首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earlier work from our laboratory provided evidence for myelin abnormalities (decreased quantities of proteins associated with myelin compaction, decreased sheath thickness) in cortex and hippocampus of Aldh5a1/ mice, which have a complete ablation of the succinate semialdehyde dehydrogenase protein [E.A. Donarum, D.A. Stephan, K. Larkin, E.J. Murphy, M. Gupta, H. Senephansiri, R.C. Switzer, P.L. Pearl, O.C. Snead, C. Jakobs, K.M. Gibson, Expression profiling reveals multiple myelin alterations in murine succinate semialdehyde dehydrogenase deficiency, J. Inher. Metab. Dis. 29 (2006) 143–156]. In the current report, we have extended these findings via comprehensive analysis of brain phospholipid fractions, including quantitation of fatty acids in individual phospholipid subclasses and estimation of hexose-ceramide in Aldh5a1/ brain. In comparison to wild-type littermates (Aldh5a1+/+), we detected a 20% reduction in the ethanolamine glycerophospholipid content of Aldh5a1/mice, while other brain phospholipids (choline glycerophospholipid, phosphatidylserine and phosphatidylinositol) were within normal limits. Analysis of individual fatty acids in each of these fractions revealed consistent alterations in n-3 fatty acids, primarily increased 22:6n-3 levels (docosahexaenoic acid; DHA). In the phosphatidyl serine fraction there were marked increases in the proportions of polyunsaturated fatty acids with corresponding decreases of monounsaturated fatty acids. Interestingly, the levels of hexose-ceramide (glucosyl- and galactosylceramide, principal myelin cerebrosides) were decreased in Aldh5a1/ brain tissue (one-tailed t test, p = 0.0449). The current results suggest that lipid and myelin abnormalities in this animal may contribute to the pathophysiology.  相似文献   

2.
Succinic semialdehyde dehydrogenase deficiency, a rare inherited defect of gamma-aminobutyrate (GABA) catabolism, presents with characteristic biochemical abnormalities in the central nervous system (CNS). These include elevated concentrations of GABA, gamma-hydroxybutyrate (GHB), succinic semialdehyde (SSA), 4,5-dihydroxyhexanoic acid (DHHA) and alanine as well as decreased concentrations of glutamine. GABA degradation is coupled to Krebs cycle function in mammalian CNS ("GABA shunt") through succinate and alpha-ketoglutarate. Accordingly, we hypothesized that disruption of Krebs cycle and respiratory chain function in the CNS is involved in the neuropathogenesis of this disease. For this purpose, we investigated cerebral activities of Krebs cycle and respiratory chain enzymes as well as the glutathione content in Aldh5a1(-/-) mice, a recently generated mouse model for this disease. In CNS tissue of Aldh5a1(-/-) mice, we found a significantly decreased glutathione content (hippocampus, cortex) and decreased activities of complexes I-IV (hippocampus) suggesting increased oxidative stress and mitochondrial dysfunction. However, specific activities of Krebs cycle and respiratory chain were not affected by GABA, GHB, SSA, or DHHA (up to 1 mmol/L). Although our results suggest hippocampal and cortical dysfunction in Aldh5a1(-/-) brain, we found no evidence that accumulating key metabolites of SSADH deficiency directly induce impairment of energy metabolism.  相似文献   

3.
(1-14C)-labeled (n-6) eicosatetraenoate, (n-3) docosapentaenoate and (n-3) docosahexaenoate (20:4, 22:5 and 22:6, respectively) are efficiently taken up and actively esterified into the lipids of bovine retina after 2 h incubation. Photoreceptor membranes, mitochondria, microsomes and postmicrosomal supernatants, which display significant differences in phospholipid and fatty acid compositions, are isolated after such incubations to study the labeling of lipids. The lipid classes preferentially labeled with the acids (1) largely differ among and within subcellular fractions, while (2) some common features in the treatment of the three polyenes are observed in each fraction. In all of them, the three acids are actively incorporated in phosphatidylcholine; ethanolamine glycerophospholipid, phosphatidylserine (PS) and phosphatidylinositol (PI) are highly labeled with 22:6, 22:5 and 20:4 respectively; within ethanolamine glycerophospholipid, the three label phosphatidylethanolamine in preference to plasmenylethanolamine. Most of the 14C esterified in mitochondria is in phospholipids. The endoplasmic reticulum produces in addition highly labeled triacylglycerols, also found in cytosol. High levels of 14C-labeled diacylglycerols are observed exclusively in photoreceptor membranes, where the specific radioactivity of PI is very high. The total amounts of 14C incorporated (1) are in general similar within a given fraction for the three polyenes, but (2) largely differ among fractions. The labeling of the highly unsaturated phospholipids of photoreceptor membranes is the lowest, while the postmicrosomal supernatant (whose lipids are relatively the poorest in polyenoic fatty acids) contains most of the labeled lipids isolated from retinas under these conditions. The results indicate that polyunsaturated species of retina phospholipids undergo an active synthesis and turnover, as well as an intense intracellular traffic among membranes.  相似文献   

4.
The incorporation and metabolism of [1-14C]18:3(n-3), [1-14C]20:5(n-3), [1-14C]18:2(n-6), and [1-14C]20:4(n-6) were studied in primary cultures of trout brain astrocytes. There were no significant differences between the amounts of individual fatty acids incorporated into total lipid at 22 degrees C, with greater than 90% of all the fatty acids being incorporated into polar lipid classes. The distributions of 18:2(n-6), 18:3(n-3), and 20:5(n-3) in individual phospholipid classes at 22 degrees C were very similar, with 57-63 and 18-24% being incorporated into phosphatidylcholine and phosphatidylethanolamine, respectively. Approximately equal amounts of 20:4(n-6), approximately 30% of the total, were incorporated into each of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. The metabolism of the (n-3) fatty acids to longer-chain and more unsaturated species was significantly greater than that of (n-6) acids, but delta 4-desaturase activity was very low. A culture temperature of 10 degrees C increased the incorporation of all the fatty acids into total lipid and that of C20 fatty acids into polar lipid. At 10 degrees C, the incorporation of C20 fatty acids into phosphatidylethanolamine and phosphatidylinositol was increased, and the incorporation into phosphatidylcholine and phosphatidylserine was decreased. The distribution of C18 fatty acids was unchanged at the lower temperature, as was the desaturation and elongation of all the polyunsaturated fatty acids incorporated.  相似文献   

5.
Abstract— Microsomal and myelin membrane fractions were prepared from the brains of warm-adapted (room temperature) and hibernating Syrian hamsters ( Mesocricetus auratus ). Lipid extracts of these preparations were assayed for phospholipid and galactosphingolipid composition, and for cholesterol levels. In both myelin and microsomes, plasmenlethanolamine levels decreased while total ethanol-amineglycerophospholipid levels remained constant with hibernation. Cerebroside levels changed slightly, increasing in microsomes while decreasing in myelin. No changes in cholesterol levels were detectable. Fatty acid analyses of microsomal ethanolamineglycerophospholipids and phosphatidylserine showed predominantly increases in 18:1 and 20:4 (n-6), and decreases in 18:0 and 22:6 (n-3), in both lipid classes with hibernation. Myelin ethanolamineglycerophospholipids exhibited a decrease in 20:1 and an increase in 20:4 (n-6). Aldehyde analyses of plasmenylethanolamines revealed a decrease in 16:0 and an increase in 18:1 in microsomes, and an increase in 18:O in myelin. The hydroxylated fatty acids of myelin cerebrosides showed no discernible changes in composition with hibernation. It is proposed that these lipid changes aid in the maintenance of the structure and function of brain membranes at the reduced temperatures encountered during hibernation.  相似文献   

6.
Metabolite profiling in succinate semialdehyde dehydrogenase (SSADH; Aldh5a1-/-) deficient mice previously revealed elevated gamma-hydroxybutyrate (GHB) and total GABA in urine and total brain and liver extracts. In this study, we extend our metabolic characterization of these mutant mice by documenting elevated GHB and total GABA in homogenates of mutant kidney, pancreas and heart. We quantified beta-alanine (a GABA homolog and putative neurotransmitter) to address its potential role in pathophysiology. We found normal levels of beta-alanine in urine and total homogenates of mutant brain, heart and pancreas, but elevated concentrations in mutant kidney and liver extracts. Amino acid analysis in mutant total brain homogenates revealed no abnormalities except for significantly decreased glutamine, which was normal in mutant liver and kidney extracts. Regional amino acid analysis (frontal cortex, parietal cortex, hippocampus and cerebellum) in mutant mice confirmed glutamine results. Glutamine synthetase protein and mRNA levels in homogenates of mutant mouse brain were normal. We profiled organic acid patterns in mutant brain homogenates to assess brain oxidative metabolism and found normal concentrations of Kreb's cycle intermediates but increased 4,5-dihydroxyhexanoic acid (a postulated derivative of succinic semialdehyde) levels. We conclude that SSADH-deficient mice represent a valid metabolic model of human SSADH deficiency, manifesting focal neurometabolic abnormalities which could provide key insights into pathophysiologic mechanisms.  相似文献   

7.
Mice with targeted deletion of the GABA-degradative enzyme succinate semialdehyde dehydrogenase (SSADH; Aldh5a1; OMIM 271,980) manifest globally elevated GABA and regionally decreased arginine in brain extracts. We examined the hypothesis that arginine-glycine amidinotransferase catalyzed the formation of guanidinobutyrate (GB) from increased GABA by quantifying guanidinoacetate (GA), guanidinopropionate (GP) and GB in brain extracts employing stable isotope dilution gas chromatographic-mass spectrometry. GA and GB were up to 4- and 22-fold elevated, respectively, in total and regional (cerebellum, hippocampus, cortex) brain extracts derived from SSADH(-/-) mice. Corresponding analyses of urine and cerebrospinal fluid derived from SSADH-deficient patients revealed significant (P<0.05) elevations of GA and GB in urine, as well as GB levels in CSF. These data suggest that GB may be an additional marker of SSADH deficiency, implicate additional pathways of pathophysiology, and identify the second instance of elevated GB in a human inborn error of metabolism.  相似文献   

8.
Murphy EJ  Owada Y  Kitanaka N  Kondo H  Glatz JF 《Biochemistry》2005,44(16):6350-6360
Heart fatty acid binding protein (H-FABP) is expressed in neurons, but its role in brain fatty acid incorporation and metabolism is poorly defined. We examined the effect of H-FABP gene ablation on brain incorporation of arachidonic ([1-(14)C]20:4n-6) or palmitic ([1-(14)C]16:0) acid in vivo. Analysis of brain mRNA confirmed gene ablation and demonstrated no compensatory changes in the levels of other FABP mRNA in the gene-ablated mice. In brains from H-FABP gene-ablated mice, the incorporation coefficient for [1-(14)C]20:4n-6 was reduced 24%, while that for [1-(14)C]16:0 was unaffected. Within the organic and aqueous fractions, significantly more [1-(14)C]20:4n-6 was distributed into the aqueous fraction, suggesting a disruption in the metabolic targeting of 20:4n-6 in these mice. There was less incorporation of [1-(14)C]20:4n-6 into total phospholipids and a marked reduction (51%) in the level of incorporation into the choline glycerophospholipids (ChoGpl). Because FABP can influence steady-state lipid mass, brain individual lipid masses were measured. The brain total phospholipid mass was reduced 17% by gene ablation, ascribed to a 27% and 32% reduction in the masses of ChoGpl and sphingomyelin, respectively. Plasmalogen subclass masses were also reduced, suggesting that H-FABP may augment brain plasmalogen synthesis. In gene-ablated mice, the phosphatidylinositol 20:4n-6 level was reduced 25%, while the proportion of total n-6 fatty acids was reduced in the major phospholipid classes. Thus, these results demonstrate for the first time that H-FABP expression influences brain 20:4n-6 uptake and trafficking as well as steady-state brain lipid levels.  相似文献   

9.
Seasonal variations in lipid classes and fatty acid composition of triacylglycerols and phospholipids in the digestive gland of Pecten maximus were studied over a period of 16 months. Acylglycerols predominated (19-77% of total lipids), in accordance with the role of the digestive gland as an organ for lipid storage in scallops. Seasonal variations were mainly seen in the acylglycerol content, while phospholipids (2.5-10.0% of total lipids) and sterols (1.9-7.4% of total lipids) showed only minor changes. The most abundant fatty acids were 14:0, 16:0, 18:0, 16:1(n-7), 18:1(n-9), 18:1(n-7), 18:4(n-3), 20:5(n-3) and 22:6(n-3) and these showed similar seasonal profiles in both, triacylglycerol and phospholipid fractions. In contrast to the phospholipid fraction, the triacylglycerol fraction contained more 20:5(n-3) than 22:6(n-3). In three phospholipid samples we noted a high percentage of a 22-2-non-methylene-interrupted fatty acid, previously described to have a structural role in several bivalve species. The main polyunsaturated fatty acids displayed important seasonal variations parallel to those of the acylglycerols, suggesting good nutritional conditions. A positive correlation existed between the level of saturated fatty acids and temperature, whereas the levels of polyunsaturated fatty acids correlated negatively with temperature.  相似文献   

10.

Background  

SSADH (aldehyde dehydrogenase 5a1 (Aldh5a1); γ-hydroxybutyric (GHB) aciduria) deficiency is a defect of GABA degradation in which the neuromodulators GABA and GHB accumulate. The human phenotype is that of nonprogressive encephalopathy with prominent bilateral discoloration of the globi pallidi and variable seizures, the latter displayed prominently in Aldh5a1-/- mice with lethal convulsions. Metabolic studies in murine neural tissue have revealed elevated GABA [and its derivatives succinate semialdehyde (SSA), homocarnosine (HC), 4,5-dihydroxyhexanoic acid (DHHA) and guanidinobutyrate (GB)] and GHB [and its analogue D-2-hydroxyglutarate (D-2-HG)] at birth. Because of early onset seizures and the neurostructural anomalies observed in patients, we examined metabolite features during Aldh5a1-/- embryo development.  相似文献   

11.
The effects of a vegetable oil-based infant formula, virtually devoid of n-6 and n-3 long chain polyenoid fatty acids (LCP) and high in 18:2(n-6) and 18:2(n-6)/18:3(n-3) ratio, on brain synaptosome lipid composition and enzyme thermotropic behavior were studied in neonatal piglets. Term gestation piglets were fed either sow milk (SMF) or formula (FF) from birth for 5, 10, 15, or 25 days. Synaptosomal cholesterol, total lipid phosphorus, and phospholipid class composition did not differ between SMF and FF piglets. Synaptosomal fatty acid composition, however, was influenced by diet. The proportion of n-3 LCP, especially 22:6(n-3), was decreased, while the n-6 LCP, especially 22:4(n-6) and 22:5(n-6), were increased in FF compared to SMF piglets. These diet-related changes were most pronounced in the ethanolamine glycerophospholipid fraction and increased with the duration of feeding. FF thus reversed an apparent developmental increase in the synaptosomal n-3/n-6 LCP ratio. The monoene content, especially 18:1, was also reduced in the synaptosomes of FF compared to SMF pigs. FF had no effect on the activity of synaptosomal acetylcholinesterase. However, higher transition temperatures for this enzyme, indicating decreased membrane fluidity, were found in the FF compared to SMF piglets. The data suggest that exclusive feeding of proprietary formulae, devoid of LCP and high in 18:2(n-6) and/or the 18:2 (n-6)/18:3(n-3) ratio, may compromise normal fatty acid accretion and physical properties of brain synaptosomal membranes.  相似文献   

12.
This work studies the phospholipid and fatty acid composition in hake brain and spinal cord and in sea bass brain. Fluorescence anisotropy of phospholipid vesicles labeled with 1,6-diphenyl hexatriene was measured to investigate the associated dynamic properties. In all tissues studied, phosphatidylcholine and phosphatidylethanolamine were the major constituents with minor contributions of phosphatidylserine, phosphatidylinositol and sphingomyelin. Fatty acids belong to the n-9 and n-3 series exclusively. Phosphatidylinositol from hake spinal cord and phosphatidylethanolamine and phosphatidylserine from hake brain contain the greatest percentages of eicosa-5,8,11,14,17-pentaenoic (20:5) and docosa-4,7,10,13,16,19-hexaenoic (22:6), respectively. For all fractions studied the total content of saturated fatty acids increases in the order of hake spinal cord, hake brain, sea bass brain together with a decrease in the sum of monounsaturated fatty acids. The comparison between fluorescence anisotropy values and fatty acid composition clearly demonstrates that saturated acids and 20:5 and 22:6 exert a rigidizing effect.  相似文献   

13.
The study examined the ability of dietary n-3 fatty acids to modify mouse peritoneal macrophage glycerophospholipid molecular species and peptidoleukotriene synthesis. After a 2-week feeding period, fish versus corn oil feeding significantly (P less than 0.01) lowered n-6 polyunsaturated fatty acid (PUFA) mol % levels, i.e., arachidonic acid (20:4n-6) in diacylphosphatidylserine (PtdSer), diacylphosphatidylinositol (PtdIns), diacylglycerophosphoethanolamine (PtdEtn), alkenylacylglycerophosphoethanolamine (PlsEtn), and diacylglycerophosphocholine (PtdCho). A notable exception was alkylacylglycerophosphocholine (PakCho), where only moderate decreases in 16:0-20:4n-6 and 18:0-20:4n-6 species were observed after fish oil supplementation. The predominant n-3 PUFA in macrophage phospholipid subclasses was docosapentaenoic acid (22:5n-3). The major n-3 species were 18:0-22:5n-3 in PtdIns, PtdSer, glycerophosphoethanolamines (EtnGpl) and 16:0-22:5n-3 in PtdCho and PlsEtn. The major n-3-containing species in PakCho were 16:0-20:5n-3 and 18:1-22:6n-3. These findings indicate that n-3 PUFA are differentially incorporated into macrophage phospholipid subclasses after dietary fish oil supplementation, and suggest that phospholipid remodeling enzymes selectively discriminate between substrates based on compatibility of sn-1 covalent linkage and the composition of the sn-1 and sn-2 aliphatic chains. Macrophage peptidoleukotriene synthesis was also strongly influenced after fish oil feeding; the LTC5/LTC4 ratio was significantly higher (P less than 0.01) in fish oil-fed animals than in corn oil-fed animals, 0.85 versus 0.01, respectively. These ratios were subsequently compared to phospholipid molecular species 20:5n-3/20:4n-6 ratios in order to determine potential sources of eicosanoid precursors.  相似文献   

14.
In this review, changes in brain lipid composition and metabolism due to aging are outlined. The most striking changes in cerebral cortex and cerebellum lipid composition involve an increase in acidic phospholipid synthesis. The most important changes with respect to fatty acyl composition involve a decreased content in polyunsaturated fatty acids (20:4n-6, 22:4n-6, 22:6n-3) and an increased content in monounsaturated fatty acids (18:1n-9 and 20:1n-9), mainly in ethanolamine and serineglycerophospholipids. Changes in the activity of the enzymes modifying the phospholipid headgroup occur during aging. Serine incorporation into phosphatidylserine through base-exchange reactions and phosphatidylcholine synthesis through phosphatidylethanolamine methylation increases in the aged brain. Phosphatidate phosphohydrolase and phospholipase D activities are also altered in the aged brain thus producing changes in the lipid second messengers diacylglycerol and phosphatidic acid.  相似文献   

15.
Abstract— Three dietary levels of essential fatty acids (EFA), 3 0, 0 75 and 0 07 calorie-% were fed to rats for two generations or more. Myelin was isolated at the ages of 18, 30, 45 and 120 days and synaptosomal plasma membranes at 18, 30 and 45 days. No difference was found in the lipid composition between the dietary groups in either subcellular fraction. The fatty acid patterns of ethanolamine phosphoglycerides (EPG) were analysed. In myelin the proportions of 18:1 and 20:1 increased with age, while those of 20:4 (n-6) and 22:6 (n-3) decreased, in synaptosomal plasma membranes the proportions of 20:4 (n-6) decreased with age, but 22:6 (n-3) increased and the sum of the polyunsaturated fatty acids was constant. At no age were significant differences found between the proportions of saturated and monounsaturated fatty acids, in either myelin or the synaptosomal plasma membrane fraction, when the different dietary groups were compared. In myelin from rats fed 007 calorie-% EFA the proportions of 20:4 (n-6) were slightly lower than in the two other groups, while those of 22 6 (n-3) were considerably lower. The synaptosomal plasma membranes fraction of rats fed O-07 calorie-% EFA had equal or slightly larger amounts of 20:4 (n-6) than in the two other groups, while 22:6 (n-3) was considerably smaller. In both subcellular fractions the decreased proportion of fatty acids of linoleic and linolenic acid series was compensated for by an increase in 20:3 (n-9) and 22:3 (n-9). The sum of these two fatty acids was equal in the EPG of myelin and synaptosomal plasma membranes at 18 days of age. At 30 and 45 days of age a lower value was found in the synaptosomal plasma membranes, while in the myelin fraction a slight decrease was found only at 120 days of age.  相似文献   

16.

Background

Red blood cell (RBC) n-3 fatty acid status is related to various health outcomes. Accepted biological markers for the fatty acid status determination are RBC phospholipids, phosphatidylcholine, and phosphatidyletholamine. The analysis of these lipid fractions is demanding and time consuming and total phospholipid n-3 fatty acid levels might be affected by changes of sphingomyelin contents in the RBC membrane during n-3 supplementation.

Aim

We developed a method for the specific analysis of RBC glycerophospholipids. The application of the new method in a DHA supplementation trial and the comparison to established markers will determine the relevance of RBC GPL as a valid fatty acid status marker in humans.

Methods

Methyl esters of glycerophospholipid fatty acids are selectively generated by a two step procedure involving methanolic protein precipitation and base-catalysed methyl ester synthesis. RBC GPL solubilisation is facilitated by ultrasound treatment. Fatty acid status in RBC glycerophospholipids and other established markers were evaluated in thirteen subjects participating in a 30 days supplementation trial (510 mg DHA/d).

Outcome

The intra-assay CV for GPL fatty acids ranged from 1.0 to 10.5% and the inter-assay CV from 1.3 to 10.9%. Docosahexaenoic acid supplementation significantly increased the docosahexaenoic acid contents in all analysed lipid fractions. High correlations were observed for most of the mono- and polyunsaturated fatty acids, and for the omega-3 index (r = 0.924) between RBC phospholipids and glycerophospholipids. The analysis of RBC glycerophospholipid fatty acids yields faster, easier and less costly results equivalent to the conventional analysis of RBC total phospholipids.  相似文献   

17.
The brain cannot synthesize n-6 or n-3 PUFAs de novo and requires their transport from the blood. Two models of brain fatty acid uptake have been proposed. One requires the passive diffusion of unesterified fatty acids through endothelial cells of the blood-brain barrier, and the other requires the uptake of lipoproteins via a lipoprotein receptor on the luminal membrane of endothelial cells. This study tested whether the low density lipoprotein receptor (LDLr) is necessary for maintaining brain PUFA concentrations. Because the cortex has a low basal expression of LDLr and the anterior brain stem has a relatively high expression, we analyzed these regions separately. LDLr knockout (LDLr(-/-)) and wild-type mice consumed an AIN-93G diet ad libitum until 7 weeks of age. After microwaving, the cortex and anterior brain stem (pons and medulla) were isolated for phospholipid fatty acid analyses. There were no differences in phosphatidylserine, phosphatidylinositol, ethanolamine, or choline glycerophospholipid esterified PUFA or saturated or monounsaturated fatty acid concentrations in the cortex or brain stem between LDLr(-/-) and wild-type mice. These findings demonstrate that the LDLr is not necessary for maintaining brain PUFA concentrations and suggest that other mechanisms to transport PUFAs into the brain must exist.  相似文献   

18.
The effects of an essential fatty acid deficient diet were investigated on the phospholipid fatty acids of several membrane fractions of the rat anterior pituitary, the secretion of which is known to be partly dependent on the membrane phospholipidic constituents. In standard dietary conditions, arachidonic acid (20:4n-6) and its elongation product, adrenic acid (22:4n-6), were the two main polyunsaturated fatty acids in all fractions studied. In rats deprived of EFA for 6 weeks after weaning, the levels of both 20:4n-6 and 22:4n-6 were not changed in microsomal + plasma membrane and nuclear fractions, whereas they were decreased in heavy mitochondrial and light mitochondrial fractions. The present data suggest a mechanism of compensation between membrane fractions which may preferentially preserve 20:4n-6 and 22:4n-6 in discrete membrane fractions.  相似文献   

19.
—Age-related changes in acyl group composition of diacyl-glycerophosphorylethanolamine (GPE), alkenylacyl-GPE and diacyl-glycerophosphorylcholine (GPC) were examined in myelin and microsomal fractions of mouse brain during development. In general, the phosphoglycerides in the myelin fraction showed an increase in the proportions of 18:1 and 20:1 and a decrease in the proportions of 16:0, 20:4(n-6) and 22:6(n-3) with increasing age. These changes were especially obvious with the acyl groups of alkenylacyl-GPE. The acyl group profiles of phosphoglycerides in the microsomal fraction were different from those in the myelin fraction. During development, there was an increase in 22:6 and a decrease in 20:4 in the phosphoglycerides of microsomes. These changes were especially obvious with the diacyl-GPE. Starting from 2 weeks of age, there was also an increase in the proportions of 18:1 and 20:1 in alkenylacyl-GPE in the microsomal fraction but this change was not as dramatic as that in the myelin fraction. In general, the acyl groups of diacyl-GPC in both myelin and microsomal fractions showed only little age-related changes as compared to the ethanolamine phosphoglycerides. Results suggest an induction in the synthesis of monoenoic fatty acids in brain during development. The monoenoic fatty acids synthesized during this period are rapidly and preferentially incorporated into the ethanolamine plasmalogen for further utilization in synthesis of the myelin membranes.  相似文献   

20.
The salient feature of the fatty acid profile of kestrel eggs collected in the wild was the very high proportion of arachidonic acid (15.2%+/-0.7% of fatty acid mass, n=5) in the phospholipid fraction of the yolk. Kestrels in captivity fed on day-old chickens produced eggs that differed from those of the wild birds in a number of compositional features: the proportion of linoleic acid was increased in all the lipid fractions; the proportion of arachidonic acid was increased in yolk phospholipid and cholesteryl ester; the proportion of alpha-linolenic acid was decreased in all lipid classes, and that of docosahexaenoic acid was decreased in phospholipid and cholesteryl ester. Partridge eggs from the wild contained linoleic acid as the main polyunsaturate of all the yolk lipid fractions. Captive partridges maintained on a formulated diet very rich in linoleic acid produced eggs with increased levels of linoleic, arachidonic, and n-6 docosapentaenoic acids in the phospholipid fraction; reduced proportions of alpha-linolenic acid were observed in all lipid classes, and the proportion of docosahexaenoic acid was markedly reduced in the phospholipid fraction. Thus, captive breeding of both the kestrel and the partridge increases the n-6/n-3 polyunsaturate ratio of the yolk lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号