首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The entry of beta-catenin into vegetal cell nuclei beginning at the 16-cell stage is one of the earliest known molecular asymmetries seen along the animal-vegetal axis in the sea urchin embryo. Nuclear beta-catenin activates a vegetal signaling cascade that mediates micromere specification and specification of the endomesoderm in the remaining cells of the vegetal half of the embryo. Only a few potential target genes of nuclear beta-catenin have been functionally analyzed in the sea urchin embryo. Here, we show that SpWnt8, a Wnt8 homolog from Strongylocentrotus purpuratus, is zygotically activated specifically in 16-cell-stage micromeres in a nuclear beta-catenin-dependent manner, and its expression remains restricted to the micromeres until the 60-cell stage. At the late 60-cell stage nuclear beta-catenin-dependent SpWnt8 expression expands to the veg2 cell tier. SpWnt8 is the only signaling molecule thus far identified with expression localized to the 16-60-cell stage micromeres and the veg2 tier. Overexpression of SpWnt8 by mRNA microinjection produced embryos with multiple invagination sites and showed that, consistent with its localization, SpWnt8 is a strong inducer of endoderm. Blocking SpWnt8 function using SpWnt8 morpholino antisense oligonucleotides produced embryos that formed micromeres that could transmit the early endomesoderm-inducing signal, but these cells failed to differentiate as primary mesenchyme cells. SpWnt8-morpholino embryos also did not form endoderm, or secondary mesenchyme-derived pigment and muscle cells, indicating a role for SpWnt8 in gastrulation and in the differentiation of endomesodermal lineages. These results establish SpWnt8 as a critical component of the endomesoderm regulatory network in the sea urchin embryo.  相似文献   

2.
3.
4.
Signals from micromere descendants play a crucial role in sea urchin development. In this study, we demonstrate that these micromere descendants express HpTb, a T-brain homolog of Hemicentrotus pulcherrimus. HpTb is expressed transiently from the hatched blastula stage through the mesenchyme blastula stage to the gastrula stage. By a combination of embryo microsurgery and antisense morpholino experiments, we show that HpTb is involved in the production of archenteron induction signals. However, HpTb is not involved in the production of signals responsible for the specification of secondary mesenchyme cells, the initial specification of primary mesenchyme cells, or the specification of endoderm. HpTb expression is controlled by nuclear localization of beta-catenin, suggesting that HpTb is in a downstream component of the Wnt signaling cascade. We also propose the possibility that HpTb is involved in the cascade responsible for the production of signals required for the spicule formation as well as signals from the vegetal hemisphere required for the differentiation of aboral ectoderm.  相似文献   

5.
Wnt and Nodal signaling pathways are required for initial patterning of cell fates along anterior-posterior (AP) and dorsal-ventral (DV) axes, respectively, of sea urchin embryos during cleavage and early blastula stages. These mechanisms are connected because expression of nodal depends on early Wnt/β-catenin signaling. Here, we show that an important subsequent function of Wnt signaling is to control the shape of the nodal expression domain and maintain correct specification of different cell types along the axes of the embryo. In the absence of Wnt1, the posterior-ventral region of the embryo is severely altered during early gastrulation. Strikingly, at this time, nodal and its downstream target genes gsc and bra are expressed ectopically, extending posteriorly to the blastopore. They override the initial specification of posterior-ventral ectoderm and endoderm fates, eliminating the ventral contribution to the gut and displacing the ciliary band dorsally towards, and occasionally beyond, the blastopore. Consequently, in Wnt1 morphants, the blastopore is located at the border of the re-specified posterior-ventral oral ectoderm and by larval stages it is in the same plane near the stomodeum on the ventral side. In normal embryos, a Nodal-dependent process downregulates wnt1 expression in dorsal posterior cells during early gastrulation, focusing Wnt1 signaling to the posterior-ventral region where it suppresses nodal expression. These subsequent interactions between Wnt and Nodal signaling are thus mutually antagonistic, each limiting the range of the other's activity, in order to maintain and stabilize the body plan initially established by those same signaling pathways in the early embryo.  相似文献   

6.
Sea urchin Brachyury homolog (HpTa) is expressed exclusively in the vegetal plate and secondary mesenchyme cells in the embryos of sea urchin Hemicentrotus pulcherrimus. In order to gain insights into the role of HpTa during sea urchin development, we designed experiments to perturb the embryo by inducing ectopic overexpression of HpTa by injecting fertilized eggs with HpTa mRNA. The overexpression of HpTa resulted in suppression of the formation of vegetal plate and secondary mesenchyme cells. We assume that the interaction of HpTa with unknown factors is required for the activation of the HpTa target genes, and that the excess amount of HpTa proteins produced from injected HpTa mRNA depletes the co-factors. In consequence, the target genes of HpTa would be repressed by the overexpression of HpTa. We suggest that HpTa is involved in the formation of the vegetal plate and the differentiation of secondary mesenchyme cells.  相似文献   

7.
8.
In the sea urchin embryo, inhibition of collagen processing and deposition affects both gastrulation and embryonic skeleton (spicule) formation. It has been found that cell-free extracts of gastrula-stage embryos of Strongylocentrotus purpuratus contain a procollagen C-terminal proteinase (PCP) activity. A rationally designed non-peptidic organic hydroxamate, which is a potent and specific inhibitor of human recombinant PCP (FG-HL1), inhibited both the sea urchin PCP as well as purified chick embryo tendon PCP. In the sea urchin embryo, FG-HL1 inhibited gastrulation and blocked spicule elongation, but not spicule nucleation. A related compound with a terminal carboxylate rather than a hydroxamate (FG-HL2) did not inhibit either chick PCP or sea urchin PCP activity in a procollagen-cleavage assay. However, FG-HL2 did block spicule elongation without affecting spicule nucleation or gastrulation. Neither compound was toxic, because their effects were reversible on removal. It was shown that the inhibition of gastrulation and spicule elongation were independent of tissue specification events, because both the endoderm specific marker Endo1 and the primary mesenchyme cell specific marker SM50 were expressed in embryos treated with FG-HL1 and FG-HL2. These results suggest that disruption of the fibrillar collagen deposition in the blastocoele blocks the cell movements of gastrulation and may disrupt the positional information contained within the extracellular matrix, which is necessary for spicule formation.  相似文献   

9.
Although sea urchin gastrulation is well described at the cellular level, our understanding of the molecular changes that trigger the coordinated cell movements involved is not complete. Jun N‐terminal kinase (JNK) is a component of the planar cell polarity pathway and is required for cell movements during embryonic development in several animal species. To study the role of JNK in sea urchin gastrulation, embryos were treated with JNK inhibitor SP600125 just prior to gastrulation. The inhibitor had a limited and specific effect, blocking invagination of the archenteron. Embryos treated with 2 μM SP600125 formed normal vegetal plates, but did not undergo invagination to form an archenteron. Other types of cell movements, specifically ingression of the skeletogenic mesenchyme, were not affected, although the development and pattern of the skeleton was abnormal in treated embryos. Pigment cells, derived from nonskeletogenic mesenchyme, were also present in SP600125‐treated embryos. Despite the lack of a visible archenteron in treated embryos, cells at the original vegetal plate expressed several molecular markers for endoderm differentiation. These results demonstrate that JNK activity is required for invagination of the archenteron but not its differentiation, indicating that in this case, morphogenesis and differentiation are under separate regulation. genesis 53:762–769, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
As the result of early specification processes, sea urchin embryos eventually form various mesodermal cell lineages and a gut consisting of fore-, mid- and hindgut. The progression of specification as well as the overall spatial organization of the organism is encoded in its gene regulatory networks (GRNs). We have analyzed the GRN driving endoderm specification up to the onset of gastrulation and present in this paper the mechanisms which determine this process up to mid-blastula stage. At this stage, the embryo consists of two separate lineages of endoderm precursor cells with distinct regulatory states. One of these lineages, the veg2 cell lineage, gives rise to endoderm and mesoderm cell types. The separation of these cell fates is initiated by the spatially confined activation of the mesoderm GRN superimposed on a generally activated endoderm GRN within veg2 descendants. Here we integrate the architecture of regulatory interactions with the spatial restriction of regulatory gene expression to model the logic control of endoderm development.  相似文献   

11.
12.
Cell-cell interactions are thought to regulate the differential specification of secondary mesenchyme cells (SMCs) and endoderm in the sea urchin embryo. The molecular bases of these interactions, however, are unknown. We have previously shown that the sea urchin homologue of the LIN-12/Notch receptor, LvNotch, displays dynamic patterns of expression within both the presumptive SMCs and endoderm during the blastula stage, the time at which these two cell types are thought to be differentially specified (Sherwood, D. R. and McClay, D. R. (1997) Development 124, 3363-3374). The LIN-12/Notch signaling pathway has been shown to mediate the segregation of numerous cell types in both invertebrate and vertebrate embryos. To directly examine whether LvNotch signaling has a role in the differential specification of SMCs and endoderm, we have overexpressed activated and dominant negative forms of LvNotch during early sea urchin development. We show that activation of LvNotch signaling increases SMC specification, while loss or reduction of LvNotch signaling eliminates or significantly decreases SMC specification. Furthermore, results from a mosaic analysis of LvNotch function as well as endogenous LvNotch expression strongly suggest that LvNotch signaling acts autonomously within the presumptive SMCs to mediate SMC specification. Finally, we demonstrate that the expansion of SMCs seen with activation of LvNotch signaling comes at the expense of presumptive endoderm cells, while loss of SMC specification results in the endoderm expanding into territory where SMCs usually arise. Taken together, these results offer compelling evidence that LvNotch signaling directly specifies the SMC fate, and that this signaling is critical for the differential specification of SMCs and endoderm in the sea urchin embryo.  相似文献   

13.
beta-Catenin has a central role in the early axial patterning of metazoan embryos. In the sea urchin, beta-catenin accumulates in the nuclei of vegetal blastomeres and controls endomesoderm specification. Here, we use in-vivo measurements of the half-life of fluorescently tagged beta-catenin in specific blastomeres to demonstrate a gradient in beta-catenin stability along the animal-vegetal axis during early cleavage. This gradient is dependent on GSK3beta-mediated phosphorylation of beta-catenin. Calculations show that the difference in beta-catenin half-life at the animal and vegetal poles of the early embryo is sufficient to produce a difference of more than 100-fold in levels of the protein in less than 2 hours. We show that dishevelled (Dsh), a key signaling protein, is required for the stabilization of beta-catenin in vegetal cells and provide evidence that Dsh undergoes a local activation in the vegetal region of the embryo. Finally, we report that GFP-tagged Dsh is targeted specifically to the vegetal cortex of the fertilized egg. During cleavage, Dsh-GFP is partitioned predominantly into vegetal blastomeres. An extensive mutational analysis of Dsh identifies several regions of the protein that are required for vegetal cortical targeting, including a phospholipid-binding motif near the N-terminus.  相似文献   

14.
The occurrence of acid mucopolysaccharides in the early development of the sea urchin embryo was studied by histochemical stainings as well as by autoradiographic methods. By histochemical methods acid niucopolysacchdride was demonstrated at the vegetal region in the early stage of gastrulation as a globular structure. Experiments with 35S-labeled sulfate which was incorporated into acid mucopolysaccharides confirmed the result obtained by histochemical observation. It was revealed that sulfate polysaccharide in the vegetal region moved toward the blastocoel in parallel with the shedding of the primary mesenchyme cells. When the incorporation of sulfate into the acid mucopolysaccharides was inhibited by selenate, the primitive gut development was remarkably repressed. The substance seems to be indispensable for smooth cell movements essential for the gastrulation of sea urchin embryo.  相似文献   

15.
16.
In many embryos specification toward one cell fate can be diverted to a different cell fate through a reprogramming process. Understanding how that process works will reveal insights into the developmental regulatory logic that emerged from evolution. In the sea urchin embryo, cells at gastrulation were found to reprogram and replace missing cell types after surgical dissections of the embryo. Non-skeletogenic mesoderm (NSM) cells reprogrammed to replace missing skeletogenic mesoderm cells and animal caps reprogrammed to replace all endomesoderm. In both cases evidence of reprogramming onset was first observed at the early gastrula stage, even if the cells to be replaced were removed earlier in development. Once started however, the reprogramming occurred with compressed gene expression dynamics. The NSM did not require early contact with the skeletogenic cells to reprogram, but the animal cap cells gained the ability to reprogram early in gastrulation only after extended contact with the vegetal halves prior to that time. If the entire vegetal half was removed at early gastrula, the animal caps reprogrammed and replaced the vegetal half endomesoderm. If the animal caps carried morpholinos to either hox11/13b or foxA (endomesoderm specification genes), the isolated animal caps failed to reprogram. Together these data reveal that the emergence of a reprogramming capability occurs at early gastrulation in the sea urchin embryo and requires activation of early specification components of the target tissues.  相似文献   

17.
The molecular mechanisms guiding the positioning of the ectoderm-endoderm boundary along the animal-vegetal axis of the sea urchin embryo remain largely unknown. We report here a role for the sea urchin homolog of the Notch receptor, LvNotch, in mediating the position of this boundary. Overexpression of an activated form of LvNotch throughout the embryo shifts the ectoderm-endoderm boundary more animally along the animal-vegetal axis, whereas expression of a dominant negative form shifts the border vegetally. Mosaic experiments that target activated and dominant negative forms of LvNotch into individual blastomeres of the early embryo, combined with lineage analyses, further reveal that LvNotch signaling mediates the position of this boundary by distinct mechanisms within the animal versus vegetal portions of the embryo. In the animal region of the embryo, LvNotch signaling acts cell autonomously to promote endoderm formation more animally, while in the vegetal portion, LvNotch signaling also promotes the ectoderm-endoderm boundary more animally, but through a cell non-autonomous mechanism. We further demonstrate that vegetal LvNotch signaling controls the localization of nuclear beta-catenin at the ectoderm-endoderm boundary. Based on these results, we propose that LvNotch signaling promotes the position of the ectoderm-endoderm boundary more animally via two mechanisms: (1) a cell-autonomous function within the animal region of the embryo, and (2) a cell non-autonomous role in the vegetal region that regulates a signal(s) mediating ectoderm-endoderm position, possibly through the control of nuclear beta-catenin at the boundary.  相似文献   

18.
19.
20.
In spite of their potential importance in evolution, there is little information about Hox genes in animal groups that are related to ancestors of deuterostome. It has been reported that only two Hox genes (Hbox1 and Hbox7) are expressed significantly in sea urchin embryos. Expression of Hbox1 protein is restricted to the aboral ectoderm, and Hbox7 expression is restricted to oral ectoderm, endoderm and secondary mesenchyme cells in sea urchin embryos after the gastrula stage. With the aim of gaining insight into the role of Hbox1 and Hbox7 in sea urchin development, Hbox1 and Hbox7 overexpression experiments were performed. Overexpression of Hbox1 repressed the development of oral ectoderm, endoderm and mesenchyme cells. On the contrary, overexpression of Hbox7 repressed the development of aboral ectoderm and primary mesenchyme cells. The data suggest that Hbox1 and Hbox7 are expressed in distinct non-overlapping territories, and overexpression of either one inhibits territory-specific gene expression in the domain of the other. It is proposed that an important function of both Hbox1 and Hbox7 genes is to maintain specific territorial gene expression by each one, in its domain of expression, while repressing the expression of the other in this same domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号