首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the effect of sickling on dimyristoylphosphatidylcholine (DMPC)-induced vesiculation, sickle (SS) red blood cells were incubated with sonicated suspensions of DMPC under either room air or nitrogen. Like normal red cells, when sickle cells were incubated with DMPC under oxygenated conditions, incorporation of DMPC into the erythrocyte membrane occurred, followed by echinocytic shape transformation and subsequent release of membrane vesicles. On the other hand, when SS cells were induced to sickle by deoxygenation, DMPC-induced vesiculation of these cells was dramatically reduced. However, upon reoxygenation, release of vesicles from these sickle erythrocytes occurred immediately. When SS cells were incubated under hypertonic (500 mosM) and deoxygenated conditions (where hemoglobin polymerization occurs but red cells do not show the typical sickle morphology), a similar decrease in the extent of vesiculation was observed. Experiments with radiolabelled lipid vesicles indicated that incorporation of DMPC into erythrocyte membranes occurred in all cases and therefore was not the limiting factor in the reduction of vesiculation in deoxygenated SS cells. Taken together, these results indicate that cellular viscosity and membrane rigidity, both of which are influenced by hemoglobin polymerization, are two important factors in process of vesicle release from sickle erythrocytes.  相似文献   

2.
Release of vesicles from human red cell membranes was induced either by ATP-depletion or by incubation of the cells in presence of sonicated dimyristoylphosphatidylcholine (DMPC) vesicles. Vesicles released from ATP-depleted red cells but not the DMPC-induced vesicles contained degradation products of band 3 protein. Furthermore, in ATP-depleted erythrocytes proteolytic breakdown products could be demonstrated that were not detected in cells incubated with DMPC. Proteolysis was neither significantly affected by the protease inhibitor N-alpha-tosyl-L-lysine chloromethyl ketone (TLCK) nor by other protease inhibitors tested in this study (diisopropylfluorophosphate, N-ethylmaleimide and phenylmethylsulfonyl fluoride). Both vesiculation processes were inhibited in a concentration dependent way by TLCK while other protease inhibitors did not significantly influence membrane vesiculation. Phase contrast microscopy showed that TLCK diminished the DMPC-induced formation of echinocytes which is known to precede vesicle release. These results suggest that the influence of TLCK on membrane vesiculation is not primarily due to inhibition of proteolysis but to a direct interaction of the inhibitor with the intrinsic domain of the erythrocyte membrane.  相似文献   

3.
Receptor mediated endocytosis appears to depend on the action of a transglutaminase (TGase). Endocytosis can be induced in intact human RBC by the action of several classes of drugs. We tested the hypothesis that drugs acted by stimulating TGase activity. Of the endocytosis inducing drugs tested, neither primaquine nor vinblastine nor chlorpromazine enhanced TGase activity. We next tested the hypothesis that TGase activity was required for drug endocytosis in RBC by adding known TGase inhibitors. Paradoxically, m-Dansyl cadaverine, the most potent TGase inhibitor, produces endocytosis in human RBC. Therefore despite apparent striking morphologic similarities, drug induced endocytosis in RBC appears to proceed via different mechanisms from those involved in receptor mediated endocytosis in other cells.In the receptor-mediated endocytosis of some hormones and growth factors, it appears that the receptor-ligand complex forms clusters over clathrin coated pits which are then internalized as endocytic vacuoles. Both the clustering and internalization of ligands are inhibited by a variety of agents shown to inhibit transglutaminase (TGase) and it is therefore proposed that TGase participates in receptor-mediated endocytosis (1–3). Human erythrocytes undergo endocytosis when exposed to drugs like primaquine, chlorpromazine, and vinblastine (4), all of which are amphipathic cations (4). However, the mechanism of drug action is not known nor is it clear that this is a form of receptor-mediated endocytosis (4). Furthermore, clustering of receptors can occur in neonatal but not adult human RBC (5). TGase has been measured in human red cells (6) although its physiologic role is unknown. Like all TGases, it is calcium dependent (6,7), and primaquine induced red cell endocytosis is enhanced by Ca++ addition (8). Therefore, we tested the hypothesis that TGase participates in drug induced endocytosis in intact human red cells.  相似文献   

4.
Small unilamellar vesicles (SUVs) formed by the dimyristoylphosphatidylcholine (DMPC), a phospholipid; serve as a membrane mimetic system that can be used to study the effect of absence of net surface charges on drug-membrane interaction. The targets of non-steroidal anti-inflammatory drugs (NSAIDs) are cyclooxygenases, which are membrane active enzymes. Hence, to approach their targets NSAIDs have to pass different bio-membranes. Different membrane parameters are expected to guide the first level of interaction of these drugs before they are presented to their targets. Our earlier studies have demonstrated the crucial role of surface charges of membrane mimetic systems like micelles and mixed micelles on the interaction of oxicam NSAIDs. In order to see whether net surface charges of membranes are essential for the interaction of oxicam NSAIDs, we have studied the incorporation of two oxicam NSAIDs, viz., piroxicam and meloxicam in DMPC vesicles using the intrinsic fluorescence properties of the drugs. To see whether different prototropic forms of the drugs can interact with DMPC vesicles, studies were carried out under different pH conditions. Transmission electron microscopy (TEM) was used to characterize the SUVs those were formed at different pH values. Steady state fluorescence anisotropy measurements show that both forms of the two drugs, viz., global neutral and anion can be incorporated into the DMPC vesicles. Partition coefficient (KP) between DMPC and the aqueous buffer used has been calculated in all cases from fluorescent intensity measurements. The KP values for the neutral and anionic forms of piroxicam are 219.0 and 25.8, respectively, and that for meloxicam are 896.7 and 110.2, respectively. From the KP values it is evident that irrespective of the nature of the prototropic forms, meloxicam has a higher KP value than piroxicam. This correlates with the previously calculated log KP values between n-octanol and aqueous phase, which demonstrates that in absence of net surface charges of DMPC vesicles the hydrophobic interaction is the principal driving force for incorporation. Our results imply that for bio-membranes having no net surface charges hydrophobic effect plays a principal role to guide these NSAIDs to their targets.  相似文献   

5.
Fusion of bovine and goat erythrocytes was studied using the phosphate-calcium protocol. Both bovine and goat red cells are resistant to fusion with phosphate and calcium, under conditions that promote fusion of normal human erythrocytes. Fusion resistance is not related to decreased (5%) membrane deformability of erythrocytes of these species, since chicken erythrocytes which are 40% less deformable than human erythrocytes undergo fusion with efficiency similar to human red blood cells. Incorporation of either phosphatidylcholine or phosphatidylserine into bovine erythrocytes mediated by lipid exchange/transfer protein, caused fusion of these erythrocytes. Fluorescence analysis of merocyanine 540 dye labeled erythrocytes, by flow cytometry, showed that the frequency of cells which exhibit dye binding was much less (35%) in dimyristoylphosphatidylcholine (DMPC) incorporated compared to untreated bovine erythrocytes (80%), indicating that incorporation of DMPC caused closed packing of lipids in the external leaflet of the bilayer. These studies show that fusion of bovine erythrocytes, mediated by phosphate and calcium, has a requirement for either specific phospholipids such as phosphatidylcholine, phosphatidylserine, or closed packing of lipids in the external leaflet of the bilayer.  相似文献   

6.
本文用多种荧光探剂标记脂质体,通过荧光光谱、荧光强度以及荧光偏振的变化,阐明牛胰多肽与磷脂之间存在较强的结合,这种结合主要是静电相互作用与疏水相互作用.牛胰多肽与磷脂结合后,使膜结构稳定,这可能是牛胰多肽具有细胞保护作用的原因之一.  相似文献   

7.
A direct method using derivative spectrophotometry was developed for determining membrane-water molar partition coefficients (Kp) of the anticancer drugs tamoxifen (TAM) and 4-hydroxytamoxifen (OHTAM). This method explores a shift in the absorption spectra of the drugs when removed from the aqueous phase to a hydrophobic environment. Partition of TAM and OHTAM depends on membrane composition and on drug concentration, temperature and presence of cholesterol. Unlike OHTAM, partition of TAM in DMPC bilayers, liposomes of sarcoplasmic reticulum (SR) lipids and native membranes of SR and mitochondria decreases linearly with drug concentration. Additionally, the partition of these drugs is higher in SR native membranes than in liposomes of SR lipids. The partition also depends on membrane type, being higher in mitochondria than in SR membranes. Maximal partitionings in DMPC are observed at temperatures in the range of the main phase transition. Cholesterol strongly affects the incorporation of drugs and maximal inhibition was observed in DMPC bilayers.  相似文献   

8.
Equinatoxin II (EqtII) is a protein toxin that lyses both red blood cells and artificial membranes. Lysis is dependent on the lipid composition, with small unilamellar vesicles (SUVs) of dimyristoylphosphatidylcholine (DMPC) and sphingomyelin (SM) (1:1 molar) being lysed more readily than those of phosphatidylcholine alone. Removing the N-terminus of EqtII prevents pore formation, but does not prevent membrane binding. A peptide corresponding to residues 1–32 of EqtII was found using NMR to adopt a helical structure in micelles. To further understand the structural changes that accompany membrane insertion, synchrotron radiation circular dichroism spectra of the N-terminal peptide in a range of model membranes have been analysed. The peptide structure was examined in water, dodecylphosphocholine (DPC) and DPC:SM (5:1) micelles, and SUVs composed of dioleoylphosphatidylcholine (DOPC) or DMPC, together with SM and cholesterol (Chol). The peptide adopted different conformations in different lipids. Although the presence of SM did not affect the conformation in micelles, inclusion of SM in the bilayer-forming lipid increased the helicity of the peptide. This effect was abolished when Chol was added in DOPC but not in DMPC, which may relate to liquid ordered versus disordered phase properties of the lipid. SM may act as a promoter of membrane organisation necessary for membrane lysis by EqtII.  相似文献   

9.
Z H Zhao  J S Willis 《Cryobiology》1989,26(2):132-137
Red blood cells of ground squirrel, a hibernator, gain Na at one-third the rate of guinea pig red blood cells when stored in saline medium at 5 degrees C for several days. This result correlates with the known slower loss of K during storage in ground squirrel cells. In ground squirrel cells Na gain is balanced by K loss, so that there is no net gain of solute; in guinea pig cells the total cation content rises progressively. Amiloride, a drug which inhibits Na entry, retards Na uptake in cells of both species. Surprisingly, amiloride also slowed K loss and, in guinea pig red cells, the decline of ATP content. In guinea pig cells amiloride reduced the gain of total cation by half. The results substantiate the difference in cold sensitivity of ion regulation of red blood cells of these two species and demonstrate the possible usefulness of amiloride-type drugs in nonfreezing preservation of red blood cells.  相似文献   

10.
During incubation of intact human erythrocytes with sonicated dimyristoylphosphatidylcholine (DMPC) vesicles, the cells change their discoid morphology to form echinocytes and finally give rise to the release of membrane vesicles. In this process, the red cell membrane accumulates DMPC and loses up to 15% of its cholesterol. On the other hand, replacement of 25% of the endogenous phosphatidylcholine species by DMPC without affecting the cholesterol level of the erythrocytes can be achieved by incubation with DMPC/cholesterol (1:1, mol/mol) sonicated vesicles in the presence of the phosphatidylcholine-specific phospholipid-transfer protein from bovine liver. This replacement also gives rise to an echinocytic cell morphology, but no membrane vesiculation can be observed. However, the vesiculation process can as yet be initiated upon a subsequent decrease of the cholesterol level, by incubation of those modified cells in the presence of sonicated vesicles of pure egg phosphatidylcholine. Incubation of native erythrocytes with pure egg phosphatidylcholine vesicles, on the other hand, results in cholesterol depletion, but does neither induce the formation of echinocytes nor the release of membrane vesicles. Cellular ATP levels are not affected during these incubations. From these results, it can be concluded that a decrease in cholesterol content of the erythrocyte membrane is essential for the DMPC-induced vesiculation of those cells.  相似文献   

11.
By encapsulating a pH-sensitive dye, phenol red, in multilamellar liposomes of DMPC, DPPC and DMPC/DPPC mixtures, the permeability of these phospholipid bilayers to dye as a function of temperature has been studied. For both DMPC and DPPC liposomes, dye release begins well below the main gel-to-liquid-crystalline phase transition (24°C and 42°C, respectively) at temperatures corresponding to the onset of the pretransition (about 14°C and 36°C, respectively) with DPPC liposomes exhibiting a permeability anomaly at the main phase transition (42°C). The perturbation occurring in the bilayer structure that allows the release of encapsulated phenol red (approx. 5 Å diameter) is not sufficient to permit the release of encapsulated haemoglobin (approx. 20 Å diameter, negatively charged). In liposomes composed of a range of DMPC/DPPC mixtures, dye release commences at the onset of the pretransition range (determined by optical absorbance measurements) and increases with increasing temperature until the first appearance of liquid crystalline phase after which no further dye release occurs. Interestingly, the dye retaining properties of DMPC and DPPC liposomes well below their respective pretransition temperature regions are very different: DMPC liposomes release much encapsulated dye at incubation temperatures of 5°C whilst DPPC liposomes do not.  相似文献   

12.
Summary Freeze-fracture electron-microscopy has been used to study membrane ultrastructure in (1) red cells from five species of mammals which have naturally occurring differences in cation transport and (2) red cells which have been treated with various drugs known to affect transport. A reproducible method for estimation of the intramembrane particle density is described. Considerable differences in the densities of intramembrane particles on the A-fracture faces were noted in five species of red cells studied. Such differences were not noted on the B-fracture faces. The differences correlated with species differences in active potassium transport and membrane phospholipid composition. Ouabain and trinitrocresolate-treated red cell membranes were found to have small but reproducible reductions in intra-membrane particle densities on the B-fracture faces, but such differences were not seen in valinomycin and amphotericin B-treated red cells. It was found that dimethylsulfoxide (DMSO) and glycerol drastically reduced intra-membrane particle densities. However, over the range of glycerol and DMSO concentrations in which membrane morphology was altered, no effects on either passive or active potassium transport were observed. It appears that the particles which are altered by DMSO and glycerol are not involved in cation transport.  相似文献   

13.
Small unilamellar vesicles (SUVs) formed from a mixture of dimyristoylphosphatidylcholine (zwitterionic lipid with bulkier headgroup) and dimyristoylphosphatidylglycerol (anionic lipid with relatively smaller headgroup) allows better modulation of the physical properties of lipid bilayers compared to SUVs formed by a single type of lipid, providing us with a better model system to study the effect of membrane parameters on the partitioning of small molecules. Membrane parameter like packing of the vesicles is more pronounced in the gel phase and hence the study was carried out in the gel phase. Mixed vesicles formed from DMPG and DMPC with the mole percent ratio of 100:0, 90:10 and 80:20 were used for this study. As examples of polar solutes, piroxicam and meloxicam, two Non Steroidal Anti-inflammatory Drugs (NSAIDs) were chosen. The pH was adjusted to 2.8 in order to eliminate the presence of anionic forms of the drugs that would not approach the vesicles containing negatively charged DMPG (50% deprotonated at pH 2.8). Surface potential measured by using TNS (2,6-p-toluidinonaphthalene sulfonate, sodium salt) as surface charge sensitive probe showed no significant changes in the surface electrostatics in increasing DMPC content from 0 to 20%. Transmission electron microscopy (TEM) was used to characterize SUVs of different composition at pH 2.8. The average diameter of the mixed vesicles was found to be smaller than that formed by DMPG and DMPC alone. Partition coefficient (K(P)) of piroxicam and meloxicam was measured using intrinsic fluorescence of these molecules. K(P) value of piroxicam decreases with increase in DMPC content whereas it increases with DMPC content in case of meloxicam. This anomalous behavior of partitioning is unexpected since there was no significant change in surface pH of the vesicles and has been explained in terms of lipid packing and water penetration in the lipid bilayer.  相似文献   

14.
Red cells of adult sheep, like those of other ruminants, lack the calcium-activated potassium channel which is present in the membrane of human red cells. Since the activities of other transport systems in the sheep red cell are known to decrease during maturation of the cell or during development of the animal it was investigated whether the K+ channel is present in red cells from younger animals or in reticulocytes. Using the divalent cation ionophore A23187 to increase the intracellular Ca of intact cells, it was found that the K+-selective channel is present in foetal red cells from the foetus or newborn animal but not in reticulocytes. The presence of the channel showed no dependence on the K+ genotype of the sheep and was not associated with either "high K+"- or "low K+"-type Na+ pump. No Ca2+-dependent change in K+ permeability was found in red cells from either newborn or adult donkeys suggesting that its presence in the red cells of the foetus may not be general. The role of the K+ channel in the mammalian red cell and the relationship between the K+ channel and the Na+ pump are discussed.  相似文献   

15.
The effect of arbutin, a 4-hydroxyphenyl-beta-glucopyranoside, on dimyristoylphosphatidylcholine (DMPC) bilayers was studied by turbidimetry, EPR and FTIR spectroscopies. The disruption of DMPC multilamellar vesicles (MLV's) with monomyristoylphosphatidylcholine (lysoPC), a product of hydrolysis of phospholipase A(2) (PLA(2)), is more efficient at 18 degrees C, where DMPC MLV's are known to be in the ripple P(beta') phase, than at 10 degrees C (L(beta') flat gel phase). Disruption at 18 degrees C was inhibited by increasing concentrations of arbutin in the solution. This inhibition was correlated with the disappearance of the ripple phase in MLV's when arbutin is present. Shifts in FTIR carbonyl bands caused by arbutin or by temperature changes allow us to propose a model. It is interpreted that the changes in the water-hydrocarbon interface caused by arbutin, forcing a reaccommodation of the carbonyl groups, eliminate the topological defects in the lattice due to mismatches among regions with different area per lipid where lysoPC can insert.  相似文献   

16.
The partition coefficients (K(p)) between lipid bilayers of dimyristoyl-L-alpha-phosphatidylglycerol (DMPG) unilamellar liposomes and water were determined using derivative spectrophotometry for chlordiazepoxide (benzodiazepine), isoniazid and rifampicin (tuberculostatic drugs) and dibucaine (local anaesthetic). A comparison of the K(p) values in water/DMPG with those in water/DMPC (dimyristoyl-L-alpha-phosphatidylcholine) revealed that for chlordiazepoxide and isoniazid, neutral drugs at physiological pH, the partition coefficients are similar in anionic (DMPG) and zwitterionic (DMPC) liposomes. However, for ionised drugs at physiological pH, the electrostatic interactions are different with DMPG and DMPC, with the cationic dibucaine having a stronger interaction with DMPG, and the anionic rifampicin having a much larger K(p) in zwitterionic DMPC. These results show that liposomes are a better model membrane than an isotropic two-phase solvent system, such as water-octanol, to predict drug-membrane partition coefficients, as they mimic better the hydrophobic part and the outer polar charged surface of the phospholipids of natural membranes.  相似文献   

17.
Membrane ordering effects of the anticancer agent VM-26   总被引:1,自引:0,他引:1  
The effect of the anticancer agent VM-26 on acyl chain order of cellular and model membranes was examined by electron spin resonance techniques. The order parameter for the paramagnetic probe 5-doxyl stearate was increased when VM-26 was incorporated into the bilayer of fluid-phase dimyristoylphosphatidylcholine (DMPC) or gel-phase dipalmitoylphosphatidylcholine (DPPC) liposomes at concentrations up to 4.8 mol%. The ordering effect of VM-26 in DMPC was greater than that of cholesterol on an equimolar basis. The less cytotoxic congener of VM-26, VP-16, was only one-third as active as VM-26 in its ordering effects on DMPC. Higher order parameters for 5-doxyl stearate were also noted in asolectin liposomes, Ehrlich ascites tumor cells, and CCRF-CEM cells treated with VM-26. We conclude that VM-26 has significant membrane associated activity in addition to its previously recognized nuclear effects.  相似文献   

18.
We used liposomes made with phospholipids of fatty acid chain length ranging from C12:0 to C16:0 to modify the cAMP dependent protein kinase (PK) activity of HT 29 cells induced by VIP or forskolin. Both VIP and forskolin effects were inhibited in dilauroylphosphatidylcholine (DLPC) treated cells. PK activity was slightly lowered when cells were treated by dimyristoylphosphatidylcholine (DMPC) liposomes. However neither VIP nor forskolin-induced PK activities were affected with dipalmitoylphosphatidylcholine (DPPC) liposomes. Furthermore, the binding of [125I]VIP to DLPC treated cells was drastically lowered whereas no change was observed when cells were incubated with DMPC or DPPC liposomes. On the other hand, the interaction of HT 29 cells with DLPC vesicles provoked a decrease in membrane cholesterol content with subsequent increase in membrane fluidity. These findings provide evidence that, in HT 29 cells, the mechanisms of VIP-receptor interaction and of adenylate cyclase activation is lipid dependent and is regulated by membrane fluidity.  相似文献   

19.
Thimerosal (THI, ethyl-mercury thiosalicylate) is added to vaccines as a preservative; as a consequence, infants may have been exposed to bolus doses of Hg that collectively added up to nominally 200 µg Hg during the first 6 months of life. While several studies report an association between THI-containing vaccines and neurological disorders, other studies do not support the causal relation between THI and autism. With the purpose to understand the molecular mechanisms of the toxic effect of THI it was assayed on human red cells and in bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), classes of phospholipids found in the outer and inner monolayers of the human erythrocyte membrane, respectively. The capacity of THI to interact with DMPC and DMPE was determined by X-ray diffraction and differential scanning calorimetry, whereas intact human erythrocytes were observed by optical, defocusing and scanning electron microscopy. The experimental findings of this study demonstrated that THI interacted in a concentration-dependent manner with DMPC and DMPE bilayers, and in vitro interacted with erythrocytes inducing morphological changes. However, concentrations were considerable higher than those present in vaccines.  相似文献   

20.
The mechanism whereby lithium carbonate controls manic episodes and possibly influences affective disorders is not yet known. There is evidence, however, that lithium alters sodium transport and may interfere with ion exchange mechanisms and nerve conduction. For these reasons it was thought of interest to study its perturbing effects upon membrane structures. The effects of lithium carbonate (Li+) on the human erythrocyte membrane and molecular models have been investigated. The molecular models consisted in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representing classes of phospholipids located in the outer and inner monolayers of the erythrocyte membrane, respectively. This report presents the following evidence that Li+ interacts with cell membranes: a) X-ray diffraction indicated that Li+ induced structural perturbation of the polar head group and of the hydrophobic acyl regions of DMPC and DMPE; b) experiments performed on DMPC large unilamellar vesicles (LUV) by fluorescence spectroscopy also showed that Li+ interacted with the lipid polar groups and hydrophobic acyl chains, and c) in scanning electron microscopy (SEM) studies on intact human erythrocytes the formation of echinocytes was observed, effect that might be due to the insertion of Li+ in the outer monolayer of the red cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号