首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen consumption for the oxidation of vanillin in a soil suspension and in structural chernozem samples was accelerated in glucose-treated variants. The effect was observed on adding glucose and vanillin simultaneously and after 16 hours' preincubation of the soil with glucose. Glucose degradation was accompanied by an increase in the proportion of bacteria capable of utilizing vanillin as the sole carbon source, as well as by a general increase in the number of microorganisms. With some of these bacterial strains, in a given pH range, glucose induced the ability to oxidize vanillic acid, or at least shortened the lag phase of oxygen consumption for oxidation of this intermediate product of vanillin decomposition. Glutamic, malic, succinic and pyruvic acid and glycine, ribose and fructose were found to have a similar effect to glucose on the oxidation of vanillin in washed bacterial cell suspensions and on the incidence of vanillin decomposers in soil.  相似文献   

2.
Roots and root-derived C compounds are increasingly recognised as important resources for soil animal food webs. We used 13C-labelled glucose as a model C compound representing root exudates to follow the incorporation of root-derived C into the soil animal food web of a temperate grassland over a period of 52 weeks. We investigated variations in glucose C incorporation with fertilizer addition and sward composition, i.e. variations in plant functional groups. The approach allowed the differentiation of trophic chains based on primary decomposers feeding on litter and phytophagous species feeding on roots (i.e. not incorporating glucose C) from those based on secondary decomposers feeding on microorganisms (thereby assimilating glucose C). Each of the studied soil animal species incorporated glucose C, indicating that the majority of grassland soil animal species rely on microorganisms as food resources with microorganisms being fuelled by root exudates. However, incorporation of glucose C into soil animal species varied markedly with species identity, suggesting that detritivorous microarthropods complement each other in channelling microbial C through soil food webs. Fertilizer addition markedly reduced the concentration of glucose C in most soil animal species as well as the absolute transfer of glucose C into oribatid mites as major secondary decomposers. The results suggest that fertilizer addition shifts the basis of the decomposer food web towards the use of unlabelled resources, presumably roots, i.e. towards a herbivore system, thereby lessening the link between microorganisms and microbial grazers and hampering the propagation of microbial C to higher trophic levels.  相似文献   

3.
The biochemical changes occurring during microcycle sporogenesis of B. cereus T in glucose enriched Mackechnie and Hanson medium(1) was studied by using alpha picolinic acid and ethyl picolinate. Alpha picolinic acid inhibited microcycle sporogenesis by chelating with some metal essential for the transition of a vegetative cell to a sporulating cell probably by suppressing aconitase. The mode of action of ethyl picolinate did not seem to be metal chelation as its effects could not be reversed by zinc sulphate.  相似文献   

4.
Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) can be key players in ammonia biotransformation in the environment. Soil organic matter can affect the distribution of soil AOA and AOB. However, the link between organic matter and AOA and AOB communities remain largely unclear. The current study investigated the impact of organic carbon amendment on the abundance and composition of ammonia-oxidating microorganisms in reed-planted soil in a riparian zone of the Miyun Reservoir (Beijing). The results indicated that AOB outnumbered AOA in riparian wetland soil both before and after glucose application. Glucose application significantly increased the abundance of AOA , but had only a slight impact on the abundance of AOB. The addition of glucose had a strong impact on the community structures of both AOA and AOB. Moreover, phylogenetic analysis indicated that the obtained archaeal amoA gene sequences showed no close relationship with cultivated AOA species. Few Nitrosospira-like AOB sequences were detected in glucose-amended soil. This study may provide some new insight regarding soil ammonia-oxidizing microorganisms.  相似文献   

5.

Aims

It has been reported that root exudates of Sorghum bicolor can inhibit nitrification in a bioassay using Nitrosomonas, and methyl 3-(4-hydroxyphenyl) propionate (MHPP) was identified as one of the nitrification inhibiting compounds. Therefore, we have investigated the effects of this compound on nitrogen dynamic, potential nitrification activity and on soil microorganisms.

Methods

We conducted soil incubation experiments using synthetic MHPP to evaluate its effect on changes in inorganic soil nitrogen pools, on nitrification activity and on abundance of ammonia-oxidizing bacteria and archaea. Addition of MHPP at two concentrations equivalent to 70 and 350 μg C g?1 soil was compared to glucose as a carbon source and to the commercially available nitrification inhibitor dicyandiamide (DCD).

Results

Soil amended with the high dose of MHPP and with DCD showed reduced nitrate content and low nitrification activity after 3 and 7 days of incubation. This was mirrored by a 70 % reduction in potential nitrification activity compared to a nitrogen-only control. None of the incubation treatments affected non-target microbial counts as estimated by 16S rRNA gene copy numbers, however, the high dose of MHPP significantly reduced the abundance of ammonia-oxidizing bacteria and archaea.

Conclusions

These findings suggest that MHPP is capable of suppressing nitrification in soil, possibly by reducing the population size and activity of ammonia-oxidizing microorganisms.  相似文献   

6.
Stability and Effects of Some Pesticides in Soil   总被引:8,自引:7,他引:1       下载免费PDF全文
The influence of 29 pesticides on CO(2) production and nitrification by soil microorganisms was determined. A few compounds were stable but without significant effect in soil (chlorinated hydrocarbons), some persisted and depressed respiration and nitrification (carbamates, cyclodienes, phenylureas, thiolcarbamates), and others displayed toxicity but were transformed by soil microorganisms (amides, anilides, organophosphates, phenylcarbamates, triazines). Some compounds of the last type induced an initial increase and subsequent decrease in CO(2) production by soil. No simple explanation of this effect is possible, but the results of studies of model systems having established activities suggest that in soil any one or a combination of the following mechanisms is responsible for the observed complex relation of CO(2) production to time: (i) a pesticide acts to uncouple oxidative phosphorylation in a manner analogous to 2,4-dinitrophenol; (ii) a pesticide lacking antimicrobial action is oxidized in part and transformed to a stable and toxic product; (iii) a pesticide that is selectively toxic inhibits CO(2) production by sensitive microorganisms but is subject to oxidation without detoxification by other members of the microbial population that are resistant to its initial action. Pesticide concentrations greatly in excess of those recommended for agricultural and home use were required to produce an effect, and supplementary organic matter (glucose) tended to reduce pesticide toxicity and increase the microbial degradation of pesticides in soil.  相似文献   

7.
土壤矿物与微生物相互作用的机理及其环境效应   总被引:4,自引:0,他引:4  
土壤矿物与微生物相互作用是地球表层系统中重要的生态过程.微生物或生物分子与矿物间的吸附(粘附)是两者相互作用的基础.吸附(粘附)是一个由分子间力、静电力、疏水作用力、氢键和空间位阻效应等多种作用力或作用因素共同决定、影响的物理化学过程.因此,微生物和矿物的表面性质如表面电荷、疏水性和它们所处的环境条件如pH、电解质浓度、温度等,都影响着矿物-微生物吸附(粘附)过程.微生物细胞或酶可吸附于矿物表面,其结果是细胞代谢或酶活性会发生明显变化,并进一步影响土壤中诸多相关的生态、环境过程.结合4种典型的初始吸附理论:表面自由能热力学理论、DLVO理论、吸附等温线理论和表面复合物理论及本课题组近年来的研究成果,对土壤矿物与微生物相互作用的类型、机理、作用力和现代研究技术等方面的最新研究进展进行了较为全面的论述,对土壤矿物-微生物相互作用的环境效应进行了讨论,并就该领域今后研究工作的特点及应关注的问题进行了展望.  相似文献   

8.
Stimulation of native microbial populations in soil by the addition of small amounts of secondary carbon sources (cosubstrates) and its effect on the degradation and theoretical mineralization of DDT [l,l,l-trichloro-2,2-bis(p-chlorophenyl)ethane] and its main metabolites, DDD and DDE, were evaluated. Microbial activity in soil polluted with DDT, DDE and DDD was increased by the presence of phenol, hexane and toluene as cosubstrates. The consumption of DDT was increased from 23 % in a control (without cosubstrate) to 67, 59 and 56 % in the presence of phenol, hexane and toluene, respectively. DDE was completely removed in all cases, and DDD removal was enhanced from 67 % in the control to ~86 % with all substrates tested, except for acetic acid and glucose substrates. In the latter cases, DDD removal was either inhibited or unchanged from the control. The optimal amount of added cosubstrate was observed to be between 0.64 and 2.6 mg C $ {\text{g}}^{ - 1}_{\text{dry soil}} $ . The CO2 produced was higher than the theoretical amount for complete cosubstrate mineralization indicating possible mineralization of DDT and its metabolites. Bacterial communities were evaluated by denaturing gradient gel electrophoresis, which indicated that native soil and the untreated control presented a low bacterial diversity. The detected bacteria were related to soil microorganisms and microorganisms with known biodegradative potential. In the presence of toluene a bacterium related to Azoarcus, a genus that includes species capable of growing at the expense of aromatic compounds such as toluene and halobenzoates under denitrifying conditions, was detected.  相似文献   

9.
东北羊草草原土壤微生物呼吸速率的研究   总被引:35,自引:9,他引:26  
本文主要报道了东北羊草草原土壤微生物呼吸速率的季节变化规律,并将测试数据进行回归分析。研究表明:土壤温度和土壤水分的季节变化对土壤微生物的呼吸速率影响较大。三者呈明显的正相关,相关系数r=1。随着土壤温度升高、水分增多,微生物呼吸速率加快,但超过一定限度则呈现出呼吸速率减慢现象。土壤微生物只有在适宜的生态环境中才能进行正常的生命活动。  相似文献   

10.
The development of Fusarium culmorum and Pseudomonas fluorescens in soil, and the relations between them, were studied using membrane filters containing the fungus, the bacterium, or both microorganisms; the filters were incubated in soil. F. culmorum was identified by indirect immunofluorescence; the GUS-labeled strain was used to visualize P. fluorescens. It was found that F. culmorum introduced in soil can develop as a saprotroph, with the formation of mycelium, macroconidia, and a small amount of chlamydospores. Introduction of glucose and cellulose resulted in increased density of the F. culmorum mycelium and macroconidia. P. fluorescens suppressed the development of the F. culmorum mycelium in soil, but stimulated chlamydospore formation. Decreased mycelial density in the presence of P. fluorescens was more pronounced in soil without additions and less pronounced in the case of introduction of glucose or cellulose. F. culmorum had no effect on P. fluorescens growth in soil.  相似文献   

11.
水分对武夷山草甸土壤有机碳激发效应的影响   总被引:1,自引:0,他引:1  
水分是影响土壤有机碳激发效应的重要因子,但水分如何影响山地草甸土有机碳激发效应尚不清楚.本试验以武夷山高海拔(2130 m)山地草甸土为研究对象,通过室内添加13C标记的葡萄糖结合控制土壤水分(30%FWC和60% FWC,FWC为田间持水量),进行为期126 d的室内培养试验,定期测定CO2浓度和13C-CO2丰度值...  相似文献   

12.
The effect of microorganisms on the fate of Cd introduced into the soil as cadmium oxide (CdO) was investigated. Cadmium oxide (875 µg Cd per gram of soil) was added to -irradiated (sterile) and non-sterile soils. The soils were incubated for 90 days at 18 °C under aerobic conditions with moisture kept at 60% of water-holding capacity. Half of the samples in each treatment were supplemented with starch (0.5%, w/w) in order to stimulate microbial growth in the non-sterile soil. After various time intervals (7- or 10-day), soil samples from each treatment were extracted with deionized distilled water (ratio 1:40) or 0.25 M CaCl2 (ratio 1:5). The results indicated that during the incubation period the amount of Cd extracted from the non-sterile soil with either solvent was markedly lower than that extracted from the -irradiated sterile control. The addition of starch to the non-sterile soil reduced the concentration of Cd in the 0.25 M CaCl2 extracts without affecting the Cd-content in the water extracts. Short-term experiments in which Cd was added to the soil as a solution of Cd(NO3)2 indicated that irradiation did not affect the sorption of Cd to the soil. The addition of bacterial mass (1 mg of dry weight g–1 soil) decreased the amount of Cd extracted with water as well as that extracted with 0.25 M CaCl2. Under sterile conditions the solubility of CdO in soil extracts was higher than in the other extractants. The addition of glucose (0.5%, w/w) or a glucose/starch mixture (0.5%, w/w of each) to the sterile soil increased the amount of extractable Cd after a short incubation (18 h at 18 °C). The obtained results suggest that primarily physicochemical reactions are involved in dissolving CdO in the soil but that microbial activity may be responsible for the immobilization of the released metal.  相似文献   

13.
The reaction of soil bacteria and fungi to the digestive fluid of the earthworm Aporrectodea caliginosa was studied. The fluid was obtained by centrifugation of the native enzymes of the digestive tract. The inhibition of growth of certain bacteria, spores, and fungal hyphae under the effect of extracts from the anterior and middle sections of the digestive tract of A. caliginosa was discovered for the first time. In bacteria, microcolony formation was inhibited as early as 20–30 s after the application of the gut extracts, which may indicate the nonenzymatic nature of the effect. The digestive fluid exhibited the same microbicidal activity whether the earthworms were feeding on soil or sterile sand. This indicates that the microbicidal agents are formed within the earthworm’s body, rather than by soil microorganisms. The effect of the digestive fluid from the anterior and middle divisions is selective in relation to different microorganisms. Of 42 strains of soil bacteria, seven were susceptible to the microbicidal action of the fluid (Alcaligenes faecalis 345-1, Microbacterium sp. 423-1, Arthrobacter sp. 430-1, Bacillus megaterium 401-1, B. megaterium 413-1, Kluyvera ascorbata 301-1, Pseudomonas reactans 387-2). The remaining bacteria did not die in the digestive fluid. Of 13 micromycetes, the digestive fluid inhibited spore germination in Aspergillus terreus and Paecilomyces lilacinus and the growth of hyphae in Trichoderma harzianum and Penicillium decumbens. The digestive fluid stimulated spore germination in Alternaria alternata and the growth of hyphae in Penicillium chrysogenum. The reaction of the remaining micromycetes was neutral. The gut fluid from the posterior division of the abdominal tract did not possess microbicidal activity. No relation was found between the reaction of microorganisms to the effects of the digestive fluid and the taxonomic position of the microorganisms. The effects revealed are similar to those shown earlier for millipedes and wood lice in the following parameters: quick action of the digestive fluid on microorganisms, and the selectivity of the action on microorganisms revealed at the strain level. The selective effect of the digestive gut fluid of the earthworms on soil microorganisms is important for animal feeding, maintaining the homeostasis of the gut microbial community, and the formation of microbial communities in soils.  相似文献   

14.
Enrichment of soil with chitin (0.6%) significantly stimulated growth of chitinolytic microorganisms (the relative proportion was increased from 1.7 to 26.5%) and the formation of chitinase in soil. In a soil enriched with chitin and glucose (0.6%), the proportion of chitinolytic microorganisms remained similar to that in the nonenriched soil (1.4%), the enzyme formation was negatively affected.  相似文献   

15.
Tiunov AV  Scheu S 《Oecologia》2004,138(1):83-90
Activity of soil decomposer microorganisms is generally limited by carbon availability, but factors controlling saprophagous soil animals remain largely unknown. In contrast to microorganisms, animals are unable to exploit mineral nutrient pools. Therefore, it has been suggested that soil animals, and earthworms in particular, are limited by the availability of nitrogen. In contrast to this view, a strong increase in density and biomass of endogeic earthworms in response to labile organic carbon addition has been documented in field experiments. The hypothesis that the growth of endogeic earthworms is primarily limited by carbon availability was tested in a laboratory experiment lasting for 10 weeks. In addition, it was investigated whether the effects of earthworms on microbial activity and nutrient mineralization depend on the availability of carbon resources. We manipulated food availability to the endogeic earthworm species Octolasion tyrtaeum by using two soils with different organic matter content, providing access to different amounts of soil, and adding labile organic carbon (glucose) enriched in 13C.Glucose addition strongly increased the growth of O. tyrtaeum. From 8 to 17% of the total C in earthworm tissue was assimilated from the glucose added. Soil microbial biomass was not strongly affected by the addition of glucose, though basal respiration was significantly increased and up to 50% of the carbon added as glucose was incorporated into soil organic matter. The impact of earthworms on the mineralization and leaching of nitrogen depended on C availability. As expected, in C-limited soil, the presence of earthworms strongly increased nitrogen leaching. However, when C availability was increased by the addition of glucose, this pattern was reversed, i.e. the presence of O. tyrtaeum decreased nitrogen leaching and its availability to soil microflora. We conclude that irrespective of the total carbon content of soils, O. tyrtaeum was primarily limited by carbon, and that increased carbon availability allowed earthworms to be more effective in mobilizing N. The presence of earthworms increases C limitation of soil microorganisms, due to increased availability of N and P in earthworm casts or a direct depletion of easily available carbon resources by earthworms.  相似文献   

16.
Studies on the functional significance of bacteria associated with ectomycorrhizal (ECM) fungi are scarce, as well as information on the metabolism of the host plant when in symbiosis with ECM fungi. Here we intended to evaluate the phenolic profile of seedlings when associated with Bacillus subtilis (B1), Pisolithus tinctorius (Pis) and their combination (PisB1). The interaction between microorganisms was conducted in three stages: (i) in vitro evaluation of fungal/bacterial interaction, (ii) microcosms, (iii) plant transplantation to natural soil. The profile of phenolic compounds was determined at the end of stages (ii) and (iii) and further supplemented with biometric, nutritional and analysis of the ectomycorrhizal community by denaturing gradient gel electrophoresis. In the in vitro compatibility test, B1 inhibited fungal growth at all glucose concentrations tested. In the microcosm, the levels of chlorogenic and p-coumaric acid decreased over time, unlike the protocatechuic acid which tended to increase during 70 days. After transplantation to the soil, the levels of phenolic acids decreased in all treatments, while catechin increased. B. subtilis positively influenced the fungus-plant relationship as was evidenced by higher biomass of seedlings inoculated with the dual inoculum (PisB1), both in the microcosm and soil stages. The presence of the bacteria interfered in the composition of the ECM fungal community installed in Pinus pinea L. in the soil. This leads to infer that B. subtilis may have caused a greater effect on the metabolism of P. pinea, especially in synergy with mycorrhizal fungi, than the action of the isolated fungus.  相似文献   

17.
Spores of Bacillus megaterium QM B1551 germinated, elongated, and resporulated (microcycle sporogenesis) in simple chemically defined media which permitted no cell division. The second-stage spores thus produced were heat-stable and required heat activation for germination. The original amount of spore deoxyribonucleic acid tripled before completion of the cycle. Acetate and a small amount of a tricarboxylic acid cycle intermediate were the minimal organic metabolic requirements for microcycle sporogenesis. During this cycle, germinated cells oxidized acetate only after a delay, whether or not glucose was initially present. Spores that were germinated in the absence of a carbon source first oxidized an endogenous substrate, and then developed the ability to oxidize acetate.  相似文献   

18.
Microbial abundance in the rhizosphere: A computer model   总被引:7,自引:1,他引:6  
Summary A mathematical model is described which can predict the abundance of microorganisms in the rhizosphere (as g microbial dry weight/cm3 soil) in relation to distance from the root surface and time since the root started exuding substrate. The growth rate of the microorganisms at each point in the soil is assumed to be controlled by the concentration of soluble organic substrate. The concentration of substrate changes due to (1) its production by the root and diffusion through the soil, (2) its production in the soil by breakdown of insoluble organic matter, and (3) its use by the microorganisms. Values for all of the required input parameters have been obtained from the literature.The model predicts that a high population density will develop near the root surface, but the density will fall off steeply with increasing distance from the root. At the root surface microbial growth continues for many days, provided exudation by the root continues at a steady rate, but further away the population reaches a peak and then declines. This is because the amount of substrate reaching the outer soil is no longer adequate to support the maintenance requirement of the population. Starting with a microbial concentration of 2 g/cm3, and using what are considered to be average values for other input parameters, the microbial concentrations predicted after 10 days are 1509 g/cm3 at the root surface, and 2.2 g/cm3 at 1.8 mm from the root. The model also predicts the substrate concentrations in the soil: these reach a maximum within the first day and then decline, reaching by 10 days values not very different from those in root-free soil.The model is used to predict the effect on microbial and substrate concentrations of changes in soil water content, root density, root exudation rate, initial microbial concentration and microbial response to substrate concentration. Where the predictions of the model can be tested against observed data there is good agreement. re]19760308  相似文献   

19.
Methylglyoxal (MG) is a cytotoxic by-product of glycolysis. MG has inhibitory effect on the growth of cells ranging from microorganisms to higher eukaryotes, but its molecular targets are largely unknown. The yeast cell-surface glucose sensors Rgt2 and Snf3 function as glucose receptors that sense extracellular glucose and generate a signal for induction of expression of genes encoding glucose transporters (HXTs). Here we provide evidence that these glucose sensors are primary targets of MG in yeast. MG inhibits the growth of glucose-fermenting yeast cells by inducing endocytosis and degradation of the glucose sensors. However, the glucose sensors with mutations at their putative ubiquitin-acceptor lysine residues are resistant to MG-induced degradation. These results suggest that the glucose sensors are inactivated through ubiquitin-mediated endocytosis and degraded in the presence of MG. In addition, the inhibitory effect of MG on the glucose sensors is greatly enhanced in cells lacking Glo1, a key component of the MG detoxification system. Thus the stability of these glucose sensors seems to be critically regulated by intracellular MG levels. Taken together, these findings suggest that MG attenuates glycolysis by promoting degradation of the cell-surface glucose sensors and thus identify MG as a potential glycolytic inhibitor.  相似文献   

20.
This study was performed to investigate the petroleum hydrocarbon (PH) degradative potential of indigenous microorganisms in ozonated soil to better develop combined pre-ozonation/bioremediation technology. Diesel-contaminated soils were ozonated for 0–900min. PH and microbial concentrations in the soils decreased with increased ozonation time. The greatest reduction of total PH (TPH, 47.6%) and aromatics (11.3%) was observed in 900-min ozonated soil. The number of total viable heterotrophic bacteria decreased by three orders of magnitude in the soil. Ozonated soils were incubated for 9weeks for bioremediation. The number of microorganisms in the soils increased during the incubation period, as monitored by culture- and nonculture-based methods. The soils showed additional PH-removal during incubation, supporting the presence of PH-degraders in the soils. The highest removal (25.4%) of TPH was observed during the incubation of 180-min ozonated soil during the incubation while a negligible removal was shown in 900-min ozonated soil. This negligible removal could be explained by the existence of relatively few or undetected PH-degraders in 900-min ozonated soil. After a 9-week incubation of the ozonated soils, 180-min ozonated soil showed the lowest TPH concentration, suggesting that appropriate ozonation and indigenous microorganisms survived ozonation could enhance remediation of PH-contaminated soil. Microbial community composition in 9-week incubated soils revealed a slight difference between 900-min ozonated and unozonated soils, as analyzed by whole cell hybridization. Taken together, this study provided insight into indigenous microbial potential to degrade PH in ozonated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号