首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guanine nucleotide dissociation inhibitor (GDI) is an essential protein required for the recycling of Rab GTPases mediating the targeting and fusion of vesicles in the exocytic and endocytic pathways. Using site-directed mutagenesis of yeast GDI1, we demonstrate that amino acid residues required for Rab recognition in vitro are critical for function in vivo in Saccharomyces cerevisiae. Analysis of the effects of Rab-binding mutants on function in vivo reveals that only a small pool of recycling Rab protein is essential for growth, and that the rates of recycling of distinct Rabs are differentially sensitive to GDI. Furthermore, we find that membrane association of Gdi1p is Rab-independent. Mutant Gdi1 proteins unable to bind Rabs were able to associate with cellular membranes as efficiently as wild-type Gdi1p, yet caused a striking loss of the endogenous cytosolic Gdi1p-Rab pools leading to dominant inhibition of growth when expressed at levels of the normal, endogenous pool. These results demonstrate a potential role for a new recycling factor in the retrieval of Rab-GDP from membranes, and illustrate the importance of multiple effectors in regulating GDI function in Rab delivery and retrieval from membranes.  相似文献   

2.
Choroideremia is an X-chromosome-linked disease that leads to the degeneration of the choriocapillaris, the retinal pigment epithelium and the photoreceptor layer in the eye. The gene product defective in choroideremia, CHM, is identical to Rab escort protein 1 (REP1). CHM/REP1 is an essential component of the catalytic geranylgeranyltransferase II complex (GGTrII) that delivers newly synthesized small GTPases belonging to the RAB gene family to the catalytic complex for post-translational modification. CHM/REP family members are evolutionarily related to members of the guanine nucleotide dissociation inhibitor (GDI) family, proteins involved in the recycling of Rab proteins required for vesicular membrane trafficking through the exocytic and endocytic pathways, forming the GDI/CHM superfamily. Biochemical and structural analyses have now revealed a striking parallel in the organization and function of these two families allowing us to generate a general model for GDI/CHM superfamily function in health and disease.  相似文献   

3.
The Rab-specific alphaGDP-dissociation inhibitor (alphaGDI) regulates the recycling of Rab GTPases. We have now identified a novel alphaGDI complex from synaptic membranes that contains three chaperone components: Hsp90, Hsc70 and cysteine string protein (CSP). We find that the alphaGDI-chaperone complex is dissociated in response to Ca(2+)-induced neurotransmitter release, that chaperone complex dissociation is sensitive to the Hsp90 inhibitor geldanamycin (GA) and that GA inhibits the ability of alphaGDI to recycle Rab3A during neurotransmitter release. We propose that alphaGDI interacts with a specialized membrane-associated Rab recycling Hsp90 chaperone system on the vesicle membrane to coordinate the Ca(2+)-dependent events triggering Rab-GTP hydrolysis with retrieval of Rab-GDP to the cytosol.  相似文献   

4.
Rab GTPases are key regulators of vesicular protein transport in both the endocytic and exocytic pathways. In endocytosis and recycling, Rab11 plays a role in receptor recycling to plasma membrane via the pericentriolar recycling compartment. However, little is known about the molecular requirements and partners that promote transport through Rab11-positive recycling endosomes. Here, we report a novel approach to reconstitute transport to immunoabsorbed recycling endosomes in vitro. We show that transport is temperature-, energy-, and time-dependent and requires the presence of Rab proteins, as it is inhibited by the Rab-interacting protein Rab GDP-dissociation inhibitor that removes Rab proteins from the membrane. Cytochalasin D, a drug that blocks actin polymerization, inhibits the in vitro assay, suggesting that transport to recycling endosomes depends on an intact actin cytoskeleton. Using an affinity chromatography approach we show the identification of Rab11-interacting proteins including actin that stimulate transport to recycling endosomes in vitro.  相似文献   

5.
Early endocytic membrane traffic is regulated by the small GTPase Rab5, which cycles between GTP- and GDP-bound states as well as between membrane and cytosol. The latter cycle depends on GDI, which functions as a Rab vehicle in the aqueous environment of the cytosol. Here, we report that formation of the GDI:Rab5 complex is stimulated by a cytosolic factor that we purified and then identified as p38 MAPK. We find that p38 regulates GDI in the cytosolic cycle of Rab5 and modulates endocytosis in vivo. Our observations reveal the existence of a cross-talk between endocytosis and the p38-dependent stress response, thus providing molecular evidence that endocytosis can be regulated by the environment.  相似文献   

6.
Role of AP1 and Gadkin in the traffic of secretory endo-lysosomes   总被引:1,自引:0,他引:1  
Whereas lysosome-related organelles (LRO) of specialized cells display both exocytic and endocytic features, lysosomes in nonspecialized cells can also acquire the property to fuse with the plasma membrane upon an acute rise in cytosolic calcium. Here, we characterize this unconventional secretory pathway in fibroblast-like cells, by monitoring the appearance of Lamp1 on the plasma membrane and the release of lysosomal enzymes into the medium. After sequential ablation of endocytic compartments in living cells, we find that donor membranes primarily derive from a late compartment, but that an early compartment is also involved. Strikingly, this endo-secretory process is not affected by treatments that inhibit endosome dynamics (microtubule depolymerization, cholesterol accumulation, overexpression of Rab7 or its effector Rab-interacting lysosomal protein [RILP], overexpression of Rab5 mutants), but depends on Rab27a, a GTPase involved in LRO secretion, and is controlled by F-actin. Moreover, we find that this unconventional endo-secretory pathway requires the adaptor protein complexes AP1, Gadkin (which recruits AP1 by binding to the γ1 subunit), and AP2, but not AP3. We conclude that a specific fraction of the AP2-derived endocytic pathway is dedicated to secretory purposes under the control of AP1 and Gadkin.  相似文献   

7.
《The Journal of cell biology》1994,126(6):1393-1406
The small GTPase Rab1 is required for vesicular traffic from the ER to the cis-Golgi compartment, and for transport between the cis and medial compartments of the Golgi stack. In the present study, we examine the role of guanine nucleotide dissociation inhibitor (GDI) in regulating the function of Rab1 in the transport of vesicular stomatitis virus glycoprotein (VSV-G) in vitro. Incubation in the presence of excess GDI rapidly (t1/2 < 30 s) extracted Rab1 from membranes, inhibiting vesicle budding from the ER and sequential transport between the cis-, medial-, and trans-Golgi cisternae. These results demonstrate a direct role for GDI in the recycling of Rab proteins. Analysis of rat liver cytosol by gel filtration revealed that a major pool of Rab1 fractionates with a molecular mass of approximately 80 kD in the form of a GDI-Rab1 complex. When the GDI-Rab1 complex was depleted from cytosol by use of a Rab1-specific antibody, VSV-G failed to exit the ER. However, supplementation of depleted cytosol with a GDI-Rab1 complex prepared in vitro from recombinant forms of Rab1 and GDI efficiently restored export from the ER, and transport through the Golgi stack. These results provide evidence that a cytosolic GDI-Rab1 complex is required for the formation of non-clathrin-coated vesicles mediating transport through the secretory pathway.  相似文献   

8.
Rab GTPases are Ras-like small molecular weight GTP binding proteins that are involved in various steps along the exocytic and endocytic pathways. Here we report that Rab39, a novel Rab protein, is a Golgi-associated protein involved in endocytosis of HeLa cells. Full-length cDNA of Rab39 contains 1251bp with an open reading frame (ORF) of 636bp, which is predicted to encode a 211 aa protein. By blast analysis of Rab39 cDNA and protein sequence with homologues, we find that Rab39 may be a short variant of Rab34. Rab39 contains conserved motifs involved in phosphate/guanosine binding and a microbody C-terminal targeting signal. RT-PCR analysis indicates that Rab39 is mainly detected in epithelial cell lines, and Northern blot analysis shows that Rab39 is expressed ubiquitously in human tissues. By using FITC-BSA as an endocytic tracer, we show that Rab39 can facilitate endocytosis in HeLa cells when expressed either transiently or stably. Confocal microscopy examination of Rab39 subcellular localization suggests that Rab39 is associated with Golgi-associated organelles. Our findings demonstrate that Rab39 is a novel Rab GTPase involved in cellular endocytosis.  相似文献   

9.
α-Synuclein is an abundant presynaptic protein and a primary component of Lewy bodies in Parkinson disease. Although its pathogenic role remains unclear, in healthy nerve terminals α-synuclein undergoes a cycle of membrane binding and dissociation. An α-synuclein binding assay was used to screen for vesicle proteins involved in α-synuclein membrane interactions and showed that antibodies directed to the Ras-related GTPase Rab3a and its chaperone RabGDI abrogated α-synuclein membrane binding. Biochemical analyses, including density gradient sedimentation and co-immunoprecipitation, suggested that α-synuclein interacts with membrane-associated GTP-bound Rab3a but not to cytosolic GDP-Rab3a. Accumulation of membrane-bound α-synuclein was induced by the expression of a GTPase-deficient Rab3a mutant, by a dominant-negative GDP dissociation inhibitor mutant unable to recycle Rab3a off membranes, and by Hsp90 inhibitors, radicicol and geldanamycin, which are known to inhibit Rab3a dissociation from membranes. Thus, all treatments that inhibited Rab3a recycling also increased α-synuclein sequestration on intracellular membranes. Our results suggest that membrane-bound GTP-Rab3a stabilizes α-synuclein on synaptic vesicles and that the GDP dissociation inhibitor·Hsp90 complex that controls Rab3a membrane dissociation also regulates α-synuclein dissociation during synaptic activity.  相似文献   

10.
Members of the Rab family of small GTPases play important roles in membrane trafficking along the exocytic and endocytic pathways. The Rab11 subfamily consists of two highly conserved members, Rab11a and Rab11b. Rab11a has been localized both to the pericentriolar recycling endosome and to the trans-Golgi network and functions in recycling of transferrin. However, the localization and function of Rab11b are completely unknown. In this study green fluorescent protein (GFP)-tagged Rab11b was used to determine its subcellular localization. GFP-Rab11b colocalized with internalized transferrin, and using different mutants of Rab11b, the role of this protein in transferrin uptake and recycling was examined. Two of these mutants, Rab11b-Q/L (constitutively active) and Rab11b-S/N (constitutively inactive), strongly inhibited the recycling of transferrin. Interestingly, both of them had no effect on transferrin uptake. In contrast, the C-terminally altered mutant Rab11b-DeltaC, which cannot be prenylated and therefore cannot interact with membranes, did not interfere with wild-type Rab11b function. From these data we concluded that functional Rab11b is essential for the transport of internalized transferrin from the recycling compartment to the plasma membrane.  相似文献   

11.
Transport through the endocytic pathway is inhibited during mitosis. The mechanism responsible for this inhibition is not understood. Rab4 might be one of the proteins involved as it regulates transport through early endosomes, is phosphorylated by p34(cdc2) kinase, and is translocated from early endosomes to the cytoplasm during mitosis. We investigated the perturbation of the rab4 GTPase cycle during mitosis. Newly synthesized rab4 was less efficiently targeted to membranes during mitosis. By subcellular fractionation of mitotic cells, we found a large increase of cytosolic rab4 in the active GTP-form, an increase not associated with the cytosolic rabGDP chaperone GDI. Instead, phosphorylated rab4 is in a complex with the peptidyl-prolyl isomerase Pin1 during mitosis, but not during interphase. Our results show that less efficient recruitment of rab4 to membranes and a bypass of the normal GDI-mediated retrieval of rab4GDP from early endosomes reduce the amount of rab4GTP on membranes during mitosis. We propose that phosphorylation of rab4 inhibits both the recruitment of rab4 effector proteins to early endosomes and the docking of rab4-containing transport vesicles. This mechanism might contribute to the inhibition of endocytic membrane transport during mitosis.  相似文献   

12.
The molecular mechanisms underlying early/recycling endosomes-to-TGN transport are still not understood. We identified interactions between the TGN-localized putative t-SNAREs syntaxin 6, syntaxin 16, and Vti1a, and two early/recycling endosomal v-SNAREs, VAMP3/cellubrevin, and VAMP4. Using a novel permeabilized cell system, these proteins were functionally implicated in the post-Golgi retrograde transport step. The function of Rab6a' was also required, whereas its closely related isoform, Rab6a, has previously been implicated in Golgi-to-endoplasmic reticulum transport. Thus, our study shows that membrane exchange between the early endocytic and the biosynthetic/secretory pathways involves specific components of the Rab and SNARE machinery, and suggests that retrograde transport between early/recycling endosomes and the endoplasmic reticulum is critically dependent on the sequential action of two members of the Rab6 subfamily.  相似文献   

13.
Cytokinesis bridge instability leads to binucleated cells that can promote tumorigenesis in vivo. Membrane trafficking is crucial for animal cell cytokinesis, and several endocytic pathways regulated by distinct GTPases (Rab11, Rab21, Rab35, ARF6, RalA/B) contribute to the postfurrowing steps of cytokinesis. However, little is known about how these pathways are coordinated for successful cytokinesis. The Rab35 GTPase controls a fast endocytic recycling pathway and must be activated for SEPTIN cytoskeleton localization at the intercellular bridge, and thus for completion of cytokinesis. Here, we report that the ARF6 GTPase negatively regulates Rab35 activation and hence the Rab35 pathway. Human cells expressing a constitutively activated, GTP-bound ARF6 mutant display identical endocytic recycling and cytokinesis defects as those observed upon overexpression of the inactivated, GDP-bound Rab35 mutant. As a molecular mechanism, we identified the Rab35 GAP EPI64B as an effector of ARF6 in negatively regulating Rab35 activation. Unexpectedly, this regulation takes place at clathrin-coated pits, and activated ARF6 reduces Rab35 loading into the endocytic pathway. Thus, an effector of an ARF protein is a GAP for a downstream Rab protein, and we propose that this hierarchical ARF/Rab GTPase cascade controls the proper activation of a common endocytic pathway essential for cytokinesis.  相似文献   

14.
The tubby loci provide a unique opportunity to study adult-onset obesity. Mutation in either mammalian tubby or its homologue in Caenorhabditis elegans, tub-1, results in increased fat storage. Previously, we have shown that TUB-1 interacts with a new Rab GTPase-activating protein, RBG-3, for the regulation of fat storage. To understand further the molecular mechanism of TUB-1, we identified the Rab GTPase downstream of RBG-3. We found that RBG-3 preferentially stimulates the intrinsic GTPase activity of RAB-7 in both human and C. elegans. Importantly, either mutation or RNA interference knockdown in rab-7 reduces stored fat in wild type and tub-1 mutants. In addition, the small GTPase rab-5 and genes that regulate Rab membrane localization and nucleotide recycling are required for the regulation of fat storage, thereby defining a role for endocytic recycling in this process. We propose that TUB-1 controls receptor or sensory molecule degradation in neurons by regulating a RAB-7-mediated endocytic pathway.  相似文献   

15.
Several GTPases of the Rab family, known to be regulators of membrane traffic between organelles, have been described and localized to various intracellular compartments. Rab11 has previously been reported to be associated with the pericentriolar recycling compartment, post-Golgi vesicles, and the trans-Golgi network (TGN). We compared the effect of overexpression of wild-type and mutant forms of Rab11 on the different intracellular transport steps in the endocytic/degradative and the biosynthetic/exocytic pathways in HeLa cells. We also studied transport from endosomes to the Golgi apparatus using the Shiga toxin B subunit (STxB) and TGN38 as reporter molecules. Overexpression of both Rab11 wild-type (Rab11wt) and mutants altered the localization of the transferrrin receptor (TfR), internalized Tf, the STxB, and TGN38. In cells overexpressing Rab11wt and in a GTPase-deficient Rab11 mutant (Rab11Q70L), these proteins were found in vesicles showing characteristics of sorting endosomes lacking cellubrevin (Cb). In contrast, they were redistributed into an extended tubular network, together with Cb, in cells overexpressing a dominant negative mutant of Rab11 (Rab11S25N). This tubularized compartment was not accessible to Tf internalized at temperatures <20 degrees C, suggesting that it is of recycling endosomal origin. Overexpression of Rab11wt, Rab11Q70L, and Rab11S25N also inhibited STxB and TGN38 transport from endosomes to the TGN. These results suggest that Rab11 influences endosome to TGN trafficking primarily by regulating membrane distribution inside the early endosomal pathway.  相似文献   

16.
X Cao  N Ballew    C Barlowe 《The EMBO journal》1998,17(8):2156-2165
ER-to-Golgi transport in yeast may be reproduced in vitro with washed membranes, purified proteins (COPII, Uso1p and LMA1) and energy. COPII coated vesicles that have budded from the ER are freely diffusible but then dock to Golgi membranes upon the addition of Uso1p. LMA1 and Sec18p are required for vesicle fusion after Uso1p function. Here, we report that the docking reaction is sensitive to excess levels of Sec19p (GDI), a treatment that removes the GTPase, Ypt1p. Once docked, however, vesicle fusion is no longer sensitive to GDI. In vitro binding experiments demonstrate that the amount of Uso1p associated with membranes is reduced when incubated with GDI and correlates with the level of membrane-bound Ypt1p, suggesting that this GTPase regulates Uso1p binding to membranes. To determine the influence of SNARE proteins on the vesicle docking step, thermosensitive mutations in Sed5p, Bet1p, Bos1p and Sly1p that prevent ER-to-Golgi transport in vitro at restrictive temperatures were employed. These mutations do not interfere with Uso1p-mediated docking, but block membrane fusion. We propose that an initial vesicle docking event of ER-derived vesicles, termed tethering, depends on Uso1p and Ypt1p but is independent of SNARE proteins.  相似文献   

17.
Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth.  相似文献   

18.
Rab/Ypt GTPases are key regulators of membrane trafficking and together with SNARE proteins mediate selective fusion of vesicles with target compartments. A family of GTPase-activating enzymes (GAPs) specific for Rab/Ypt GTPases has been discovered, but little is known about their function and substrate specificity in vivo. Here we show that the GAP activity of Gyp1p, a yeast member of this family, is specifically required for recycling of the SNARE Snc1p and the membrane dye FM4-64, implying that inactivation of a Rab/Ypt GTPase may be necessary for recycling of membrane material. Interestingly, recycling of GFP-Snc1p in gyp1 Delta cells is partially restored by reducing the activity of Ypt1p. Moreover, GFP-Snc1p accumulated intracellularly in wild-type cells expressing a GTP-locked, mutant form of Ypt1p (Ypt1p-Q67L), suggesting that GTP hydrolysis of Ypt1p is essential for recycling. Ypt6p is known to be required for the fusion of recycling vesicles to the late Golgi compartment. Interestingly, the deletions of GYP1 and YPT6 were synthetic lethal, raising the possibility that at least two distinct pathways are involved in recycling of membrane material.  相似文献   

19.
The mechanisms by which low-density lipoprotein (LDL)-cholesterol exits the endocytic circuits are not well understood. The process is defective in Niemann-Pick type C (NPC) disease in which cholesterol and sphingolipids accumulate in late endosomal compartments. This is accompanied by defective cholesterol esterification in the endoplasmic reticulum and impaired ATP-binding cassette transporter A1 (ABCA1)-dependent cholesterol efflux. We show here that overexpression of the recycling/exocytic Rab GTPase Rab8 rescued the late endosomal cholesterol deposition and sphingolipid mistrafficking in NPC fibroblasts. Rab8 redistributed cholesterol from late endosomes to the cell periphery and stimulated cholesterol efflux to the ABCA1-ligand apolipoprotein A-I (apoA-I) without increasing cholesterol esterification. Depletion of Rab8 from wild-type fibroblasts resulted in cholesterol deposition within late endosomal compartments. This cholesterol accumulation was accompanied by impaired clearance of LDL-cholesterol from endocytic circuits to apoA-I and could not be bypassed by liver X receptor activation. Our findings establish Rab8 as a key component of the regulatory machinery that leads to ABCA1-dependent removal of cholesterol from endocytic circuits.  相似文献   

20.
The small GTPases Rab4, Rab5 and Rab7 are endosomal proteins which play important roles in the regulation of various stages of endosomal trafficking. Rab4 and Rab5 have both been localized to early endosomes and have been shown to control recycling and endosomal fusion, respectively. Rab7, a marker of the late endosomal compartment, is involved in the regulation of the late endocytic pathway. Here, we compare the role of Rab4, Rab5 and Rab7 in early and late endosomal trafficking in HeLa cells monitoring ligand uptake, recycling and degradation. Expression of the Rab4 dominant negative mutant (Rab4AS22N) leads to a significant reduction in both recycling and degradation while, as expected, Rab7 mutants exclusively affect epidermal growth factor (EGF) and low density lipoprotein degradation. As also expected, expression of the dominant negative Rab5 mutant perturbs internalization kinetics and affects both recycling and degradation. Expression of Rab4WT and dominant positive mutant (Rab4AQ67L) changes dramatically the morphology of the transferrin compartment leading to the formation of membrane tubules. These transferrin positive tubules display swellings (varicosities) some of which are positive for early endosomal antigen-1 and contain EGF. We propose that the Rab4GTPase is important for the function of the early sorting endosomal compartment, affecting trafficking along both recycling and degradative pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号