatment, but not in the first cycle. Phase‐shifts of isolated SCN neurons were also observed at times when the SCN showed no sensitivity to these phase‐shifting stimuli in recordings from brain slices. This finding suggests that the neuronal network plays an essential role in the control of phase‐shifts.  相似文献   

17.
The mammalian suprachiasmatic nucleus (SCN) is the major endogenous pacemaker that coordinates various daily rhythms including locomotor activity and autonomous and endocrine responses, through a neuronal and humoral influence. In the present study we examined the behavior of dispersed individual SCN neurons obtained from 1- to 3-day-old rats cultured on multi-microelectrode arrays (MEAs). SCN neurons were identified by immunolabeling for the neuropeptides arginine-vasopressin (AVP) and vasoactive intestinal polypeptide (VIP). Single SCN neurons cultured at low density onto an MEA can express firing rate patterns with different circadian phases. In these cultures we observed rarely synchronized firing patterns on adjacent electrodes. This suggests that, in cultures of low cell densities, SCN neurons function as independent pacemakers. To investigate whether individual pacemakers can be influenced independently by phase-shifting stimuli, we applied melatonin (10 pM to 100 nM) for 30 min at different circadian phases and continuously monitored the firing rate rhythms. Melatonin could elicit phase-shifting responses in individual clock cells which had no measurable input from other neurons. In several neurons, phase-shifts occurred with a long delay in the second or third cycle after melatonin treatment, but not in the first cycle. Phase-shifts of isolated SCN neurons were also observed at times when the SCN showed no sensitivity to these phase-shifting stimuli in recordings from brain slices. This finding suggests that the neuronal network plays an essential role in the control of phase-shifts.  相似文献   

18.
We undertook an extensive antigenic characterization of the SCN 2.2 cell line in order to further evaluate whether the line expresses components of circadian regulatory pathways common to the hypothalamic suprachiasmatic nucleus (SCN), the central circadian clock in mammals. We found that differentiated SCN 2.2 cultures expressed a broad range of putative clock genes, as well as components of daytime, nighttime, and crepuscular circadian regulatory pathways found within the SCN in vivo. The line also exhibits several antigens that are highly expressed in a circadian pattern and/or differentially localized in the SCN relative to other hypothalamic regions. Expression of a broad complement of circadian regulatory proteins and putative clock genes further support growing evidence in recent reports that the SCN 2.2 cell line is an appropriate model for investigating the regulation of central mammalian pacemaker.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号