首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Accumulation of spermidine in Escherichia coli causes a decrease in cell viability at the late stationary phase of cell growth. The mechanism underlying this effect has been studied. Spermidine accumulation caused an increase in the level of ppGpp and a decrease in ribosome modulation factor (RMF) and stationary phase-specific sigma factor sigma(S), both of which are believed to be involved in cell viability. Transformation of E. coli with the gene for stringent factor, which synthesizes ppGpp, also caused a significant decrease in the levels of RMF and sigma(S) factor and a decrease in cell viability. The results strongly suggest that the accumulation of ppGpp is also involved in the decrease in cell viability and that the sigma(S) factor assists the function of RMF in cell viability.  相似文献   

4.
5.
We have examined expression of the genes on Salmonella pathogenicity island 1 (SPI1) during growth under the physiologically well defined standard growth condition of Luria-Bertani medium with aeration. We found that the central regulator hilA and the genes under its control are expressed at the onset of stationary phase. Interestingly, the two-component regulatory genes hilC/hilD, sirA/barA, and ompR, which are known to modulate expression from the hilA promoter (hilAp) under so-called "inducing conditions" (Luria-Bertani medium containing 0.3 m NaCl without aeration), acted under standard conditions at the stationary phase induction level. The induction of hilAp depended not on RpoS, the stationary phase sigma factor, but on the stringent signal molecule ppGpp. In the ppGpp null mutant background, hilAp showed absolutely no activity. The stationary phase induction of hilAp required spoT but not relA. Consistent with this requirement, hilAp was also induced by carbon source deprivation, which is known to transiently elevate ppGpp mediated by spoT function. The observation that amino acid starvation elicited by the addition of serine hydroxamate did not induce hilAp in a RelA(+) SpoT(+) strain suggested that, in addition to ppGpp, some other alteration accompanying entry into the stationary phase might be necessary for induction. It is speculated that during the course of infection Salmonella encounters various stressful environments that are sensed and translated to the intracellular signal, ppGpp, which allows expression of Salmonella virulence genes, including SPI1 genes.  相似文献   

6.
When Escherichia coli cells enter stationary phase due to carbon starvation the synthesis of ribosomal proteins is rapidly repressed. In a DeltarelA DeltaspoT mutant, defective in the production of the alarmone guanosine tetraphosphate (ppGpp), this regulation of the levels of the protein synthesizing system is abolished. Using a proteomic approach we demonstrate that the production of the vast majority of detected E. coli proteins are decontrolled during carbon starvation in the DeltarelA DeltaspoT strain and that the starved cells behave as if they were growing exponentially. In addition we show that the inhibition of ribosome synthesis by the stringent response can be qualitatively mimicked by artificially lowering the levels of the housekeeping sigma factor, sigma(70). In other words, genes encoding the protein-synthesizing system are especially sensitive to reduced availability of sigma(70) programmed RNA polymerase. This effect is not dependent on ppGpp since lowering the levels of sigma(70) gives a similar but less pronounced effect in a ppGpp(0) strain. The data is discussed in view of the models advocating for a passive control of gene expression during stringency based on alterations in RNA polymerase availability.  相似文献   

7.
8.
9.
10.
A mutation in the cell division gene ftsK causes super-induction of sigma(70)-dependent stress defense genes, such as uspA, during entry of cells into stationary phase. In contrast, we report here that stationary phase induction of sigma(S)-dependent genes, uspB and cfa, is attenuated and that sigma(S) accumulates at a lower rate in ftsK1 cells. Ectopic overexpression of rpoS restored induction of the rpoS regulon in the ftsK mutant, as did a deletion in the recA gene. Thus, a mutation in the cell division gene, ftsK, uncouples the otherwise coordinated induction of sigma(S)-dependent genes and the universal stress response gene, uspA, during entry into stationary phase.  相似文献   

11.
12.
13.
The novel sigma factor (sigma S) encoded by rpoS (katF) is required for induction of many growth phase-regulated genes and expression of a variety of stationary-phase phenotypes in Escherichia coli. Here we demonstrate that wild-type cells exhibit spherical morphology in stationary phase, whereas rpoS mutant cells remain rod shaped and are generally larger. Size reduction of E. coli cells along the growth curve is a continuous and at least biphasic process, the second phase of which is absent in rpoS-deficient cells and correlates with induction of the morphogene bolA in wild-type cells. Stationary-phase induction of bolA is dependent on sigma S. The "gearbox" a characteristic sequence motif present in the sigma S-dependent growth phase- and growth rate-regulated bolAp1 promoter, is not recognized by sigma S, since stationary-phase induction of the mcbA promoter, which also contains a gearbox, does not require sigma S, and other sigma S-controlled promoters do not contain gearboxes. However, good homology to the potential -35 and -10 consensus sequences for sigma S regulation is found in the bolAp1 promoter.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号