首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physiological approach suggests that an environment associating the mesenchymal stromal cells (MSC) and low O(2) concentration would be most favorable for the maintenance of hematopoietic stem cells (HSCs) in course of ex vivo expansion of hematopoietic grafts. To test this hypothesis, we performed a co-culture of cord blood CD34(+) cells with or without MSC in presence of cytokines for 10 days at 20%, 5%, and 1.5% O(2) and assessed the impact on total cells, CD34(+) cells, committed progenitors (colony-forming cells-CFC) and stem cells activity (pre-CFC and Scid repopulating cells-SRC). Not surprisingly, the expansion of total cells, CD34(+) cells, and CFC was higher in co-culture and at 20% O(2) compared to simple culture and low O(2) concentrations, respectively. However, co-culture at low O(2) concentrations provided CD34(+) cell and CFC amplification similar to classical culture at 20% O(2) . Interestingly, low O(2) concentrations ensured a better pre-CFC and SRC preservation/expansion in co-culture. Indeed, SRC activity in co-culture at 1.5% O(2) was higher than in freshly isolated CD34(+) cells. Interleukin-6 production by MSC at physiologically low O(2) concentrations might be one of the factors mediating this effect. Our data demonstrate that association of co-culture and low O(2) concentration not only induces sufficient expansion of committed progenitors (with respect to the classical culture), but also ensures a better maintenance/expansion of hematopoietic stem cells (HSCs), pointing to the oxygenation as a physiological regulatory factor but also as a cell engineering tool.  相似文献   

2.
3.
4.
Megakaryocytopoiesis and thrombocytopoiesis result from the interactions between hematopoietic progenitor cells, humoral factors, and marrow stromal cells derived from mesenchymal stem cells (MSCs) or MSCs directly. MSCs are self-renewing marrow cells that provide progenitors for osteoblasts, adipocytes, chondrocytes, myocytes, and marrow stromal cells. MSCs are isolated from bone marrow aspirates and are expanded in adherent cell culture using an optimized media preparation. Culture-expanded human MSCs (hMSCs) express a variety of hematopoietic cytokines and growth factors and maintain long-term culture-initiating cells in long-term marrow culture with CD34(+) hematopoietic progenitor cells. Two lines of evidence suggest that hMSCs function in megakaryocyte development. First, hMSCs express messenger RNA for thrombopoietin, a primary regulator for megakaryocytopoiesis and thrombocytopoiesis. Second, adherent hMSC colonies in primary culture are often associated with hematopoietic cell clusters containing CD41(+) megakaryocytes. The physical association between hMSCs and megakaryocytes in marrow was confirmed by experiments in which hMSCs were copurified by immunoselection using an anti-CD41 antibody. To determine whether hMSCs can support megakaryocyte and platelet formation in vitro, we established a coculture system of hMSCs and CD34(+) cells in serum-free media without exogenous cytokines. These cocultures produced clusters of hematopoietic cells atop adherent MSCs. After 7 days, CD41(+) megakaryocyte clusters and pro-platelet networks were observed with pro-platelets increasing in the next 2 weeks. CD41(+) platelets were found in culture medium and expressed CD62P after thrombin treatment. These results suggest that MSCs residing within the megakaryocytic microenvironment in bone marrow provide key signals to stimulate megakaryocyte and platelet production from CD34(+) hematopoietic cells.  相似文献   

5.
6.
Kiel MJ  Yilmaz OH  Iwashita T  Yilmaz OH  Terhorst C  Morrison SJ 《Cell》2005,121(7):1109-1121
To improve our ability to identify hematopoietic stem cells (HSCs) and their localization in vivo, we compared the gene expression profiles of highly purified HSCs and non-self-renewing multipotent hematopoietic progenitors (MPPs). Cell surface receptors of the SLAM family, including CD150, CD244, and CD48, were differentially expressed among functionally distinct progenitors. HSCs were highly purified as CD150(+)CD244(-)CD48(-) cells while MPPs were CD244(+)CD150(-)CD48(-) and most restricted progenitors were CD48(+)CD244(+)CD150(-). The primitiveness of hematopoietic progenitors could thus be predicted based on the combination of SLAM family members they expressed. This is the first family of receptors whose combinatorial expression precisely distinguishes stem and progenitor cells. The ability to purify HSCs based on a simple combination of SLAM receptors allowed us to identify HSCs in tissue sections. Many HSCs were associated with sinusoidal endothelium in spleen and bone marrow, though some HSCs were associated with endosteum. HSCs thus occupy multiple niches, including sinusoidal endothelium in diverse tissues.  相似文献   

7.
In this study, we developed a methodology to improve the survival, vascular differentiation and regenerative potential of umbilical cord blood (UCB)-derived hematopoietic stem cells (CD34(+) cells), by co-culturing the stem cells in a 3D fibrin gel with CD34(+)-derived endothelial cells (ECs). ECs differentiated from CD34(+) cells appear to have superior angiogenic properties to fully differentiated ECs, such as human umbilical vein endothelial cells (HUVECs). Our results indicate that the pro-survival effect of CD34(+)-derived ECs on CD34(+) cells is mediated, at least in part, by bioactive factors released from ECs. This effect likely involves the secretion of novel cytokines, including interleukin-17 (IL-17) and interleukin-10 (IL-10), and the activation of the ERK 1/2 pathway in CD34(+) cells. We also show that the endothelial differentiation of CD34(+) cells in co-culture with CD34(+)-derived ECs is mediated by a combination of soluble and insoluble factors. The regenerative potential of this co-culture system was demonstrated in a chronic wound diabetic animal model. The co-transplantation of CD34(+) cells with CD34(+)-derived ECs improved the wound healing relatively to controls, by decreasing the inflammatory reaction and increasing the neovascularization of the wound.  相似文献   

8.
Human embryonic stem cells (hESCs) can be induced to differentiate into blood cells using either co-culture with stromal cells or following human embryoid bodies (hEBs) formation. It is now well established that the HOXB4 homeoprotein promotes the expansion of human adult hematopoietic stem cells (HSCs) but also myeloid and lymphoid progenitors. However, the role of HOXB4 in the development of hematopoietic cells from hESCs and particularly in the generation of hESC-derived NK-progenitor cells remains elusive. Based on the ability of HOXB4 to passively enter hematopoietic cells in a system that comprises a co-culture with the MS-5/SP-HOXB4 stromal cells, we provide evidence that HOXB4 delivery promotes the enrichment of hEB-derived precursors that could differentiate into fully mature and functional NK. These hEB-derived NK cells enriched by HOXB4 were characterized according to their CMH class I receptor expression, their cytotoxic arsenal, their expression of IFNγ and CD107a after stimulation and their lytic activity. Furthermore our study provides new insights into the gene expression profile of hEB-derived cells exposed to HOXB4 and shows the emergence of CD34(+)CD45RA(+) precursors from hEBs indicating the lymphoid specification of hESC-derived hematopoietic precursors. Altogether, our results outline the effects of HOXB4 in combination with stromal cells in the development of NK cells from hESCs and suggest the potential use of HOXB4 protein for NK-cell enrichment from pluripotent stem cells.  相似文献   

9.
Imada C  Hasumura M  Nawa K 《Cytokine》2005,31(6):447-453
Large ex vivo expansion of hematopoietic stem cells (HSCs) sufficient for use in clinical applications has not been achieved, although the influence of some cytokines including SCF, IL-11, Flt3-L, and TPO for this purpose has been reported. We present evidence for an indirect effect of macrophage colony-stimulating factor (M-CSF) on expansion of murine HSCs. Fresh Lin(-/low) cells were isolated from Ly5.1 mouse bone marrow and cultured with or without M-CSF in the presence of SCF + IL-11 + Flt3-L or SCF + IL-11 + TPO for 6 days. The expanded cells were harvested and transplanted into lethally irradiated Ly5.2 recipients with competitor cells. Culture of Lin(-/low) cells with M-CSF significantly enhanced long-term engraftment. When the more enriched HSC populations of Lin(-/low) c-Kit(+) Sca-1(+) cells were used as a source of HSCs, such a promotive effect was not observed, in agreement with negative expression of the M-CSF receptor (c-Fms). However, co-culture with Lin(-/low) c-Fms(+) resulted in a significant increase of long-term engraftment. These results suggested that M-CSF is an indirect stimulator for ex vivo expansion of HSCs in the presence of SCF, IL-11, Flt3-L, and TPO. These observations provide new directions for ex vivo expansion and insight into new engraftment regulation through M-CSF signaling.  相似文献   

10.
BACKGROUND: CD133 is a newly developed hematopoietic stem cell marker but little is known about its function. Whether CD133(+) cell selection provides any advantage over CD34(+) selection for hematopoietic stem cell isolation and transplantation is unclear. The present study compared colony formation and endothelial cell differentiation of these two cell types from umbilical cord blood (UCB). METHODS: Mononuclear cells from the same UCB samples were used for both CD133(+) and CD34(+) cell selection. Cells with 97.1% purity were incubated in semi-solid culture medium containing stem cell growth factor (SCGF) and G-CSF or erythropoietin (EPO). Purified cells were also cultured in M199 containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and insulin-like growth factor-1 (IGF-1). RESULTS: CD34(+) and CD133(+) cells produced similar numbers of CFU-GM colonies (median 43.25 and 30.5, respectively; P>0.2). However, a greater than four-fold difference in BFU-E colony formation was observed from CD34(+) cells compared with CD133(+) cells (median 35 and 8, respectively; P<0.04). CD34(+) cells gave rise to endothelial-like cells when stimulated with VEGF, bFGF and IGF-1. CD133(+) cells were unable produce this cell type under the same conditions. DISCUSSION: CD133(+) cells produced smaller BFU-E colonies and were unable to differentiate into mature endothelial cells. CD34(+) cells contained endothelial progenitors that could differentiate into mature cells of this lineage. Based on these data, it appears that CD133 offers no distinct advantage over CD34 as a selective marker for immunoaffinity-based isolation of hematopoietic stem cells and endothelial progenitor cells.  相似文献   

11.
小鼠骨保护素配基胞外片段的表达、纯化及生物活性分析   总被引:2,自引:0,他引:2  
骨保护素配基(OPGL)是调节破骨细胞分化和成熟的核心细胞因子。由小鼠骨组织提取总RNA,RTPCR扩增得到小鼠OPGL胞外片段(sOPGL)cDNA,以特定策略克隆人表达载体pET-42a( ),以便使未来表达产物的融合标签序列能够完全被因子Xa切除。重组载体在大肠杆菌中诱导表达可获得高水平的47kD产物,Western blotting证实它可被OPGL抗体识别。经Glutathione-sepharose 4B亲和层析,除融合蛋白外,还有一约30 kD蛋白与层析柱发生了特异性亲和。该30kD蛋白可被GST-IGF-I多克隆抗体识别,但不能被OPGL抗体识别,提示它的产生乃由于融合蛋白在融合位点附近发生裂解。融合蛋白经Xa因子裂解和进一步纯化,得到分子量约17.5kD的sOPGL。生物活性分析证明,重组sOPGL可以促进OLC的生成,并呈现剂量依赖关系。  相似文献   

12.
13.
The concept of lymphoid differentiation in the human gastrointestinal tract is controversial but is the focus of this study, which examined adult human small intestinal tissue for the presence of CD34(+)CD45(+) hemopoietic stem cells (HSCs) and lymphoid progenitors. Flow cytometry demonstrated that over 5% of leukocytes (CD45(+) cells) isolated from human gut were HSCs coexpressing CD34, a significantly higher incidence than in matched peripheral blood or control bone marrow. HSCs were detected in cell preparations from both the epithelium and lamina propria of all samples tested and localized to the intestinal villous and crypt regions using immunofluorescence. A high proportion of gut HSCs expressed the activation marker CD45RA, and few expressed c-kit, indicating ongoing differentiation. The vast majority of intestinal HSCs coexpressed the T cell Ag, CD7 (92% in the epithelium, 80% in the lamina propria) whereas <10% coexpressed the myeloid Ag CD33, suggesting that gut HSCs are a relatively mature population committed to the lymphoid lineage. Interestingly, almost 50% of epithelial layer HSCs coexpressed CD56, the NK cell Ag, compared with only 10% of the lamina propria HSC population, suggesting that the epithelium may be a preferential site of NKR(+) lymphoid differentiation. In contrast, bone marrow HSCs displayed low coexpression of CD56 and CD7 but high coexpression of CD33. The phenotype of intestinal HSCs, which differs significantly from circulating or bone marrow HSCs, is consistent with a role in local lymphoid development.  相似文献   

14.
T/NK progenitors are present in the thymus; however, the thymus predominantly promotes T cell development. In this study, we demonstrated that human thymic epithelial cells (TEC) inhibit NK cell development. Most ex vivo human thymocytes express CD1a, indicating that thymic progenitors are predominantly committed to the T cell lineage. In contrast, the CD1a(-)CD3(-)CD56(+) NK population comprises only 0.2% (n = 7) of thymocytes. However, we observed increases in the percentage (20- to 25-fold) and absolute number (13- to 71-fold) of NK cells when thymocytes were cultured with mixtures of either IL-2, IL-7, and stem cell factor or IL-15, IL-7, and stem cell factor. TEC, when present in the cultures, inhibited the increases in the percentage (3- to 10-fold) and absolute number (3- to 25-fold) of NK cells. Furthermore, we show that TEC-derived soluble factors inhibit generation of NK-CFU and inhibit IL15- or IL2-driven NK cell differentiation from thymic CD34(+) triple-negative thymocytes. The inhibitory activity was found to be associated with a 8,000- to 30,000 Da fraction. Thus, our data demonstrate that TEC inhibit NK cell development from T/NK CD34(+) triple negative progenitors via soluble factor(s), suggesting that the human thymic microenvironment not only actively promotes T cell maturation but also controls the development of non-T lineage cells such as the NK lineage.  相似文献   

15.
Hepatocyte growth factor (HGF), which was originally isolated as a liver generating factor, enhances hematopoiesis. To study the effect of HGF on hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs), we generated severe combined immunodeficiency (SCID) mice producing human (h) HGF and/or stem cell factor (SCF) by transferring the relevant genes to fertilized eggs, and then transplanted hematopoietic progenitors from human cord blood into the transgenic (Tg) SCID mice. Six months after transplantation, a significantly larger number of human cells were found in the Tg SCID mice than in non-Tg controls. Characteristically, the recipient SCID mice producing h HGF (HGF-SCID) had a significantly increased number of h CD41+ cells, whereas the SCF-SCID recipients had more CD11b+ cells. Significantly large numbers of CD34+ progenitors were found in the SCID mice transferred with both h HGF and h SCF genes (HGF/SCF-SCID) when compared with HGF-SCID or SCF-SCID mice. These results imply that HGF supports the differentiation of progenitors in megakaryocyte lineage, whereas SCF supports that in myeloid lineage. The results also imply that HGF acts on HSCs/HPCs as a synergistic proliferative factor combined with SCF. We have demonstrated the advantage of the human cytokine-producing animal in the maintenance of human HSCs.  相似文献   

16.
In vitro differentiation of embryonic stem (ES) cells is often used to study hematopoiesis. However, the differentiation pathway of lymphocytes, in particular natural killer (NK) cells, from ES cells is still unclear. Here, we used a multi-step in vitro ES cell differentiation system to study lymphocyte development from ES cells, and to characterize NK developmental intermediates. We generated embryoid bodies (EBs) from ES cells, isolated CD34(+) EB cells and cultured them on OP9 stroma with a cocktail of cytokines to generate cells we termed ES-derived hematopoietic progenitors (ES-HPs). EB cell subsets, as well as ES-HPs derived from EBs, were tested for NK, T, B and myeloid lineage potentials using lineage specific cultures. ES-HPs derived from CD34(+) EBs differentiated into NK cells when cultured on OP9 stroma with IL-2 and IL-15, and into T cells on Delta-like 1-transduced OP9 (OP9-DL1) with IL-7 and Flt3-L. Among CD34(+) EB cells, NK and T cell potentials were detected in a CD45(-) subset, whereas CD45(+) EB cells had myeloid but not lymphoid potentials. Limiting dilution analysis of ES-HPs generated from CD34(+)CD45(-) EB cells showed that CD45(+)Mac-1(-)Ter119(-) ES-HPs are highly enriched for NK progenitors, but they also have T, B and myeloid potentials. We concluded that CD45(-)CD34(+) EB cells have lymphoid potential, and they differentiate into more mature CD45(+)Lin(-) hematopoietic progenitors that have lymphoid and myeloid potential. NK progenitors among ES-HPs are CD122(-) and they rapidly acquire CD122 as they differentiate along the NK lineage.  相似文献   

17.
Differentiation of hematopoietic stem cells (HSCs) can be influenced by different stimuli, including cytotoxic agents, certain cytokines, and contact with pathogens. Infection may result in dysregulation of these important progenitor cells and therefore interfere with the availability of blood cells. In this study we analyzed the effect of bacterial infection on HSCs concerning surface marker expression and cytokine release. Listeria monocytogenes and Yersinia enterocolitica accelerated maturation of hematopoietic progenitor cells along the myeloid lineage, as demonstrated by the upregulation of CD13, CD14, and costimulatory signals. By screening cytokine secretion, granulocyte-macrophage colony-stimulating factor, interleukin (IL)-6, IL-8, IL-10, IL-12, and tumor necrosis factor-alpha were found to be induced by bacterial infection. These data indicate that infection of HSCs with L. monocytogenes and Y. enterocolitica affects the differentiation of CD34(+) hematopoietic progenitors in vitro and may lead to secretion of cytokines that can influence the HSC differentiation capacity and immune response.  相似文献   

18.
To investigate the behavior of hematopoietic stem cells (HSCs) in cord blood (CB), we analyzed the expression and function of TIE2, a tyrosine kinase receptor. A subpopulation of Lineage (Lin)(-/low)CD34(+) cells in CB expressed TIE2 (18.8%). Assays for long-term culture-initiating cells (LTC-IC) and cobble-stone formation revealed that Lin(-/low)CD34(+)TIE2(+) cells showed to have a capacity of primitive hematopoietic precursor cells in vitro. When Lin(-/low)CD34(+)TIE2(+) cells were cultured on the stromal cells, they transmigrated under the stromal layers and kept an immature character for a few weeks. By contrast, Lin(-/low)CD34(+)TIE2(-) cells differentiated immediately within a few weeks. Finally, we confirmed that 1x10(4)Lin(-/low)CD34(+)TIE2(+) cells were engrafted in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, while 1x10(4)Lin(-/low)CD34(+)TIE2(-) cells were not. Taken together, we conclude that TIE2 is a marker of HSCs in CB. A ligand for TIE2, Ang-1 promoted the adhesion of sorted primary Lin(-/low)CD34(+)TIE2(+) cells to fibronectin (FN), and this adhesion may play a critical role in keeping HSCs in an immature status under the stromal cells.  相似文献   

19.
Kit regulates maintenance of quiescent hematopoietic stem cells   总被引:1,自引:0,他引:1  
Hematopoietic stem cell (HSC) numbers are tightly regulated and maintained in postnatal hematopoiesis. Extensive studies have supported a role of the cytokine tyrosine kinase receptor Kit in sustaining cycling HSCs when competing with wild-type HSCs posttransplantation, but not in maintenance of quiescent HSCs in steady state adult bone marrow. In this study, we investigated HSC regulation in White Spotting 41 (Kit(W41/W41)) mice, with a partial loss of function of Kit. Although the extensive fetal HSC expansion was Kit-independent, adult Kit(W41/W41) mice had an almost 2-fold reduction in long-term HSCs, reflecting a loss of roughly 10,000 Lin(-)Sca-1(+)Kit(high) (LSK)CD34(-)Flt3(-) long-term HSCs by 12 wk of age, whereas LSKCD34(+)Flt3(-) short-term HSCs and LSKCD34(+)Flt3(+) multipotent progenitors were less affected. Whereas homing and initial reconstitution of Kit(W41/W41) bone marrow cells in myeloablated recipients were close to normal, self-renewing Kit(W41/W41) HSCs were progressively depleted in not only competitive but also noncompetitive transplantation assays. Overexpression of the anti-apoptotic regulator BCL-2 partially rescued the posttransplantation Kit(W41/W41) HSC deficiency, suggesting that Kit might at least in the posttransplantation setting in part sustain HSC numbers by promoting HSC survival. Most notably, accelerated in vivo BrdU incorporation and cell cycle kinetics implicated a previously unrecognized role of Kit in maintaining quiescent HSCs in steady state adult hematopoiesis.  相似文献   

20.
Macrophage colony-stimulating factor suppresses osteoblast formation.   总被引:2,自引:0,他引:2  
We provide the first evidence that the bone marrow-derived cytokine, macrophage colony-stimulating factor (M-CSF), inhibits the formation of bone-forming osteoblasts. We examined both osteoclast and osteoblast formation in primary rat bone marrow cultures. As expected, M-CSF together with osteoprotegerin ligand (OPGL) markedly accelerated osteoclastogenesis. In contrast, treatment with M-CSF alone yielded no osteoclasts at any time. The most striking and novel observation was that M-CSF with or without OPGL dramatically suppressed osteoblast formation. In separate experiments, estradiol markedly suppressed osteoclast formation in the M-CSF/OPGL-treated cultures independently of osteoblasts. Consistent with this was the expression of estrogen receptor-alpha (ERalpha) and ERbeta mRNA in osteoclast precursors. We therefore conclude that in addition to the well-known action of M-CSF to modulate osteoclastogenesis, this cytokine may also regulate osteoblast formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号