首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
为探究黄淮冬麦区测墒补灌节水条件下协同提高小麦产量和水氮利用效率的氮肥管理措施,以小麦品种‘烟农1212'为材料,在拔节期和开花期将各处理0~40 cm土层土壤相对含水量均补灌至70%条件下,设置3个施氮水平,即150(N1)、210(N2)和270 kg·hm-2(黄淮冬麦区常规施氮量,N3),研究施氮量对小麦开花后旗叶光合特性、13C同化物积累与转运及水氮利用效率的影响。结果表明: N2和N3处理开花后14~35 d旗叶光合能力显著高于N1处理,N2与N3处理间差异不显著。13C同位素示踪结果显示,N2处理开花后营养器官13C同化物转运量比N1和N3处理分别高12.1%和7.1%,成熟期13C同化物在籽粒中的分配量比N1和N3处理分别高10.1%和5.3%。施氮量亦调节了小麦不同生育阶段的耗水量、耗水模系数和总耗水量,小麦全生育期耗水量表现为N2与N3处理无显著差异,但均显著高于N1处理,N2处理拔节至成熟期阶段耗水量和耗水模系数均较高。N2处理水分利用效率比N3和N1处理分别高7.5%和4.8%,籽粒产量比N3和N1处理分别高4.7%和10.9%,氮肥偏生产力比N3处理高34.6%。综合考虑小麦籽粒产量和水氮利用效率,施氮量为210 kg·hm-2处理为研究区测墒补灌节水条件下的最佳施氮量。  相似文献   

2.
增施有机肥对冬小麦同化物积累与分配的影响   总被引:2,自引:0,他引:2  
基于13CO2脉冲标记法,设置单施化肥(CF)和有机肥+化肥(OF)两个处理,通过分析不同施肥模式对麦田土壤和小麦植株中的有机碳含量、光合特性和同化物转化的影响,探讨增施有机肥对冬小麦同化物积累与分配的影响.结果表明: OF处理有利于提高麦田土壤有机碳含量和小麦光合特性,从而提高了小麦植株有机碳含量和干物质积累总量.同一时期标记至成熟与标记后第7天相比,两个施肥处理下叶和茎鞘中的13C含量与13C分配率均减少;穗部13C含量在拔节期和灌浆期均增加,开花期均减少,13C分配率各时期均增加.两个施肥处理相比,OF处理有利于灌浆期光合碳向穗部转运与积累,提高小麦穗部的13C分配率.相关分析结果表明,干物质积累量与净输入13C含量、净输入13C分配率呈极显著正相关关系,与植株中有机碳含量呈负相关关系;净输入13C含量与净输入13C分配率呈极显著正相关关系,与光系统II的最大光能转化效率(Fv/Fm)和净光合速率(Pn)呈负相关关系.综上,增施有机肥能增加麦田土壤有机碳含量,提高小麦的光合能力和光合产物向穗部的转运,最终有利于小麦穗部的同化物积累.  相似文献   

3.
等量分次施氮对冬枣15N和13C利用与分配特性的影响   总被引:1,自引:0,他引:1  
以4年生盆栽冬枣为试材,采用13C、15N双标记示踪技术,在果实发育期研究了等氮量分次追施氮肥对冬枣植株15N和13C吸收、利用、积累和分配的影响.结果表明: 至果实采收期,冬枣各器官Ndff值(植株器官从肥料中吸收分配到的15N量对该器官全氮量的贡献率)随追氮次数的增多而显著增大.生殖器官(果实)和营养器官(叶片、枣吊、新生枣头枝和细根)的15N分配率以4次追氮处理最高,1次追氮处理最低,贮藏器官(主干、多年生枝和粗根)15N分配率的趋势相反;4次追氮处理15N利用率分别比1次和2次追氮处理高27.4%和15.5%.追氮次数越多,植株总氮量和15N吸收量越大;随时间的推移,1次追氮处理土壤15N丰度和总氮含量持续降低,2次追氮处理呈先升高后降低的趋势,4次追氮处理变化相对最为平稳,至处理后期显著高于其他处理;果实白熟至采收期,叶片叶绿素、氮含量和净光合速率均表现为4次追氮>2次追氮>1次追氮.不同处理13C同化物积累与分配不同.4次追氮处理13C固定总量分别是1次和2次追氮处理的1.1和1.2倍.增加追氮次数,促进了13C同化物向果实和贮藏器官的转移,而减少了向当年生营养器官的分配.综上,果实发育期4次追氮通过保证根层稳定、充足的氮素供应,提高了对氮素的吸收和利用,进而维持了较高的净光合速率,促进并优化了光合同化物的积累和分配,最有利于冬枣树体的生长及产量和品质的提高.  相似文献   

4.
以6年生‘烟富3’/M26/平邑甜茶苹果为试材,采用C、N双标记技术,研究在果实膨大后期用不同尿素浓度水溶液(N 0%、0.6%、1.2%、1.8%、2.4%,分别用CK、N1、N2、N3、N4表示)涂抹果实周围20 cm范围内叶片对叶片13C同化能力及13C光合产物、15N向果实转移分配的影响.结果表明: 随着尿素浓度的增加,叶片的叶绿素含量、氮含量、光合速率、山梨醇和蔗糖含量、6-磷酸山梨醇脱氢酶(S6PDH)和蔗糖磷酸合酶(SPS)活性及13C同化能力均先升高后降低,均以1.8%尿素涂抹处理最高,清水对照最低.13C自留量(自身叶片+自身新梢)以清水对照最高,为81.6%,1.8%尿素涂抹处理最低,为63.5%.向外输出的13C光合产物主要分布在标记果实,其次是未标记多年生枝,未标记叶片最低.果实13C吸收量随着尿素浓度增加呈先升高后降低趋势,以1.8%尿素涂抹处理最高(1.21 mg·g-1),清水对照最低(0.51 mg·g-1);果实15N吸收量随着尿素浓度增加呈持续升高趋势.表明尿素水溶液叶施可不同程度地提高叶片光合产物和氮素向果实转移分配的能力,以1.8%尿素涂抹处理叶片光合产物向果实转移分配能力最强,同时避免了过多的氮素向果实的输入.  相似文献   

5.
以4年生盆栽冬枣为试材,采用13C、15N双标记示踪技术,在果实发育期研究了等氮量分次追施氮肥对冬枣植株15N和13C吸收、利用、积累和分配的影响.结果表明: 至果实采收期,冬枣各器官Ndff值(植株器官从肥料中吸收分配到的15N量对该器官全氮量的贡献率)随追氮次数的增多而显著增大.生殖器官(果实)和营养器官(叶片、枣吊、新生枣头枝和细根)的15N分配率以4次追氮处理最高,1次追氮处理最低,贮藏器官(主干、多年生枝和粗根)15N分配率的趋势相反;4次追氮处理15N利用率分别比1次和2次追氮处理高27.4%和15.5%.追氮次数越多,植株总氮量和15N吸收量越大;随时间的推移,1次追氮处理土壤15N丰度和总氮含量持续降低,2次追氮处理呈先升高后降低的趋势,4次追氮处理变化相对最为平稳,至处理后期显著高于其他处理;果实白熟至采收期,叶片叶绿素、氮含量和净光合速率均表现为4次追氮>2次追氮>1次追氮.不同处理13C同化物积累与分配不同.4次追氮处理13C固定总量分别是1次和2次追氮处理的1.1和1.2倍.增加追氮次数,促进了13C同化物向果实和贮藏器官的转移,而减少了向当年生营养器官的分配.综上,果实发育期4次追氮通过保证根层稳定、充足的氮素供应,提高了对氮素的吸收和利用,进而维持了较高的净光合速率,促进并优化了光合同化物的积累和分配,最有利于冬枣树体的生长及产量和品质的提高.  相似文献   

6.
以6年生‘烟富3’/M26/平邑甜茶苹果为试材,采用C、N双标记技术,研究在果实膨大后期用不同尿素浓度水溶液(N 0%、0.6%、1.2%、1.8%、2.4%,分别用CK、N1、N2、N3、N4表示)涂抹果实周围20 cm范围内叶片对叶片13C同化能力及13C光合产物、15N向果实转移分配的影响.结果表明: 随着尿素浓度的增加,叶片的叶绿素含量、氮含量、光合速率、山梨醇和蔗糖含量、6-磷酸山梨醇脱氢酶(S6PDH)和蔗糖磷酸合酶(SPS)活性及13C同化能力均先升高后降低,均以1.8%尿素涂抹处理最高,清水对照最低.13C自留量(自身叶片+自身新梢)以清水对照最高,为81.6%,1.8%尿素涂抹处理最低,为63.5%.向外输出的13C光合产物主要分布在标记果实,其次是未标记多年生枝,未标记叶片最低.果实13C吸收量随着尿素浓度增加呈先升高后降低趋势,以1.8%尿素涂抹处理最高(1.21 mg·g-1),清水对照最低(0.51 mg·g-1);果实15N吸收量随着尿素浓度增加呈持续升高趋势.表明尿素水溶液叶施可不同程度地提高叶片光合产物和氮素向果实转移分配的能力,以1.8%尿素涂抹处理叶片光合产物向果实转移分配能力最强,同时避免了过多的氮素向果实的输入.  相似文献   

7.
以6年生‘烟富3’/M26/平邑甜茶为试材,采用13C同位素标记技术,在果实膨大期用不同浓度钾素水溶液(K2O浓度分别为0、0.5%、1.0%、1.5%、2.0%,分别用CK、K1、K2、K3、K4表示)涂抹果实周围20 cm范围内叶片,研究其对叶片叶绿素荧光参数、光合性能、糖转运蛋白基因表达、13C同化能力及13C同化物向果实转运的影响。结果表明: 与其他处理相比,K3处理显著提高了叶片Rubisco酶活性、净光合速率、PSII原初光能转化效率、PSII实际光化学效率、光化学淬灭系数、山梨醇和蔗糖含量、6-磷酸山梨醇脱氢酶(S6PDH)和蔗糖磷酸合酶(SPS)活性及13C同化能力;提高了果柄组织山梨醇转运蛋白基因MdSOT1、MdSOT2和蔗糖转运蛋白基因MdSUT4的表达,促进了糖在果实中的卸载。13C自留量(自身叶片+自身新梢)以CK最高,为82.6%,K3处理最低,为60.5%。果实13C吸收量随钾素浓度增加呈先升后降趋势,以K3处理最高(1.31 mg·g-1),CK最低(0.57 mg·g-1)。表明叶施钾素水溶液不同程度提高了叶片PSII光化学效率和碳同化关键酶活性,进一步提高了叶片同化物的合成能力和向外输送能力,促进了糖向果实的定向转运。同化物向果实转运数量以1.5% K2O涂抹叶片处理(K3)最多。  相似文献   

8.
以6年生库尔勒香梨为试材,在春季香梨萌芽前施用15N尿素,研究香梨施用15N尿素的吸收、分配和利用特性.结果表明:不同生育期香梨吸收的15N在各器官的分配率存在显著差异,盛花期15N优先分配在根中,其Ndff(从肥料中吸收的15N量对该器官全氮量的贡献率)最高,新稍次之;新梢旺长期和果实膨大期根部吸收的15N优先向新生器官(叶和新稍)运转,根部15N的分配率不断下降;果实成熟期果实成为新的分配中心,其Ndff最高,果实累积的15N量占香梨树体总的15N吸收量的19.8%.香梨树体对土施15N-尿素肥料的当季利用率随生育期的推进而不断提高,到果实成熟期达到最大值(18.5%).  相似文献   

9.
以6年生库尔勒香梨为试材,在春季香梨萌芽前施用15N尿素,研究香梨施用15N尿素的吸收、分配和利用特性.结果表明:不同生育期香梨吸收的15N在各器官的分配率存在显著差异,盛花期15N优先分配在根中,其Ndff(从肥料中吸收的15N量对该器官全氮量的贡献率)最高,新稍次之;新梢旺长期和果实膨大期根部吸收的15N优先向新生器官(叶和新稍)运转,根部15N的分配率不断下降;果实成熟期果实成为新的分配中心,其Ndff最高,果实累积的15N量占香梨树体总的15N吸收量的19.8%.香梨树体对土施15N-尿素肥料的当季利用率随生育期的推进而不断提高,到果实成熟期达到最大值(18.5%).  相似文献   

10.
水氮耦合对旱地胡麻产量形成与花后氮素积累转运的影响   总被引:2,自引:0,他引:2  
为明确旱地胡麻在有限灌水条件下的最佳水氮耦合管理模式,采用完全随机裂区试验设计,以灌水(I0: 0 m3·hm-2; I1200: 1200 m3·hm-2; I1800: 1800 m3·hm-2)为主区,施氮量(N0: 0 kg·hm-2; N600: 60 kg·hm-2; N120: 120 kg·hm-2)为副区,测定胡麻不同生育阶段氮素积累量、花后氮素转运特征、产量和氮肥利用率。结果表明: 不同水氮处理对旱地胡麻不同生育时期各器官氮素吸收、积累及产量的耦合效应不同。不灌水条件下,施氮有利于胡麻花期和成熟期茎秆对氮素的吸收,不同灌水水平下N120均抑制了茎秆对氮的吸收;I1200水平下,花期叶片氮含量随施氮量的增加先升高后下降,N60较N0和N120高11.0%和28.9%;I1800水平下,施氮提高了成熟期胡麻叶片中氮含量,N60和N120较N0高39.7%和26.9%。水氮对胡麻阶段氮素积累量影响的耦合效应主要表现在现蕾期以后,同一灌水水平下,N60促进了胡麻现蕾期以后各阶段氮素积累量,而N120具有抑制作用。施氮分别提高了I1200和I1800水平下叶片和茎秆氮素转运率和贡献率。灌水1800 m3·hm-2、施氮60 kg·hm-2显著增加了胡麻单株有效蒴果数和籽粒产量(6.6%~22.8%),是试验区比较适宜的水氮耦合管理模式。  相似文献   

11.
探讨不同秸秆还田量和氮肥量配施对辽西北半干旱区玉米田土壤CO2排放的影响,可为固碳减排和黑土地保护计划的实施提供理论支撑。本试验主区设置3个秸秆还田水平,分别为3000(S1)、6000(S2)和9000 kg·hm-2(S3,秸秆全量还田);副区设置3个氮肥施用水平,分别为105(N1)、210(N2,常规施氮量)和420 kg N·hm-2(N3),另设置不施氮肥不添加秸秆的对照处理(CK),共10个处理。采集定位试验4年后玉米田间土壤,通过培养试验,探究不同处理对玉米田土壤CO2排放的影响及CO2排放与土壤溶解性有机碳(DOC)和微生物生物量碳(MBC)的关系。结果表明: 秸秆还田和氮肥施用均会促进玉米田土壤CO2排放,并随秸秆还田量和施氮量的增加而显著增加,其中氮肥施用是促进玉米田土壤CO2排放的最主要因素;秸秆还田与氮肥配施通过促进微生物生物量增加并加剧DOC消耗来促进玉米田土壤CO2排放;MBC和DOC含量显著刺激玉米田土壤CO2排放,且主要受两者培养前期含量的影响。从保障秸秆还田培肥地力同时减少CO2排放的角度考虑,210 kg N·hm-2常规施氮量与6000 kg·hm-2秸秆还田配合施用(N2S2)是本试验条件下辽西北半干旱区最有潜力的田间施肥模式。  相似文献   

12.
施氮量对不同藜麦品种幼苗生长的影响   总被引:1,自引:0,他引:1  
通过盆栽试验,研究5个水平的施氮量(N0,0 g·kg-1;N1,0.05 g·kg-1;N2,0.1 g·kg-1;N3,0.15 g·kg-1;N4,0.2 g·kg-1)对8个不同藜麦品种幼苗生长的影响。结果表明: 1)不同施氮量处理下,藜麦品种GB22和OY的生物量最大,而品种B2的生物量最小。品种B2的花质量比最大,品种GB22的茎质量比最大,品种R1的根质量比最大,品种W23的叶质量比最大。2)施氮显著影响藜麦幼苗的生长。在较低施氮量(N1、N2)下,叶片最大净光合速率、植株生物量积累都比对照(N0)明显增加;在较高施氮量(N3、N4)下,藜麦叶片光合速率出现降低趋势,生物量积累减少。品种和施氮量对植株生物量有显著的交互作用,表明不同藜麦品种对施氮量的响应不同。品种R1、MY11、GB22、OY的最佳施氮量为0.05 g·kg-1,品种GB11、DB、B2的最佳施氮量为0.1 g·kg-1,品种W23的最佳施氮量小于0.05 g·kg-1。3)品种和施氮量之间的交互作用显著影响藜麦幼苗的生物量分配。在达到0.2 g·kg-1施氮量前,随着施氮量增加,藜麦将更多的生物量分配到花和叶。4)不同品种和施氮量下,幼苗生物量与最大净光合速率、苗高、地径、比叶面积呈显著正相关。本研究可为不同藜麦品种的养分管理提供参考。  相似文献   

13.
依托FACE技术平台, 采用稳定13C同位素技术, 通过将小麦(C3作物)种植于长期单作玉米(C4作物)的土壤上, 研究了大气CO2浓度升高和不同氮肥水平对土壤排放CO2的δ13C值及根际呼吸的影响. 结果表明: 种植小麦后土壤排放CO2的δ13C值随作物生长逐渐降低, CO2浓度升高200 μmol·mol-1显著降低了孕穗、抽穗期(施氮量为250 kg·hm-2, HN)与拔节、孕穗期(施氮量为150 kg·hm-2, LN)土壤排放CO2的δ13C值, 显著提高了孕穗、抽穗期的根际呼吸比例. 拔节至成熟期, 根际呼吸占土壤呼吸的比例在高CO2浓度下为24%~48%(HN)和21%~48%(LN), 在正常CO2浓度下为20%~36% (HN)和19%~32%(LN). 不同CO2浓度下土壤排放CO2的δ13C值和根际呼吸对氮肥增加的响应不同, CO2浓度与氮肥用量在拔节期对根际呼吸的交互效应显著.  相似文献   

14.
通过田间小区试验,设N0(0 kg·hm-2)、N1(45 kg·hm-2)、N2(90 kg·hm-2)、N3(135 kg·hm-2)4个施氮水平,研究不同施氮水平下小麦与蚕豆间作对蚕豆赤斑病发生和冠层微气候的影响,探讨间作系统氮肥调控下冠层微气候变化及其与蚕豆赤斑病发生的关系.结果表明: 施氮提高了蚕豆单、间作种植模式下蚕豆赤斑病发病盛期的病情指数,增幅27.2%~58.0%,增加了病情进展曲线下面积(AUDPC),增幅15.0%~101.8%,N3水平下赤斑病病情指数和AUDPC最高.施氮使蚕豆冠层温度降低0.2~1.1 ℃,冠层透光率降低1.7%~29.7%,冠层相对湿度增加0.5%~28.7%.与单作相比,间作蚕豆赤斑病病情指数显著降低36.3%~48.1%,AUDPC显著降低44.0%~53.6%,冠层温度和透光率分别提高2.1%~8.7%和12.0%~53.8%,相对湿度降低11.6%~31.6%.相关分析表明,冠层温度和透光率与赤斑病病情指数呈显著负相关,而湿度与病情指数呈显著正相关.表明高氮恶化了冠层微气候环境,加重了蚕豆赤斑病的发生和危害,而间作对蚕豆冠层微气候的改善是控制蚕豆赤斑病发展的重要原因.  相似文献   

15.
在西北旱地冬小麦进行有机肥和化肥配施试验,共设5个处理,有机肥(牛粪,M)施用量30 t·hm-2,配以不同量的化学氮肥(0、75、150、225、300 kg N·hm-2,分别用M+N0、M+N75、M+N150、M+N225、M+N300表示)。试验进行3年后,连续两年(2018、2019年)测定小麦产量、品质和土壤生物学特性。结果表明: 有机肥配施氮肥小麦产量均显著高于单施有机肥的M+N0处理;M+N150、M+N225和M+N300 3个处理产量均显著高于M+N75处理,3个处理之间差异不显著。除淀粉含量外,有机肥配施氮肥小麦籽粒粗蛋白含量、湿面筋含量、沉降值、延伸性均显著高于M+N0处理,且M+N150、M+N225、M+N300处理均显著高于M+N75处理,但3个处理之间差异不显著。M+N150处理两年的土壤微生物生物量碳氮均最高,显著高于M+N0、M+N225、M+N300处理。2018年M+N150处理β-1,4-葡萄糖苷酶(βG)、纤维二糖水解酶(CBH)、L-亮氨酸氨基肽酶(LAP)、β-1,4-N-乙酰基氨基葡萄糖苷酶(NAG)、碱性磷酸酶(AKP)活性均显著高于其他处理;2019年,除L-亮氨酸氨基肽酶活性外,M+N150处理的其他酶活性均显著高于M+N0和M+N225处理。相关分析显示,MBC与MBN呈极显著正相关,MBC、MBN与CBH、NAG、AKP均呈显著正相关,MBN与TN呈显著正相关、与NO3-呈显著负相关。综合考虑冬小麦产量、品质、土壤生物学特性等因素,M+N150更有利于西北旱地麦田的可持续利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号