首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在光镜结构研究的基础上,用电子显微镜观察了白蜡虫Ericerus pela Chavannes二龄雄幼虫蜡腺的超微结构和虫体表面的蜡孔及蜡丝形态。重点研究了蜡腺各组成部分的形态特点。  相似文献   

2.
Summary The corpora allata of the three last larval instars were studied in newly molted animals, at the beginning, middle, and end of the feeding period, and during the molt period. They were found to consist of uniform gland cells, whose ultrastructure changes in the course of the instars.In gland cells considered to be resting, the outer and inner nuclear membranes run in parallel without forming a dilated perinuclear space. Mitochondria are small, polymorphic, with an electron-dense matrix. The smooth endoplasmic reticulum (SER) appears as stacks of parallel cisternae near the nuclear envelope and in the rest of the cytoplasm, and as accumulations of twisted profiles. Occasionally, the SER takes the form of paracrystalline bodies. There are few small smooth-surfaced vesicles in the cytoplasm.In cells considered as active, a dilated perinuclear space occurs. The peripheral ends of profiles forming the SER are swollen, and numerous vesicles and vacuoles bud off from them to fill the cytoplasm. Mitochondria are large, with a more transparent matrix. The plasma membrane of gland cells located just beneath the connective tissue sheath forms numerous small invaginations.The corpora allata consist of resting cells during the molt periods. At the beginning of each instar, few active gland cells appear. In the middle of the second to last and the third to last instars, the bulk of the gland cells is active. At the end of these instars, there are both active and inactive cells. In the middle of the last instar, the gland cells are inactive or subactive, and at its end, all gland cells are completely inactive.  相似文献   

3.
中华蜜蜂工蜂蜡腺细胞的超微结构   总被引:1,自引:0,他引:1  
杜芝兰  李宁 《昆虫学报》1991,34(3):289-291
本文描述了中华蜜蜂(Apis cerana)成体工蜂蜡腺细胞的超微结构.通过电镜观察发现蜡腺细胞具有许多质膜内陷形成的管腔,作为蜂蜡或其前体物的输送通道.细胞质中富含线粒体及粗面内质网,细胞核为不规则的形状,细胞质中还含有少量溶酶体,微管和微丝等结构.  相似文献   

4.
The development of the cells in the posterior silk gland of the silkworm, Bombyx mori, during the fourth larval instar has been studied. In the early stages of this instar, the wet weight of the gland and the amounts of RNA, DNA, and protein per animal increase logarithmically until they reach a stationary state at about 72 hr. At around 96 hr of the fourth instar, the larvae enter the molting state, which lasts for about 24 hr until the fourth ecdysis. Towards the end of the molt stage, the growth of the silk gland is resumed. Electron microscopical observation shows that in the early intermolt stage the cytoplasm is filled with free ribosomes and with rough endoplasmic reticulum (ER), first of the lamellar type (0–6 hr) and then of the vesicular or tubular type. The Golgi apparatus also is well developed. At the beginning of the molt stage (90–96 hr), however, most of the ER becomes lamellar in type, concentric lamellar structures being occasionally observed, and the Golgi vacuoles disappear. Autophagosomes and lysosomes increase markedly and the apical portion of the cytoplasm becomes extensively vacuolated; this suggests that the secretory activities are completely depressed, and pronounced degenerative changes appear during the molt stage. Towards the end of the molt stage, large lamellar ER elements are fragmented into smaller lamellae and there is a pronounced increase in the number of free ribosomes.  相似文献   

5.
Each salt-excreting gland of the mangrove Avicennia marina (Forsskål) Vierh. consists of two to four collecting cells, one stalk cell, and eight to twelve excretory cells. Differential membrane staining by zinc iodide-osmium tetroxide (as a post-fixative) or phosphotungstic acid (as a section-stain) was used to characterise the ultrastructure of the glands. A large amount of tubular endoplasmic reticulum was found in the stalk and excretory cells of the gland, but not in the collecting cells. The ultrastructural arrangement of the endoplasmic reticulum indicates that salt is loaded from the apoplasm into the endoplasmic reticulum of the symplasm at the base of the stalk cell, traverses both cell types in the endoplasmic reticulum, and is excreted at the outer edge of the gland by an eccrine-type mechanism. Increasing development of the tubular endoplasmic reticulum accompanied differentiation of the gland cells.Abbreviations ER endoplasmic reticulum - PTA phosphotungstic acid - ZIO zinc iodide-osmium tetroxide  相似文献   

6.
The organization and ultrastructure of the accessory glands of the cattle tick, Boophilus microplus, are described. The glands consist of two groups of acinar cells situated on either side of Gene's organ. A single acinus consists of from eight to 12 cells and each cell is connected via an individual duct to pores on the dorsal surface of the mouthparts. The position of these pores is such that the secretion of the accessory glands is incorporated into the egg wax during oviposition. Each gland cell has striking quantities of smooth endoplasmic reticulum and numerous Golgi dictyosomes and appears to produce a secretion that is lipoidal in nature. Each cell secretes into its own individual lumen and is connected to a cuticular pore by a duct cell.  相似文献   

7.
Epidermal cell morphology and cuticle production in Manduca sexta are directly influenced by both ecdysterone and juvenile hormone. Up to day 6 of the last larval instar, post-molt endocuticle is continuously deposited even though cells undergo a partial and temporary separation from the overlying cuticle at the time when a small ecdysteroid peak is detected (approximately day 3.5). At about days 6--7 when another, larger ecdysteroid peak is present, apolysis occurs accompanied by the appearance of edcysial droplets. Following apolysis, layers of pupal cuticle are deposited. Increased quantities of rough endoplasmic reticulum characterize the epidermis at times of peak endocuticle deposition (day 3, larval cuticle; day 9, pupal cuticle). Dense pigment inclusions are found in epidermis from the day of ecdysis to the last larval instar until they are eliminated 5 days later. These dense bodies migrate from cell apex to base in the absence of juvenile hormone (or in the presence of a negligible amount of juvenile hormone) and probably contain insecticyanin.  相似文献   

8.
Labial glands of the tobacco hornworm Manduca sexta (Lepidoptera: Sphingiidae), homologues of Drosophila salivary glands, undergo programmed cell death (PCD) in a 4-day period during larva-to-pupa metamorphosis. The programmed death of the labial gland was examined by electron microscopy and measurement of protein synthesis as well as measurement of DNA synthesis, end-labeling of single strand breaks, and pulsed-field gel electrophoresis. One of the earliest changes observed is a sharp drop in synthesis of most proteins, coupled with synthesis of a glycine-rich protein, reminiscent of silk-like proteins. From a morphological standpoint, during the earliest phases the most prominent changes are the formation of small autophagic vacuoles containing ribosomes and an apparent focal dissolution of the membranes of the endoplasmic reticulum, whereas later changes include differing destruction at the lumenal and basal surfaces of the cell and erosion of the basement membrane. By the fourth day of metamorphosis, individual cells become rapidly vacuolated in a cell-independent manner. In the vacuolated cells on day 3, chromatin begins to coalesce. It is at this period that unequivocal nucleosomal ladders are seen and end-labeling in situ or electrophoretic techniques document single or double-strand breaks, respectively. DNA synthesis ceases shortly after the molt to the fifth instar, as detected by incorporation of tritiated thymidine and weak TUNEL labeling. Large size fragments of DNA are seen shortly after DNA synthesis ceases and thence throughout the instar, raising the possibility of potential limitations built into the cells before their final collapse. Dev. Genet. 21:249–257, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
The ultrastructure of wax glands (integumentary, stigmatic, and peristigmatic glands) was investigated in larvae, cysts, and adult females and males of species belonging to the genera Porphyrophora, Sphaeraspis, and Eurhizococcus. The general organization and cytological characteristics are similar for all glands studied. Each gland is composed of a single layer of 8 to 40 cells. The glandular cells are characterized by a very large quantity of smooth endoplasmic reticulum which forms dense zones throughout the cytoplasm, but is always placed near the collecting canals in the presence of mitochondria. Each cell has a central canal reservoir which penetrates it deeply and gives rise to a large number of lateral collecting canals, formed by the invagination of the apical plasma membrane. The canals open into a subcuticular cavity forming a common reservoir in which the secretion is accumulated. This reservoir is covered by a modified cuticle formed from the endocuticle and the epicuticle. The endocuticle is composed of a network of fine tubular structures and has many filaments on its surface. The epicuticle is perforated by numerous pores. There is no cuticular duct. The secretion crosses the cuticle in three successive steps. First, it passes through the filaments, then through fine tubular structures of the endocuticle, and finally through the epicuticular pores.  相似文献   

10.
11.
Abstract Gross anatomy, ultrastructure, innervation and ultrastructural alterations of the prothoracic gland (PTG) of cotton bollworm, Helicover pa armigera (Lepidoptera: Noctuidae) are illustrated for the last larval and early pupal stages as observed by light and electron microscopy. The T-shaped, paired (PTGs) consist each of 76–116 cells which are classified morphologically as large and small gland cells. In addition, another kind of small (about 6μ in diameter) gland cell was found in the PTGs of last instar larvae. The PTGs are innervated by the branches of 3 nerves! and tracheae and tracheoles are abundantly distributed to these glands. PTGs disappeared completely by the third day after ecdysis to the pupal stage (at temperature 28 C with a photoperiod L15:D9). An intercellular channel system (ICS) is formed by numerous, deep invaginations of the plasma membrane of gland cells. This ICS gradually increases in depth and width and reaches maximum development around the time of the major ecdysteroid secretion peak during the last larval instar. Numerous multivesicular sacs (MVS) with their remnants and an extensive rough endoplasmic reticulum were observed within ICS and cytoplasm, respectively, on the fourth day of the last larval instar. At that time the matrix of mitochondria became much more electron lucent. Freeze-fracture replicas of the glandular epithelium were made from last instar (4th day larvae. Dynamics of structure are related to data from others concerning secretory states of the prothoracic glands of this species.  相似文献   

12.
13.
The relatively undifferentiated cells comprising the prefollicular epithelium of the fourth and fifth instar of the reduvid bug Rhodninus prolixus are flattened and contain the regularly occurring organelles, lipid droplets, and aggregates of glycogen-like particles. These cells transform into the adult prefollicular tissue. During vitellogenesis there is a gradual shortening of the cells of the follicular epithelium and an increase in the size of the intercellular space between them and between follicle cells and oocyte. The follicle cells are binucleate, contain numerous microtubules, rough endoplasmic reticulum, many free and aggregate ribosomes, and Golgi complexes. They are associated with each other by gap junctions. Only the follicle cells on the lateral aspects of the oocyte exhibit the development of large extracellular spaces while those at the apical end, that produces the cap, remain tall and closely apposed to each other during vitellogenesis. The normal morphology of the follicle cells over various areas of the oocyte suggests that shape and/or volume changes of these cell may be important in regulating the access of yolk proteins to the colemma. Subsequent to vitellogenesis the follicle cells become cuboidal and once again become closely apposed to each other. They contain much rough endoplasmic reticulum and produce the secondary coat.  相似文献   

14.
The cuticle, an essential structure for insects, is produced from cuticular proteins and chitin via a series of biochemical reactions. Tweedle genes are important members of the cuticular protein family and have four conserved motifs binding to chitin. Tweedle family genes have been found to play a profound effect on cuticle development. Here, we report that the cuticular protein gene LmTwdl1 of Locusta migratoria belongs to the Tweedle family. In situ hybridization showed that LmTwdl1 is localized to epidermal cells of the cuticle. The expression patterns of LmTwdl1 showed low expression in the cuticle during the early and middle stages of the fifth‐instar nymphs; in contrast, its expression rapidly increased in the late stages of fifth‐instar nymphs. We performed RNA interference to examine the function of LmTwdl1 in locusts. Silencing of LmTwdl1 resulted in high mortality during the molting process before the next stage. Also, the epicuticle of nymphs failed to molt, tended to be thinner and the arrangement of chitin in the procuticle appeared to be disordered compare to the control group. These results demonstrate that LmTwdl1 plays a critical role in molting, which contributes to a better understanding of the distinct functions of the Tweedle family in locusts.  相似文献   

15.
In this paper, the wax secretions and wax glands of Matsucoccus matsumurae (Kuwana) at different instars were investigated using light microscopy, scanning electron microscopy and transmission electron microscopy. The first and second instar nymphs were found to secrete wax filaments via the wax glands located in the atrium of the abdominal spiracles, which have a center open and a series of outer ring pores. The wax gland of the abdominal spiracle possesses a large central wax reservoir and several wax-secreting cells. Third-instar male nymphs secreted long and translucent wax filaments from monolocular, biolocular, trilocular and quadrilocular pores to form twine into cocoons. The adult male secreted long and straight wax filaments in bundles from a group of 18–19 wax-secreting tubular ducts on the abdominal segment VII. Each tube duct contained five or six wax pores. The adult female has dorsal cicatrices distributed in rows, many biolocular tubular ducts and multilocular disc pores with 8–12 loculi secreting wax filaments that form the egg sac, and a rare type wax pores with 10 loculi secreting 10 straight, hollow wax filaments. The ultrastructure and cytological characteristics of the wax glands include wax-secreting cells with a large nucleus, multiple mitochondria and several rough endoplasmic reticulum. The functions of the wax glands and wax secretions are discussed.  相似文献   

16.
Larval epidermal cells from a day-1 penultimate instar Galleria larva on implantation into day-5 last instar larva metamorphose and deposit a pupal cuticle at the same time as the host pupates. DNA synthesis in the implanted larval cell was monitored with 3-H-thymidine. Various regimens of 3-H-thymidine application were used and under no conditions did the larval cells incorporate label during the period from implantation to deposition of pupal cuticle. This suggests that a wax moth larval ectoderm cell can reprogram its genome to secrete a pupal cuticle without a precedent cell division.  相似文献   

17.
The labral glands of Daphnia consist of three distinct functional units on each side: (1) several cells at the base of the head, (2) two large cells at the base of the labrum and one large cell (cell A) in the median part of the labrum and (3) one large cell (cell B) in the median part of the labrum. These gland cells do not form a syncytium, contrary to reports by previous investigators. With the exception of cell B, they have a well-developed rough endoplasmic reticulum and many active Golgi complexes. The Golgi activity changes during the molt cycle. The Golgi activity of the cells of the head base is different from that of the large cells of the labrum. Since clear exocytotic phenomena were not observed, the secretion can be assumed to flow into the hemolymph after accumulation in the enlarged intercellular spaces. Cell B has a distinctive cytoplasmic ultrastructure the function of which is not yet understood. The four large cells of the labrum are in contact with a duct cell (or several duct cells) characterized by a deep infolding of the plasma membrane. This delimits a narrow lumen, which contains no secretion. No passage of substance is visible from the gland cells to the duct cell(s).  相似文献   

18.
The dermal sheath of glandular trichomes of Cannabis sativa L., consisting of cuticle and a subcuticular wall, was examined by transmission electron microscopy. Cuticle thickened selectively on the outer wall of disc cells of each trichome prior to formation of the secretory cavity, whereas thickening was less evident on the dermal cells of the bract. Membraned secretory vesicles that differ in size and appearance in the secretory cavity were the source of precursors for synthesis of cuticle. Vesicle contents, released following the degradation of the vesicle membrane upon contact with the subcuticular wall, contributed to both structured and amorphous phases of cuticle development. The structured phase was represented by deposition and thickening of cuticle at the subcuticular wall-cuticle interface to form a thickened cuticle. In the amorphous phase precursors permeated the cuticle in a liquid state, as shown by fusion of cuticles and wax layers between contiguous glands, and may have contributed to growth in surface area of the expanding sheath. Disc cells are interpreted to control growth of secretory cavity by secretion of membraned vesicles into the cavity. The thickened cuticle, which increased eightfold in thickness during enlargement of the gland, provided structural strength for the extensive surface area of the dermal sheath. The gland of Cannabis in which vesicle contents contribute to the growth in thickness and surface area of the cuticle of the sheath is interpreted to represent a phylogenetically derived state as contrasted to secretory glands possessing only cuticle and lacking a complement of secretory vesicles.  相似文献   

19.
S Franzl  M Locke  P Huie 《Tissue & cell》1984,16(2):251-268
Lenticles are dome-shaped circles or ovals of cuticle with a dark rim. They occur with a precise segmental arrangement in the larvae and pupae of lycaenid and hesperiid butterflies. In Calpodes ethlius (Lepidoptera, Hesperiidae) each lenticle is secreted by a pair of large polyploid epidermal cells. The dark rim or annulus is formed from a ring-shaped cell. The dome, which consists of an epicuticle with a perforate intermediate layer like a pepper-pot, is formed by a central goblet cell. Between the perforate intermediate layer and the cell surfaces there is a cavity that contains material presumed to be secretion. Both cells have elaborate basal plasma membrane reticular systems and the apical microvilli associated with an extensive smooth endoplasmic reticulum that is typical of lipid secreting cells. In addition, there is a plasma membrane reticular system in the ring cell and between it and the goblet cell that contains the endings of nerves having neurosecretory vesicles. Lenticles thus have a structure appropriate for an innervated organ of lipid secretion. However, in their development, lenticles arise from bristles that are presumed to be sensory. Lenticles or their precursors are segmentally arranged in the five larval instars and the pupa, but the pattern changes at each moult. The cells that form a lenticle at one moult have a rest period at the next one when they only secrete surface cuticle. Many lenticles are paired in their cycle of development, with only one of the pair making a lenticle at a particular moult. For example, the dorsal and lateral lenticles alternate in position between anterior and posterior. The second and fourth instar segments have anterior and the third and fifth instars have posterior lenticles. In the first instar the cells that will make lenticles for the second and third instars both make bristles. Lenticles are thus formed by cells that not only change their response to ecdysone qualitatively by switching from bristle to lenticle but also alternate in their later responses, switching back and forth at alternate moults between the formation of a lenticle and the secretion of surface cuticle.  相似文献   

20.
Nassonow's gland consists of a number of cells with ducts that open on to the ventral surface of the brood canal in the cephalothoracic region of a neotenic female strepsipteran. The structural organization of the gland is reminiscent of the class 3 of the epidermal gland cells as defined by Noirot and Quennedey [Ann. Rev. Entomol. 19 (1974) 61], which consists of secretory and duct forming cells. The ultrastructure of the Nassonow's gland is described in female Xenos vesparum (Rossi) parasitic in the social wasp Polistes dominulus Christ. The large secretory cells are clustered in groups of three to four, rich in smooth endoplasmic reticulum and produce a secretion made up of lipids. In young females, just before mating, the ultrastructure of the cells and their inclusions indicate that they are active. In old-mated females the Nassonow's gland degenerates. Microvilli line an extracellular cavity and there are pores present in the irregularly thick cuticle of the efferent duct. The small duct forming cells, intermingle with epidermal cells, overlap secretory cells and produce a long efferent duct, the cuticle of which becomes thick close to its opening in the brood canal. Nassonow's gland could be the source of a sex pheromone, which might be capable of attracting the free-living male to a permanently endoparasitic female.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号