首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Poly A associated with SV40 Messenger RNA   总被引:15,自引:0,他引:15  
  相似文献   

4.
Poly(A) on mengovirus RNA.   总被引:5,自引:4,他引:1       下载免费PDF全文
The content and size of the poly(A) on Mengovirus RNA grown in both mouse L cells and HeLa cells have been examined. Virion RNA from either cell line could bind to poly(U) filters and contained RNase-resistant stretches of poly(A) which could be analyzed by electrophoresis in polyacrylamide gels. The size of the poly(A) on the Mengovirus RNA was independent of the host cell and averaged from 50 to 70 nucleotides.  相似文献   

5.
Previous work (Firtel et al., 1972) showed that messenger RNA from the cellular slime mold Dictyostelium discoideum, like that from mammalian cells, contains a sequence of about 100 adenylic acid residues at the 3′ end. We show here that Dictyostelium nuclei, labeled under a variety of conditions, do not contain material analogous to the large nuclear heterogeneous RNA found in mammalian cells. Rather, the majority of pulse-labeled nuclear RNA that is not a precursor of ribosomal RNA does contain at least one sequence of polyadenylic acid; this RNA, with an average molecular weight of 500,000, appears to be only 20% larger than cytoplasmic messenger RNA.Pulse-labeling experiments show that the nuclear poly(A)-containing RNA is a material precursor of messenger RNA. Whereas previous work showed that over 90% of messenger RNA sequences are transcribed from non-reiterated DNA, we show here that about 25% of nuclear poly (A)-containing RNA is transcribed from reiterated DNA sequences and only 75% from single-copy DNA. We present evidence that a large fraction of the nuclear poly(A)-containing RNA contains, at the 5′ end, a sequence of about 300 nucleotides that is transcribed from repetitive DNA, and which is lost before transport of messenger RNA into the cytoplasm.Based on these and other results, we present a model of arrangement of repetitive and single-copy DNA sequences in the Dictyostelium chromosome.  相似文献   

6.
Structures at the 5′ terminus of poly (A)-containing cytoplasmic RNA and heterogeneous nuclear RNA containing and lacking poly(A) have been examined in RNA extracted from both normal and heat-shocked Drosophila cells. 32P-labeled RNA was digested with ribonucleases T2, T1 and A and the products fractionated by a fingerprinting procedure which separates both unblocked 5′ phosphorylated termini and the blocked, methylated, “capped” termini, known to be present in the messenger RNA of most eukaryotes.Approximately 80% of the 5′-terminal structures recovered from digests of poly(A)-containing Drosophila mRNA are cap structures of the general form m7G5′ppp5′X(m)pY(m)pZp. With respect to the extent of ribose methylation and the base distribution, the 5′-terminal sequences of Drosophila capped mRNA appear to be intermediate between those of unicellular eukaryotes and those of mammals. Drosophila is the first organism known in which type 0 (no ribose methylations), type 1 (one ribose methylation), and type 2 (two ribose methylations) caps are all present. In contrast to mammalian cells, the caps of Drosophila never contain the doubly methylated nucleoside N6,2′-O-dimethyladenosine. Both purines and pyrimidines can be found as the penultimate nucleoside of Drosophila caps and there is a wide variety of X-Y base combinations. The relative frequencies of these different base combinations, and the extent of ribose methylation, vary with the duration of labeling. The large majority of poly(A)-containing cytoplasmic RNA molecules from heat-shocked Drosophila cells are also capped, but these caps are unusual in having almost exclusively purines as the penultimate X base.Greater than 75% of the 5′ termini of heterogeneous nuclear RNA (hnRNA) containing poly(A) and greater than 50% of the termini of hnRNA lacking poly (A) are also capped. Triphosphorylated nucleotides, common as the 5′ nucleotides of mammalian hnRNA, are rare in the poly(A)-containing hnRNA of Drosophila. The frequency of the various type 0 and type 1 cap sequences of cytoplasmic and nuclear poly (A)-containing RNA are almost identical. The caps of hnRNA lacking poly(A) are also quite similar to those of poly-adenylated hnRNA, but are somewhat lower in their content of penultimate pyrimidine nucleosides, suggesting that these two populations of molecules are not identical.  相似文献   

7.
A method for the isolation of messenger RNA (mRNA) from polysomes is described. Polysomes are dissolved in a solution containing 0.5 m NaCl and Na dodecyl sulphate and applied to an oligo(dT)-cellulose column. RNA species containing poly(A) sequences are retained by the column, whereas ribosomal proteins and other RNA species are washed off. The column is then eluted with a buffer not containing NaCl. mRNA from HeLa cells and from duck reticulocytes has been fractionated in this way. When fractionated on sucrose gradients, 10 s globin mRNA is obtained in addition to a 20 s component, which can be translated in a cell free system into duck globin. This 20 s RNA is an aggregate of mRNA, which can be disaggregated. Experiments with HeLa cells have shown that the only mRNA species which is not retained by oligo(dT)-cellulose is histone mRNA; this mRNA does not contain a poly(A) sequence.  相似文献   

8.
With the aid of a suitable thin layer chromatographic procedure, the N-6 methyl adenylic acid (m6A), content of a variety of 32P labeled RNA species from HeLa cells has been measured. Poly(A)-containing (poly(A)+) cytoplasmic RNA has on the average one m6Ap per 800 to 900 nucleotides. This value is independent of the length of the molecules. The proportion of m6Ap in poly(A)+ cytoplasmic RNA does not change between 4 and 18 hours of labeling with 32P, suggesting that the majority of the messenger RNA molecules may have a similar level of internal methylation regardless of their half-life. The non-polyadenylated, non-ribosomal cytoplasmic RNA fraction sedimenting from 10S TO 28S is less methylated with approximately one m6A per 2,700 nucleotides. Heterogeneous nuclear RNA molecules (DMSO treated) which sediment from 28S to 45S have approximately one m6Ap per 3,000 nucleotides. The hnRNA molecules sedimenting from 10S to 28S have one m6Ap per 1,800 nucleotides. Poly(A)+ nuclear RNA is enriched in m6A, containing 1 residue of m6A per 700 to 800 nucleotides, a value close to that obtained for the polyadenylated cytoplasmic RNA.  相似文献   

9.
The poly(A) in HeLa cell messenger RNA appears to be associated with proteins in a poly(A)-protein complex that can be isolated after treatment of mRNA-protein complexes with nuclease. The particle survives repeated sedimentation and zonal electrophoresis; [35S]methionine in protein bands together with [3H]adenosine in poly(A). The largest (newest) poly(A)-ribonucleoprotein contains the largest poly(A) and the highest proportion of the most prominent polypeptide, P75 (Mr = 75,000). In addition, treatment of cells with 3′ deoxyadenosine (3′dA, cordycepin) prevents the labeling of new poly(A) as well as the appearance of [35S]methionine-labeled P75 in the larger poly(A)-protein complexes. Furthermore, the pre-existent P75, detected by densitometric scan of polyacrylamide gels containing proteins from the larger poly(A)-ribonucleo-protein, also disappears in 3′dA-treated cells. These data suggest a role for the P75 in the appearance of new mRNA in the cell cytoplasm.  相似文献   

10.
The synthesis of mitochondrial messenger RNA during early sea urchin development was examined. Oligo(dT) chromatography and electrophoresis on aqueous or formamide gels of mitochondrial RNA from pulse-labeled embryos showed the presence of eight distinct poly(A)-containing RNA species, ranging in size from 9 to 22 S. Nuclease digestion of these RNAs revealed poly(A) sequences of 4 S size. Using sea urchin anucleate fragments, we were able to demonstrate that all eight messenger RNAs are transcribed from mitochondrial DNA, rather than being transcribed from nuclear DNA and imported into the mitochondria.There was no change in the electrophoretic profile of the eight poly(A) RNAs when embryos were pulsed with [3H]uridine at various times after fertilization. Neither was there any change in the incorporation of [3H]uridine into these species or in the percentage of total newly synthesized mitochondrial RNA that contains poly(A) sequences as development progresses. Even though these RNAs appear to be transcribed at a constant rate throughout early development, they were not detected in mitochondrial polysomes until 18 hr after fertilization.  相似文献   

11.
Ribonucleoprotein particles containing heterogeneous nuclear RNA (Pederson, 1974) were isolated from HeLa cells and digested with ribonucleases A and T1 at high ionic strength. The nuclease-resistant material, comprising 9.4% of the initial acid-insoluble [3H]adenosine radioactivity, was further fractionated by poly(U)-Sepharose chromatography. The bound fraction eluted from the column with 50% formamide and banded in cesium sulfate gradients (without aldehyde fixation) at a buoyant density characteristic of ribonucleoprotein (1.45 g/cm3). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of this material revealed two Coomassie blue-stained bands. The major polypeptide had a molecular weight of 74,000 a less prominent band had a molecular weight of 86,000. The RNA components contained 74.4 mol % AMP and 17.7 mol % UMP. Polyacrylamide gel electrophoresis of the RNA, labeled with [3H]adenosine, demonstrated the presence of molecules 150 to 200 nucleotides in length (poly(A)), as well as molecules 20 to 30 nucleotides long (oligo(A)). Both poly(A) and oligo(A) sequences have previously been identified in HeLa heterogeneous nuclear RNA. These data demonstrate that both the poly (A) and oligo(A) sequences in HeLa heterogeneous nuclear RNA exist in vivo tightly complexed with specific proteins.  相似文献   

12.
Poly(adenylic acid)-containing and -deficient messenger RNA of mouse liver   总被引:1,自引:0,他引:1  
RNA was isolated and fractionated into poly(A)-containing and -deficient classes by oligo(dT) chromatography. Approximately 99% of the poly(A) material bound to the oligo(dT); that which did not bind contained substantially shorter poly(A) chains. All RNA fractions retained an ability to initiate cell-free translation, with the poly(A)-deficient fraction containing half the total translational activity, i.e., mRNA. Two-dimensional polyacrylamide gel analysis of the cell-free translation products revealed three classes of mRNA: 1, mRNA preferentially containing poly(A), including the abundant liver mRNA species; 2, poly(A)-deficient mRNA, including many mid- and low-abundant mRNAs exhibiting less than 10% contamination in the poly(A)-containing fraction fraction; and 3, bimorphic species of mRNA proportioned between both the poly(A)-containing and -deficient fractions. Poly(A)-containing and bimorphic mRNA classes were further characterized by cDNA hybridizations. The capacity of various RNA fractions to prime cDNA synthesis was determined. Compared to total RNA, the poly(A)-containing RNA retained 70% of the priming capacity, while 20% was found in the poly(A)-deficient fraction. Poly(A)-containing, poly(A)-deficient, and total RNA fractions were hybridized to cDNAs synthesized from (+)poly(A)RNA. Poly(A)-containing RNA hybridized with an average R0t 1/2 approximately 20 times faster than total RNA. Poly(A)-deficient RNA hybridized with an average R0t 1/2 approximately 3-4 times slower than total RNA. These R0t 1/2 shifts indicated that in excess of three-quarters of the total hybridizable RNA was recovered in the poly(A)-containing fraction and that less than one-quarter was recovered in the poly(A)-deficient RNA fraction. Abundancy classes were less distinct in heterologous hybridizations. In all cases the extent of hybridization was similar, indicating that while the amount of various mRNA species varied among the RNA fractions, most hybridizing species of RNA were present in each RNA fraction. cDNA to the abundant class of mRNAs was purified and hybridized to both (+)- and (-)poly(A)RNA. Messenger RNA corresponding to the more abundant species was enriched in the poly(A)-containing fraction at least 2-fold over the less abundant species of mRNA, with less than 10% of the abundant mRNAs appearing inthe poly(A)-deficient fraction.  相似文献   

13.
The ameboid stage of the amebo-flagellate Naegleria gruberi was found to synthesize two size classes of polynucleotides resistant to digestion with a mixture of ribonuclease A and T1. These two size classes were present in both the nucleus and the cytoplasm. Cells differentiating into flagellates were found to lose a variable amount of the smaller, nuclease-resistant fragment while synthesizing only the larger nuclease-resistant class. The adenosine to AMP ratio of the larger nuclease-resistant fragment was compatible with a 3′-terminal poly(A) sequence of 87 nucleotides average length. The smaller nuclease-resistant fragment was found to be rich in AMP (44–49%) but contained a substantial amount of other nucleotides. The smaller fragment was heterogeneous in size with an average length of 10–12 nucleotides as estimated by its elution from a DEAE column. Fractionation of RNA on oligo(dT) cellulose demonstrated that the large and small nuclease-resistant fragments were on different RNA molecules. Only the large poly(A) sequence was present in either cytoplasmic or nuclear RNA which bound to oligo(dT) cellulose. On the other hand, only the small nuclease resistant fragment was found in the unbound RNA from either nuclei or cytoplasm.  相似文献   

14.
The presence in nuclei and cytoplasm of cultured BHK-21/C13 cells (baby hamster fibroblasts) of RNA species with high affinity for poly(A) was detected using either a Millipore-poly(A)-binding assay or columns of poly(A)-Sepharose 4B. The nuclear species which labels rapidly is metabolically unstable and appears to be a specific subclass of heterogenous nuclear RNA. Digestion with T1 RNAase gives rise to a low level (1%) of oligonucleotide fragments of a disperse size range which are relatively rich in uridylate residues. The cytoplasmic species with affinity for poly(A) is similar in size to polyadenylated messenger RNAs and also associates with polysomes. However it appears to be distinct from the polyadenylated messenger RNAs by virtue of an unusual base composition and relative metabolic instability.  相似文献   

15.
16.
Addition of poly(A) to nuclear RNA occurs soon after RNA synthesis   总被引:11,自引:2,他引:9       下载免费PDF全文
A kinetic analysis of the appearance of [3H]uridine label in RNA sequences that neighbor poly(A), as well as the incorporation of [3H]adenosine label into both the RNA chain and the poly(A) of poly(A)-containing molecules, shows that poly(A) is added within a minute or so after RNA chain synthesis in Chinese hamster ovary cells and HeLa cells. Previous conclusions by several groups (5-7) that poly(A) might be added as long as 20-30 min after RNA synthesis appear to be in error, and the present conclusion seems much more in line with several different types of recent studies with specific mRNAs that suggest prompt poly(A) addition (13-16).  相似文献   

17.
Interferon-treated HeLa cells were incubated with [3H]uridine to label mRNA and were then exposed to the double-stranded RNA poly(inosinic acid).poly(cytidylic acid) (In.Cn). The incubation with In.Cn greatly enhanced the decay of mRNA. When the cells were incubated in this way in the presence of cycloheximide, which blocks ribosome movement along mRNA, extensive polysome degradation was detected in interferon-treated cells. Products of degradation of mRNA were recovered from monosomes which were presumably formed as a result of endonucleolytic breaks of mRNA. This endonucleolytic activity was correlated with the formation of 2',5'-oligo(A) by an enzyme induced by interferon and activated by double-stranded RNA; the 2',5'-oligo(A) was previously shown to activate an endonuclease in cell extracts. The 2',5'-oligo(A) levels in cells were measured by a competition-binding assay. Details of the procedure used are described, including synthesis of highly radioactive (2'-5')pppA3[32P]cytidine 3',5'-diphosphate, separation of 2',5'-oligo(A) binding from degrading activities, and specificity of the assay.  相似文献   

18.
19.
20.
The RNA of full-grown oocytes of Xenopus laevis contains two distinct size classes of poly(A), designated poly(A)S and poly(A)L, which contain 15–30 (mean = 20) and 40–80 (mean = 61) A residues, respectively. Both poly(A)L and poly(A)S are associated with RNA which is heterogeneous in size. The two classes of poly(A)+ RNA can be separated by affinity chromatography: Only poly(A)L+ RNA binds to oligo(dT)-cellulose under appropriate conditions, but up to 50% of the poly(A)S+ RNA can be isolated from the void fraction by binding to poly(U)-Sepharose. Both classes of poly(A)+ RNA are active as messenger RNA in an in vitro system and yield identical patterns of in vitro protein products. Previtellogenic oocytes contain almost exclusively poly(A)L, which accumulates up to vitellogenesis but remains almost constant in amount (molecules/oocyte) during vitellogenesis and in the full-grown oocyte. Poly(A)S accumulates (molecules/oocyte) from early vitellogenesis up to the full-grown oocyte. The total number of poly(A)+ RNA molecules per oocyte increases throughout oogenesis from 2 × 1010/previtellogenic oocyte [80–90% poly(A)L] to 20 × 1010/full-grown oocyte (25–40% poly(A)L). It is argued that poly(A)S is protected from degradation in the oocyte, thus stabilizing the “maternal” poly(A)+ mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号