首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Kenny EF  O'Neill LA 《Cytokine》2008,43(3):342-349
Research into the five Toll/IL1 receptor (TIR) adaptor proteins involved in innate immunity continues to advance. Here we outline some of the more recent findings. MyD88 has a key role in signalling by the IL1 receptor complex and TLRs. However, a MyD88-independent pathway of IL1beta signalling in neurons has been described which involves the protein kinase Akt, and which has an anti-apoptotic effect. This pathway may also be important for the mechanism whereby Alum exerts its adjuvant effect since this depends on IL1beta but is MyD88-independent. MyD88 is also involved in tumourigenesis in models of hepatocarcinoma and familial associated polyposis (FAP); negative regulation of TLR3 signalling and in PKCepsilon activation. The adaptor Mal is regulated by phosphorylation and caspase-1 cleavage. A variant form of Mal in humans termed S180L confers protection in multiple infectious diseases. TRAM is controlled by myristoylation and phosphorylation and the localisation of TRAM with TLR4 to endosomes is required for activation of IRF3 and induction of IFNbeta. Finally SARM has been shown to regulate TRIF and also appears to be involved in neuronal injury mediated by oxidative stress in mouse neurons. These advances confirm the importance for the TIR domain-containing adapters in host defence and inflammation.  相似文献   

2.
The Toll/IL-1 receptor (TIR) domain plays a central role in Toll-like receptor (TLR) signalling. All TLRs contain a cytoplasmic TIR domain, which, upon activation, acts as a scaffold to recruit adaptor proteins. The adaptor proteins MyD88, Mal, TRIF, TRAM and SARM are also characterized by the presence of a TIR domain. MyD88, Mal, TRIF and TRAM associate with the TLRs via homophilic TIR domain interactions whereas SARM utilizes its TIR domain to negatively regulate TRIF. It is well established that the differential recruitment of adaptors to TLRs provides a significant amount of specificity to the TLR-signalling pathways. Despite this, the TIR-TIR interface has not been well defined. However, structural studies have indicated the importance of TIR domain surfaces in mediating specific TIR-TIR interactions. Furthermore, recent findings regarding the regulation of adaptors provide further insight into the crucial role of the TIR domain in TLR signalling.  相似文献   

3.
MyD88 is a Toll/IL-1 receptor (TIR) domain-containing adapter common to signaling pathways via Toll-like receptor (TLR) family. However, accumulating evidence demonstrates the existence of a MyD88-independent pathway, which may explain unique biological responses of individual TLRs, particularly TLR3 and TLR4. TIR domain-containing adapter protein (TIRAP)/MyD88 adapter-like, a second adapter harboring the TIR domain, is essential for MyD88-dependent TLR2 and TLR4 signaling pathways, but not for MyD88-independent pathways. Here, we identified a novel TIR domain-containing molecule, named TIR domain-containing adapter inducing IFN-beta (TRIF). As is the case in MyD88 and TIRAP, overexpression of TRIF activated the NF-kappaB-dependent promoter. A dominant-negative form of TRIF inhibited TLR2-, TLR4-, and TLR7-dependent NF-kappaB activation. Furthermore, TRIF, but neither MyD88 nor TIRAP, activated the IFN-beta promoter. Dominant-negative TRIF inhibited TLR3-dependent activation of both the NF-kappaB-dependent and IFN-beta promoters. TRIF associated with TLR3 and IFN regulatory factor 3. These findings suggest that TRIF is involved in the TLR signaling, particularly in the MyD88-independent pathway.  相似文献   

4.
The Toll signalling pathway, which is required for establishment of dorsoventral polarity in Drosophila embryos, plays an important role in the response to microbial infections. Recently, Toll-like receptors (TLRs) have also been identified in mammals. TLR4 has been shown to function as the transmembrane component of the lipopolysaccharide receptor, while TLR2 recognizes peptidoglycans from Gram-positive bacteria, lipoproteins and yeast. Although various microbial cell-wall components are recognized by different receptors, all of these responses are abrogated in MyD88-deficient cells. These results show that different TLRs recognize different microbial cell-wall components, and that MyD88 is an essential signalling molecule shared among interleukin-1 receptor/Toll family members.  相似文献   

5.
MyD88, a Toll/interleukin-1 receptor homology (TIR) domain-containing adaptor protein, mediates signals from the Toll-like receptors (TLR) or IL-1/IL-18 receptors to downstream kinases. In MyD88-dependent TLR4 signaling, the function of MyD88 is enhanced by another TIR domain-containing adaptor, Mal/TIRAP, which brings MyD88 to the plasma membrane and promotes its interaction with the cytosolic region of TLR4. Hence, Mal is recognized as the "sorting adaptor" for MyD88. In this study, a direct interaction between MyD88-TIR and another membrane-sorting adaptor, TRAM/TICAM-2, was demonstrated in vitro. Cell-based assays including RNA interference experiments and TRAM deficient mice revealed that the interplay between MyD88 and TRAM in cells is important in mediating IL-18 signal transduction. Live cell imaging further demonstrated the co-localized accumulation of MyD88 and TRAM in the membrane regions in HEK293 cells. These findings suggest that TRAM serves as the sorting adaptor for MyD88 in IL-18 signaling, which then facilitates the signal transduction. The binding sites for TRAM are located in the TIR domain of MyD88 and actually overlap with the binding sites for Mal. MyD88, the multifunctional signaling adaptor that works together with most of the TLR members and with the IL-1/IL-18 receptors, can interact with two distinct sorting adaptors, TRAM and Mal, in a conserved manner in a distinct context.  相似文献   

6.
Toll-like receptors (TLRs) belong to the Toll-like receptor/interleukin-1 receptor (TLR/IL-1R) superfamily which is defined by a common cytoplasmic Toll/interleukin-1 receptor (TIR) domain. TLRs recognize pathogen-associated molecular patterns and initiate an intracellular kinase cascade to trigger an immediate defensive response. SIGIRR (single immunoglobulin interleukin-1 receptor-related molecule), another member of the TLR/IL-1R superfamily, acts as a negative regulator of MyD88-dependent TLR signaling. It attenuates the recruitment of MyD88 adaptors to the receptors with its intracellular TIR domain. Thus, SIGIRR is a highly important molecule for the therapy of autoimmune diseases caused by TLRs. So far, the structural mechanism of interactions between SIGIRR, TLRs and adaptor molecules is unclear. To develop a working hypothesis for this interaction, we constructed three-dimensional models for the TIR domains of TLR4, TLR7, MyD88 and SIGIRR based on computational modeling. Through protein–protein docking analysis, we developed models of essential complexes involved in the TLR4 and 7 signaling and the SIGIRR inhibiting processes. We suggest that SIGIRR may exert its inhibitory effect through blocking the molecular interface of TLR4, TLR7 and the MyD88 adaptor mainly via its BB-loop region.  相似文献   

7.
Lin Z  Lu J  Zhou W  Shen Y 《PloS one》2012,7(4):e34202
MyD88 adaptor-like protein (Mal) is a crucial adaptor that acts as a bridge to recruit the MyD88 molecule to activated TLR4 receptors in response to invading pathogens. The specific assembly of the Toll/interleukin-1 receptor (TIR) domains of TLR4, Mal and MyD88 is responsible for proper signal transduction in the TLR4 signaling pathway. However, the molecular mechanism for the specificity of these TIR domains remains unclear. Here, we present the crystal structure of the TIR domain of the human Mal molecule (Mal-TIR) at a resolution of 2.4 Å. Unexpectedly, Mal-TIR exhibits an extraordinarily long AB loop, but no αB helix or BB loop, distinguishing it from other TIR domains. More importantly, the Mal-TIR AB loop is capable of mediating direct binding to the TIR domains of TLR4 and MyD88 simultaneously. We also found that Mal-TIR can form a back-to-back dimer that may resemble the dimeric assembly of the entire Mal molecule. Our data demonstrate the bridge role of the Mal-TIR domain and provide important information about TIR domain specificity.  相似文献   

8.
9.
Signaling pathways from TLRs are mediated by the Toll/IL-1R (TIR) domain-containing adaptor molecules. TNF receptor-associated factor (TRAF) 6 is thought to activate NF-kappaB and MAPKs downstream of these TIR domain-containing proteins to induce production of inflammatory cytokines. However, the precise role of TRAF6 in signaling from individual TLRs has not been appropriately addressed. We analyzed macrophages from TRAF6-deficient mice and made the following observations. In the absence of TRAF6, 1) ligands for TLR2, TLR5, TLR7, and TLR9 failed to induce activation of NF-kappaB and MAPKs or production of inflammatory cytokines; 2) TLR4 ligand-induced cytokine production was remarkably reduced and activation of NF-kappaB and MAPKs was observed, albeit with delayed kinetics; and 3) in contrast with previously reported findings, TLR3 signaling was not affected. These results indicate that TRAF6 is essential for MyD88-dependent signaling but is not required for TIR domain-containing adaptor-inducing IFN-beta (TRIF)-dependent signaling.  相似文献   

10.
Several ligands for Toll IL-1R (TIR) family are known to promote stabilization of a subset of short-lived mRNAs containing AU-rich elements (AREs) in their 3' untranslated regions. It is now evident however, that members of the TIR family may use distinct intracellular signaling pathways to achieve a spectrum of biological end points. Using human embryonic kidney 293 cells transfected to express different TIRs we now report that signals initiated through IL-1R1 or TLR4 but not TLR3 can promote the stabilization of unstable chemokine mRNAs. Similar results were obtained when signaling from endogenous receptors was examined using a mouse endothelial cell line (H5V). The ability of TIR family members to stabilize ARE-containing mRNAs results from their differential use of signaling adaptors MyD88, MyD88 adaptor-like protein, Toll receptor IFN-inducing factor (Trif), and Trif-related adaptor molecule. Overexpression of MyD88 or MyD88 adaptor-like protein was able to promote enhanced stability of ARE-containing mRNA, whereas Trif and Trif-related adaptor molecule exhibited markedly reduced capacity. Hence the ability of TIRs to signal stabilization of mRNA appears to be linked to the MyD88-dependent signaling pathway.  相似文献   

11.
Toll-like receptor family and signalling pathway   总被引:16,自引:0,他引:16  
Toll is a Drosophila gene essential for ontogenesis and anti-microbial resistance. Several orthologues of Toll have been identified and cloned in vertebrates, namely Toll-like receptors (TLRs). Human TLRs are a growing family of molecules involved in innate immunity. TLRs are characterized structurally by a cytoplasmic Toll/interleukin-1 receptor (TIR) domain and by extracellular leucine-rich repeats. TLRs characterized so far activate the MyD88/interleukin-1 receptor-associated kinase (IRAK) signalling pathway. Genetic, gene-transfer and dominant-negative approaches have involved TLR family members (TLR2 and TLR4) in Gram-positive and Gram-negative bacteria recognition and signalling. Accumulating evidence suggests that TLR2 is also involved in signalling-receptor complexes that recognize components of yeast and mycobacteria. However, the definitive roles of other TLRs are still lacking. A systematic approach has been used to determine whether different human leucocyte populations selectively or specifically express TLR mRNA. Based on expression pattern, TLR can be classified as ubiquitous (TLR1), restricted (TLR2, TLR4 and TLR5) and specific (TLR3). Expression and regulation of distinct but overlapping ligand-recognition patterns may underlie the existence of a large, seemingly redundant TLR family. Alternatively, the expression of a TLR in a single cell type may indicate a specific role for this molecule in a restricted setting.  相似文献   

12.
The discovery that endosymbiotic Wolbachia bacteria play an important role in the pathophysiology of diseases caused by filarial nematodes, including lymphatic filariasis and onchocerciasis (river blindness) has transformed our approach to these disabling diseases. Because these parasites infect hundreds of millions of individuals worldwide, understanding host factors involved in the pathogenesis of filarial-induced diseases is paramount. However, the role of early innate responses to filarial and Wolbachia ligands in the development of filarial diseases has not been fully elucidated. To determine the role of TLRs, we used cell lines transfected with human TLRs and macrophages from TLR and adaptor molecule-deficient mice and evaluated macrophage recruitment in vivo. Extracts of Brugia malayi and Onchocerca volvulus, which contain Wolbachia, directly stimulated human embryonic kidney cells expressing TLR2, but not TLR3 or TLR4. Wolbachia containing filarial extracts stimulated cytokine production in macrophages from C57BL/6 and TLR4(-/-) mice, but not from TLR2(-/-) or TLR6(-/-) mice. Similarly, macrophages from mice deficient in adaptor molecules Toll/IL-1R domain-containing adaptor-inducing IFN-beta and Toll/IL-1R domain-containing adaptor-inducing IFN-beta-related adaptor molecule produced equivalent cytokines as wild-type cells, whereas responses were absent in macrophages from MyD88(-/-) and Toll/IL-1R domain-containing adaptor protein (TIRAP)/MyD88 adaptor-like (Mal) deficient mice. Isolated Wolbachia bacteria demonstrated similar TLR and adaptor molecule requirements. In vivo, macrophage migration to the cornea in response to filarial extracts containing Wolbachia was dependent on TLR2 but not TLR4. These results establish that the innate inflammatory pathways activated by endosymbiotic Wolbachia in B. malayi and O. volvulus filaria are dependent on TLR2-TLR6 interactions and are mediated by adaptor molecules MyD88 and TIRAP/Mal.  相似文献   

13.
The Toll-like receptor 4 (TLR4) is a class I transmembrane receptor expressed on the surface of immune system cells. TLR4 is activated by exposure to lipopolysaccharides derived from the outer membrane of Gram negative bacteria and forms part of the innate immune response in mammals. Like other class 1 receptors, TLR4 is activated by ligand induced dimerization, and recent studies suggest that this causes concerted conformational changes in the receptor leading to self association of the cytoplasmic Toll/Interleukin 1 receptor (TIR) signalling domain. This homodimerization event is proposed to provide a new scaffold that is able to bind downstream signalling adaptor proteins. TLR4 uses two different sets of adaptors; TRAM and TRIF, and Mal and MyD88. These adaptor pairs couple two distinct signalling pathways leading to the activation of interferon response factor 3 (IRF-3) and nuclear factor kappaB (NFkappaB) respectively. In this paper we have generated a structural model of the TLR4 TIR dimer and used molecular docking to probe for potential sites of interaction between the receptor homodimer and the adaptor molecules. Remarkably, both the Mal and TRAM adaptors are strongly predicted to bind at two symmetry-related sites at the homodimer interface. This model of TLR4 activation is supported by extensive functional studies involving site directed mutagenesis, inhibition by cell permeable peptides and stable protein phosphorylation of receptor and adaptor TIR domains. Our results also suggest a molecular mechanism for two recent findings, the caspase 1 dependence of Mal signalling and the protective effects conferred by the Mal polymorphism Ser180Leu.  相似文献   

14.
Toll-like receptors (TLRs) mediate immune recognition of both microbial infections and tissue damage. Aberrant TLR signaling promotes disease; thus, understanding the regulation of TLR signaling is of medical relevance. Although downstream mediators of TLR signaling have been identified, the detailed mechanism by which ligand binding-mediated dimerization induces downstream signaling remains poorly understood. Here, we investigate this question for TLR4, which mediates responsiveness to bacterial LPS and drives inflammatory disease. TLR4 exhibits structural and functional features that are unique among TLRs, including responsiveness to a wide variety of ligands. However, the connection between these structural features and the regulation of signaling is not clear. Here, we investigated how the unique intracellular structures of TLR4 contribute to receptor signaling. Key conclusions include the following. 1) The unique intracellular linker of TLR4 is important for achieving LPS-inducible signaling via Toll/IL-1 receptor (TIR) domain-containing adapter-inducing interferon-β (TRIF) but less so for signaling via myeloid differentiation primary response 88 (MyD88). 2) Membrane-bound TLR4 TIR domains were sufficient to induce signaling. However, introducing long, flexible intracellular linkers neither induced constitutive signaling nor ablated LPS-inducible signaling. Thus, the initiation of TLR4 signaling is regulated by a mechanism that does not require tight geometric constraints. Together, these observations necessitate refining the model of TLR4 signal initiation. We hypothesize that TLR4 may interact with an inhibitory partner in the absence of ligand, via both TIR and extracellular domains of TLR4. In this speculative model, ligand binding induces dissociation of the inhibitory partner, triggering spontaneous, switchlike TIR domain homodimerization to initiate downstream signaling.  相似文献   

15.
The Toll/interleukin 1 receptor (TIR) domain is a region found in the cytoplasmic tails of members of the Toll-like receptor/interleukin-1 receptor superfamily. The domain is essential for signaling and is also found in the adaptor proteins Mal (MyD88 adaptor-like) and MyD88, which function to couple activation of the receptor to downstream signaling components. Experimental structures of two Toll/interleukin 1 receptor domains reveal a alpha-beta-fold similar to that of the bacterial chemotaxis protein CheY, and other evidence suggests that the adaptors can make heterotypic interactions with both the receptors and themselves. Here we show that the purified TIR domains of Mal and MyD88 can form stable heterodimers and also that Mal homodimers and oligomers are dissociated in the presence of ATP. To identify structural features that may contribute to the formation of signaling complexes, we produced models of the TIR domains from human Toll-like receptor 4 (TLR4), Mal, and MyD88. We found that although the overall fold is conserved the electrostatic surface potentials are quite distinct. Docking studies of the models suggest that Mal and MyD88 bind to different regions in TLRs 2 and 4, a finding consistent with a cooperative role of the two adaptors in signaling. Mal and MyD88 are predicted to interact at a third non-overlapping site, suggesting that the receptor and adaptors may form heterotetrameric complexes. The theoretical model of the interactions is supported by experimental data from glutathione S-transferase pull-downs and co-immunoprecipitations. Neither theoretical nor experimental data suggest a direct role for the conserved proline in the BB-loop in the association of TLR4, Mal, and MyD88. Finally we show a sequence relationship between the Drosophila protein Tube and Mal that may indicate a functional equivalence of these two adaptors in the Drosophila and vertebrate Toll pathways.  相似文献   

16.
17.
Functions of toll-like receptors: lessons from KO mice   总被引:13,自引:0,他引:13  
The innate immune response is a first-line defense system in which individual Toll-like receptors (TLRs) recognize distinct pathogen-associated molecular patterns (PAMPs) and exert subsequent immune responses against a variety of pathogens. TLRs are composed of an extracellular leucine-rich repeat (LRR) domain and a cytoplasmic domain that is homologous to that of the IL-IR family. Upon stimulation, TLR recruits a cytoplasmic adaptor molecule MyD88, then IL-IR-associated kinase (IRAK), and finally induces activation of NF-kappaB and MAP kinases. However, the responses to TLR ligands differ, indicating the diversity of TLR signaling pathways. Besides MyD88, several novel adaptor molecules have recently been identified. Differential utilization of these adaptor molecules may provide the specificity in the TLR signaling.  相似文献   

18.
Myeloid differentiation factor 88 (MyD88) is an adaptor protein that transduces intracellular signaling pathways evoked by the Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs). MyD88 is composed of an N-terminal death domain (DD) and a C-terminal Toll/IL-1 receptor (TIR) domain, separated by a short region. Upon ligand binding, TLR/IL-1Rs hetero- or homodimerize and recruit MyD88 through their respective TIR domains. Then, MyD88 oligomerizes via its DD and TIR domain and interacts with the interleukin-1 receptor-associated kinases (IRAKs) to form the Myddosome complex. We performed site-directed mutagenesis of conserved residues that are located in exposed regions of the MyD88-TIR domain and analyzed the effect of the mutations on MyD88 signaling. Our studies revealed that mutation of Glu183, Ser244, and Arg288 impaired homodimerization of the MyD88-TIR domain, recruitment of IRAKs, and activation of NF-κB. Moreover, overexpression of two green fluorescent protein (GFP)-tagged MyD88 mini-proteins (GFP-MyD88151–189 and GFP-MyD88168–189), comprising the Glu183 residue, recapitulated these effects. Importantly, expression of these dominant negative MyD88 mini-proteins competed with the function of endogenous MyD88 and interfered with TLR2/4-mediated responses in a human monocytic cell line (THP-1) and in human primary monocyte-derived dendritic cells. Thus, our studies identify novel residues of the TIR domain that are crucially involved in MyD88 homodimerization and TLR signaling in immune cells.  相似文献   

19.
Immunobiology of Toll-like receptors: emerging trends   总被引:10,自引:0,他引:10  
Toll-like receptors (TLR), a family of evolutionarily conserved pathogen recognition receptors, play pivotal role as primary sensors of invading pathogens. TLR identify molecular motifs of infectious agents (pathogen associated molecular patterns) and elicit an effective defensive response against them. Mammalian TLR derive their name from the Drosophila Toll protein, with which they share sequence similarity. So far, expression of 10 TLR is known in humans. The adaptor proteins, myeloid differentiation factor 88 and Toll IL-1 receptor (TIR) domain containing adaptor inducing IFN-beta (TRIF) are the key players in the TLR signalling cascade leading to the activation of nuclear factor (NF)-kappaB and interferon regulatory factor-3, respectively. Targeted manipulation of the TLR signalling pathway has immense therapeutic potential and may eventually prove to be a boon in the development of innovative treatments for diverse disease conditions. There is accumulating evidence that TLR agonists have tremendous potential as novel therapeutic targets. In this review, we have discussed the immunobiology of TLR and emphasize significant advances made within the ever-expanding field of TLR that provide intriguing insights efficacious in unravelling the complexities associated with TLR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号