首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteases of the genus Bacillus. II. Alkaline proteases   总被引:5,自引:0,他引:5  
The alkaline proteases of B. subtilis NRRL B3411, B. pumilis, and B. licheniformis have been isolated by fractionation followed by ion exchange chromatography and their homogeneity demonstrated. General enzyme properties of the B. sublitis NRRL B3411 alkaline protease have been studied and attempts made to differentiate a group of alkaline proteases. It is clear that the alkaline proteases known as Subtilisins or Subtilopeptidases are not, exclusive to B. subtilis but are common to many Bacilli and therefore the generic name Bacillopeptidases has been proposed. It is clear too that on the basis of the effect of pH on activity, amino acid composition, esterase activity, and immunological cross-reactions the Bacillopeptidases can be divided into two groups or types: (a) Bacillopcptidase A (Subtilisin A or Subtilopeptidase A) which includes Subtilisin Carlsberg, B. licheniformis, and B. pumilis alkaline proteases; ( b ) Bacillopeptidase B (Subtilisin B or Subtilopeptidase B) which includes B subtilis NRRL B3411, Subtilisin Novo, Subtilisin BPN' (Nagarse), alkaline protease Daiwa Kasei, and (probably) B. subtilis var. amylosacchariticus. At present, no further differentiation is possible and whether or not the enzymes within group A or B are identical remains an open question. Methods for examination of crude enzyme mixtures or fermentation beers are described and from the examination of a number of crude enzymes and fermentation beers it appears that organisms producing Bacillopeptidase A do not produce neutral protease or amylase, while organisms producing Bacillopeptidase B produce a neutral protease and amylase as well.  相似文献   

2.
The kinetics of the bacterial extracellular protease synthesis (neutral and alkaline protease of Bacillus mesentericusstrain 76, R-form) in batch and chemostat cultures under conditions of glucose limitation were investigated. When the medium was supplemented with casein the production of the proteases was significantly higher. Optimal dilution rates for obtaining of two proteases are fixed. The synthesis of both alkaline and neutral proteases is controlled by catabolite repression and induction.  相似文献   

3.
Summary Bacillus subtilis DB104, a double mutant which does not synthesize neutral or alkaline proteases, was shown to exhibit some residual proteolytic activity when grown in both batch and continuous cultures. A major protein component responsible for about 70% of extracellular residual protease activity was reversibly deactivated by removal of calcium.  相似文献   

4.
The neutral protease of Bacillus subtilis var. amylosacchariticus (B. amylosacchariticus) was iodinated with a 25-fold molar excess of iodine at pH 9.4 for 3 min at 0°C, by which treatment the proteolytic activity toward casein was markedly reduced, while the hydrolytic activity toward an N-blocked peptide substrate was rather increased. The modified enzyme was digested with Staphylococcus aureus V8 protease at pH 8.0 and the amino acid sequences of resultant peptides were compared with those obtained from the native enzyme. One of the peptides was found to have an amino acid sequence of Thr-Ala-Asn-Leu-Ile-Tyr-Glu, which corresponds to residue Nos. 153—159 of the enzyme, where Tyr-158 was identified to be mono-iodotyrosine. The other two peptides were those containing Tyr-21 which was mono- and di-iodinated, respectively. Referring to nitration experiments on the neutral protease and the active site structure of thermolysin, it was concluded that the iodination of Tyr-158 is mainly responsible for the activity changes of B. amylosacchariticus neutral protease.  相似文献   

5.
Summary Effect of the cloned gene of Bacillus licheniformis on the extracellular proteolytic activities of B. subtilis was investigated. The gene was cloned onto the vector plasmid pUB110 (3.0 Md), and the introduction of the hybrid plasmid [pAN2 (5.4 Md)] into the cells of B. subtilis resulted in a marked increase of activities of the extracellular alkaline and neutral proteases, which had optimal pHs at 10.5 and 7.2, respectively. On DEAE-Sephadex column chromatography, the extracellular activity of B. subtilis with pAN2 was separated into two active fractions (a1 and b1). The activity in a1 was specifically inactivated by diisopropyl phosphorofluoridate (DFP) and tosyl fluoride (TSF), potent inhibitors of alkaline proteases, while, the activitiy in b1 was inhibited by ethylenediaminetetraacetate (EDTA), an inhibitor of neutral protease, but not by DEP or TSF.Sub-cloning with genes shortened to about 0.85 Md (pAN2-1) and 0.25 Md (pAN2-2) increased the activities of both alkaline and neutral proteases. The extracellular -amylase and ribonuclease production was also increased when the host strain was transformed with these hybrid plasmids (pAN2, pAN2-1, pAN2-2). The increase in activity of proteases by the cloning was discussed in relation to regulation of the production and/or secretion of the enzyme.  相似文献   

6.
Proteases of the genus Bacillus. I. Neutral proteases   总被引:9,自引:0,他引:9  
B. subtilis NRRL B3411 neutral protease has been extensively purified by solvent, and salt fractional ion, pigment removal with DEAE-cellulose followed by chromatography on hydroxylapatite, and a final passage through a Sephadex G-100 column. The neutral protease was shown to be homogeneous by disc gel and cellulose acetate electrophoresis, gel filtration chromatography, and ultra-centrifugation. The molecular weight was determined by osmometry and ultracentrifugation to be about 38–42,000 and the amino acid composition and zinc content determined. The general properties of the enzyme, pH-activity relationship, stability, effect of inhibitors, and specificity are discussed. Comparative studies were carried out on the B. subtilis NRRL B3411 and B. subtilis var. amylosacchariticus neutral proteases and these enzymes were found to be indistinguishable by the methods used, but quite distinct from the thermostable enzyme thermolysin from B. thermoprotcolyticus.  相似文献   

7.
A neutral protease of Bacillus subtilis var. amylosacchariticus was purified and crystallized by sequential chromatography on columns of Duolite A-2 anion-exchange resin, CM-cellulose and DEAE-sephadex A-50. The crystalline preparation was chromatographically homogeneous and confirmed to be monodispersive by physicochemical criteria. The enzyme was most active at near pH 7 against casein and stabilized by calcium salts. Some metalchelating agents and metal ions such as Hg?, Pb?, Cu? and Fe? markedly inactivated the enzyme, whereas diisopropyl phosphorofluoridate, sulfhydryl reagents and protease inhibitor of potato did not affect the activity. The neutral protease obtained here was rather stable as compared with the neutral protease ever reported and was able to be freeze-dried without any appreciable lose in enzyme activity.  相似文献   

8.
When the thermophilic mold Thermoascus aurantiacus var. levisporus was grown in a modified Czapek Dox medium containing casein the filtrate was found to contain proteolytic activity. The maximum production of activity occurred at 50 ° C in a medium containing 8% casein. The filtrate was subjected to ammonium sulfate fractionation and chromatography on DEAE-cellulose. Two proteases were separated. No further work was done on protease II. Protease I was further purified by gel filtration on Sephadex G 100–200. It showed a 40-fold purification with a final recovery of approximately 25%. It is a neutral protease with a pH optimum at 7.0. The optimal activity of the enzyme occurred in 0.02 M phosphate buffer but was completely inhibited at a concentration of 0.1 M. The optimum temperature for casein hydrolysis was found to be 55 ° C. The enzyme was inhibited by Hg++ but was greatly stimulated by Cu++ and mercaptoethanol. Metallo and sulfhydryl agents had no significant effect on enzyme activity.  相似文献   

9.
A strain ofAlternaria alternata (Fr.) Keissl, when grown on wheat bran Czapek Dox medium was found to secrete one neutral and two alkaline proteases. The purified enzymes were found to be endo peptidases, the alkaline proteases being serine proteases and neutral proteases being cysteine proteases. Fructose when added to the culture medium was found to give rise to a new neutral protease at the expense of the neutral protease produced in the absence of fructose and was also found to enhance the production of alkaline proteases. It also appears that fructose modifies the alkaline proteases with respect to some characteristics such asV max, Ea etc. Sodium dodecyl sulphate Polyacrylamide gel electrophoresis indicated a significantly altered protein profile in fructose supplemented medium.  相似文献   

10.
A transformable strain of Bacillus subtilis 6160, a derivative of B. subtilis 168, produces three kinds of casein hydrolytic enzymes (alkaline protease, neutral protease, and esterase) in a culture medium. B. natto IAM 1212 produces 15 to 20 times as much total proteolytic activity as does B. subtilis. Extracellular proteases produced by the two strains were separated into each enzyme fraction by diethylaminoethyl-Sephadex A-50 column chromatography. The difference in the total protease activities of extracellular proteases between the two strains was due to the amount of neutral protease. The ratios of neutral protease activity to alkaline protease activity (N/A) were 1.1 in B. subtilis 6160 and 13.0 in B. natto IAM 1212. Enzymological and immunological properties of alkaline protease and neutral protease obtained from the two strains were quite similar or identical, respectively. Specific activities measured by an immunological analysis of the two neutral proteases against casein were also equal. A genetic character of high protease productivity in B. natto IAM 1212 was transferred to B. subtilis 6160 by the deoxyribonucleic acid-mediated transformation. Among 73 transformants that acquired high protease productivity, 69 produced a higher amount of neutral protease and the ratios of N/A were changed to 15 to 60. Three other strains were transformed in the productivity of neutral protease and alpha-amylase simultaneously, and one showed considerable change in the production of alkaline protease and neutral protease. The specific activities (casein hydrolytic activities/enzyme molecules) of neutral proteases from the representative four transformants were equal to those of the two parental strains. These results suggested the presence of a specific gene(s) that participated in the productivity of neutral protease in B. subtilis.  相似文献   

11.
The action of intracellular proteases of lactic acid bacteria (IPLB) at pH 7 on various paracaseins was studied. Paracaseins prepared by releasing of 3~7% non casein type nitrogen (NCN) were hydrolyzed by IPLB with more difficulty than native or other paracaseins prepared by releasing of less or above 3~7% NCN. This phenomenon was not found in a case of a neutral protease of Bacillus subtilis. Hydrolyzed casein by rennin or IPLB of S. cremoris were studied by DEAE-cellulose column chromatography, starch-gel or agar-gel electrophoresis. It was estimated that not only some part of α-casein but also β-casein were hydrolyzed by IPLB of S. cremoris.  相似文献   

12.
The neutral protease of Bacillus subtilis var. amylosacchariticus was cleaved chemically or digested with proteolytic enzymes, and the resultant peptides were separated and purified by high performance liquid chromatography. The sequence analyses of these peptides by the manual Edman procedure established the complete amino acid sequence of the enzyme. The neutral protease consisted of 300 amino acid residues with Ala and Leu as its amino- and carboxyl-termini, respectively, and the molecular weight was calculated to be 32,633. The sequence was found to be identical to that of B. subtilis 1A72 neutral protease, which was deduced from nucleotide sequencing. Comparison of the sequence with those of other Bacillus proteases revealed that the putative active site amino acid residues, Zn-binding ligands, and two Ca-binding sites were well conserved among them, as compared with those of thermolysin.  相似文献   

13.
Bacillus subtilis 1A20 transformed with a hybrid plasmid, pNP150, to which a DNA fragment from Bacillus amyloliquefaciens F was attached, produced a large amount of a neutral protease. To identify the origin of the gene specifying this neutral protease, neutral proteases from B. amyloliquefaciens F, B. subtilis NP58 (a derivative of Marburg 6160), and B. subtilis 1A20 transformed with pNP150 were purified. We investigated their immunological properties and primary structures.

The proteases from these two species were indistinguishable by chromatography, but they were distinguishable from each other by SDS-polyacrylamide gel electrophoresis and double immunodiffusion. Amino acid sequencing of these two proteases by Edman degradation showed that there were four substitutions in the 20-residue amino acid sequence from the N-termini.

Neutral protease from the transformant had the same immunological characteristics and N-terminal amino acid sequence as that from B. amyloliquefaciens. These results meant that the gene in question was derived from a gene specifying the neutral protease in this bacterium.  相似文献   

14.
【目的】将地衣芽孢杆菌(Bacilluslicheniformis)E7氨肽酶基因pepN克隆到大肠杆菌(Escherichia coli) BL21中,实现氨肽酶Ec PepN的异源表达,研究重组酶的酶学性质及其与碱性蛋白酶协同作用,高效水解大豆蛋白和酪蛋白,产生小分子活性肽和游离氨基酸。【方法】以地衣芽孢杆菌E7基因组DNA为模板,将氨肽酶基因pepN克隆到载体pET28a中,构建重组表达载体pET28-pepN,转化到大肠杆菌BL21感受态细胞中,经DNA测序验证,获得重组菌E. coli BL21/pET28-pepN。利用镍离子亲和层析柱对重组酶进行分离纯化,研究纯酶的pH和温度稳定性、半衰期和NaCl的耐受性等酶学性质。以商品化氨肽酶与碱性蛋白酶协同作用为对照,重组酶Ec PepN与碱性蛋白酶协同水解大豆蛋白和酪蛋白,测定水解产物中小分子活性肽和游离氨基酸的组成。【结果】Ec PepN在大肠杆菌BL21中可溶性表达,SDS-PAGE分析表明纯化的重组酶在52kDa左右显示单一条带。在7种测定底物中,Ec PepN的最适底物为Ala-pNA。在最适条件(pH 9.0和50°C...  相似文献   

15.
A protease has been isolated by affinity chromatography from culture filtrates of a strain of Streptococcus faecalis previously shown to produce a flbrinolytic enzyme. The pH optimum, molecular weight, metal ion chelator sensitivity, and peptidase specificity place this enzyme in the class of bacterial neutral metalloendopeptidase typified by thermolysin and the Bacillus subtilis neutral proteases. Differences with respect to chemical modification and thermal stability exist between the S. faecalis enzyme and the latter proteases. The S. faecalis enzyme (designated EM 19000) renders fibrinogen incoagulable by degradation of the B (β) chains.  相似文献   

16.
Thermophilic fungi produce thermostable enzymes which have a number of applications, mainly in biotechnological processes. In this work, we describe the characterization of a protease produced in solidstate (SSF) and submerged (SmF) fermentations by a newly isolated thermophilic fungus identified as a putative new species in the genus Myceliophthora. Enzyme-production rate was evaluated for both fermentation processes, and in SSF, using a medium composed of a mixture of wheat bran and casein, the proteolytic output was 4.5-fold larger than that obtained in SmF. Additionally, the peak of proteolytic activity was obtained after 3 days for SSF whereas for SmF it was after 4 days. The crude enzyme obtained by both SSF and SmF displayed similar optimum temperature at 50°C, but the optimum pH shifted from 7 (SmF) to 9(SSF). The alkaline protease produced through solid-state fermentation (SSF), was immobilized on beads of calcium alginate, allowing comparative analyses of free and immobilized proteases to be carried out. It was observed that both optimum temperature and thermal stability of the immobilized enzyme were higher than for the free enzyme. Moreover, the immobilized enzyme showed considerable stability for up to 7 reuses.  相似文献   

17.
Substrate specificity of the crystalline neutral protease of B. amylosacchariticus was investigated using the B-chain of oxidized beef insulin as the substrate, and the results were compared with those of proteases obtained from other strains of Bacillus subtilis. The neutral protease split the B-chain at eleven sites of the peptide linkages, indicating the narrow specificity as compared with subtilopeptidase A, The results also indicated that the peptide bonds susceptible to the action of the neutral protease were mainly those involving amino group of hydrophobic amino acids and tyrosine, with a few exception. The enzyme showed potent activities in casein digestion at near neutrality and in milk clotting at pH 5.6, whereas it was completely inert on esters and keratin, and only slightly active toward elastin.  相似文献   

18.
Studies to determine the physiological and nutritional characteristics of protease synthesis by Bacteroides splanchnicus NCTC 10825 showed that the proteases were constitutive and cell-associated during exponential growth in batch culture. As growth slowed and the bacteria entered the stationary phase, proteases that had accumulated intracellularly were released into the culture media. In continuous cultures, [dilution rate (D)=0.03 h–1 to D=0.29 h–1], protease activity was completely cell-bound and maximal during nitrogen-limited growth at high dilution rates. The proteases hydrolysed a relatively restricted range of protein substrates including casein, azocasein and gelatine (comparative maximum rates of hydrolysis were 1.0, 4.1 and 2.7 units mg–1 protein respectively). B. splanchnicus proteases exhibited arylamidase activities against leucine p-nitroanilide, valylalanine p-nitroanilide and glycylproline p-nitroanilide. Inhibition experiments indicated that the bacterium produced a mixture of serine, thiol and, possibly, metalloproteases. Protease activities were affected by reducing agents and divalent metal ions. Mercaptoethanol at 1 mm was slightly stimulatory; however, dithiortheitol and dithioerythritol (each 10 mm) respectively inhibited protease activities by 91% and 100%. Calcium ions (5 mm) stimulated protease activity by 30%, whereas Mn2+ and Mg2+ had little or no effect. Protease and arylamidase activities had neutral to alkaline pH optima. Together, these results show that with respect to the types of protease formed and the physiology of the process, B. splanchnicus proteolysis is similar in many respects to that occurring in species belonging to the B. fragilis group. Correspondence to: G. T. Macfarlane  相似文献   

19.
A Bacillus amyloliquefaciens neutral protease gene was cloned and expressed in Bacillus subtilis.The chromosomal DNA of B. amyloliquefaciens strain F was partially digested with restriction endonuclease Sau3AI, and 2 to 9 kb fragments isolated were ligated into the BamHI site of plasmid pUB110. Then, B. subtilis strain 1A289 was transformed with the hybrid plasmids by the method of protoplast transformation and kanamycin-resistant transformants were screened for the formation of large halo on a casein plate. A transformant that produced a large amount of an extracellular neutral protease harbored a plasmid, designated as pNP150, which contained a 1.7 kb insert.The secreted neutral protease of the transformant was found to be indistinguishable from that of DNA donor strain B. amyloliquefaciens by double immunodiffusion test and SDS-polyacrylamide gel electrophoresis.The amount of the neutral protease activity excreted into culture medium by the B. subtilis transformed with pNP150 was about 50-fold higher than that secreted by B. amyloliquefaciens. The production of the neutral protease in the transformant was partially repressed by addition of glucose to the medium.  相似文献   

20.
Although one of the major factors limiting the application of Bacillus subtilis as an expression host has been its production of at least eight extracellular proteases, researchers have also noticed that some proteases benefited the secretion of foreign proteins at times. Therefore, to maximize the yield of a foreign protein, the proteases should be selectively inactivated. This raises a new question that how to identify the favorable and unfavorable proteases for a target protein. Here, an evaluation system containing nine mutant strains of B. subtilis 168 was developed to address this question. The mutant strain PD8 has all the eight proteases inactivated whereas each of the other eight mutant strains expresses only one kind of these eight proteases. The target protein is secreted in these nine mutant strains; if the production of target protein in a mutant strain is higher than that in strain PD8, the corresponding protease is regarded as favorable. Accordingly, the optimal protease-deficient host is constructed through inactivating the unfavorable proteases. The effectiveness of this system was confirmed by expressing three foreign proteins. This study provides a strategy for improving the secretion of a foreign protein in B. subtilis through tailoring a personalized protease-deficient host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号