首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium 2-propenyl thiosulfate was identified in boiled garlic (Allium sativum). When canine erythrocytes were incubated with sodium 2-propenyl thiosulfate, the methemoglobin concentration and Heinz body percentage in erythrocytes were both increased, indicating that the compound induced oxidative damage in canine erythrocytes. It seems that this compound is one of the causative agents of garlic-induced hemolysis in dogs.  相似文献   

2.
Sodium 2-propenyl thiosulfate, a water-soluble organo-sulfane sulfur compound isolated from garlic, induces apoptosis in a number of cancer cells. The molecular mechanism of action of sodium 2-propenyl thiosulfate has not been completely clarified. In this work we investigated, by in vivo and in vitro experiments, the effects of this compound on the expression and activity of rhodanese. Rhodanese is a protein belonging to a family of enzymes widely present in all phyla and reputed to play a number of distinct biological roles, such as cyanide detoxification, regeneration of iron-sulfur clusters and metabolism of sulfur sulfane compounds. The cytotoxic effects of sodium 2-propenyl thiosulfate on HuT 78 cells were evaluated by flow cytometry and DNA fragmentation and by monitoring the progressive formation of mobile lipids by NMR spectroscopy. Sodium 2-propenyl thiosulfate was also found to induce inhibition of the sulfurtransferase activity in tumor cells. Interestingly, in vitro experiments using fluorescence spectroscopy, kinetic studies and MS analysis showed that sodium 2-propenyl thiosulfate was able to bind the sulfur-free form of the rhodanese, inhibiting its thiosulfate:cyanide-sulfurtransferase activity by thiolation of the catalytic cysteine. The activity of the enzyme was restored by thioredoxin in a concentration-dependent and time-dependent manner. Our results suggest an important involvement of the essential thioredoxin-thioredoxin reductase system in cancer cell cytotoxicity by organo-sulfane sulfur compounds and highlight the correlation between apoptosis induced by these compounds and the damage to the mitochondrial enzymes involved in the repair of the Fe-S cluster and in the detoxification system.  相似文献   

3.
We recently identified sodium n-propyl thiosulfate (NPTS) and sodium 2-propenyl thiosulfate (2PTS) from boiled onion and garlic, respectively, as causative agents of hemolytic anemia in dogs. We present here data concerning the effects of these alk(en)yl thiosulfates on superoxide (O(2)(-)) generation in peripheral polymorphonuclear leukocytes (PMNs) and on adenosine 5'-diphosphate (ADP)-induced platelet aggregation in dogs and humans in vitro. Both NPTS and 2PTS increased O(2)(-) generation significantly (P<0.05 at 1mM NPTS, P<0.005 at 0.1 and 1mM 2PTS) and reduced its reaction time significantly (P<0.05 between 0.01 and 1mM NPTS and at 1mM 2PTS) in canine PMNs stimulated by phorbol 12-myristate 13-acetate, compared with the control without alk(en)yl thiosulfates. However, a tendency to return to the control level was observed at 10mM of the alk(en)yl thiosulfates in both O(2)(-) generation and its reaction time. Although NPTS and 2PTS did not exert any significant effect on the O(2)(-) generation in human PMNs, 2PTS reduced its reaction time significantly (P<0.05) at 1 and 10mM compared with the control, showing that 2PTS accelerated O(2)(-) generation in human PMNs. The difference in effects on O(2)(-) generation may be due to that in susceptibility to alk(en)yl thiosulfates between canine and human PMNs. On the other hand, NPTS and 2PTS were shown to significantly inhibit ADP-induced platelet aggregation at 0.01mM (P<0.01) in canine platelets and at 0.001-0.1mM (P<0.05) in human platelets. In contrast, the maximal aggregation percentage returned to the control level at 1mM of alk(en)yl thiosulfates in both canine and human platelets. From these results, we conclude that NPTS and 2PTS have the potential to promote immune functions and prevent cardiovascular diseases.  相似文献   

4.
We previously found that sodium 2-propenyl thiosulfate (2PTS) has an anti-aggregatory effect in vitro on both canine and human platelets at relatively low concentrations, but the extent of aggregation tends to return to the control level at high concentrations. To clarify the mechanism of this modulatory influence of 2PTS on the aggregation of platelets, we investigated the effects of 2PTS on cyclooxygenase (COX) activity and the reduced glutathione (GSH) concentration in canine platelets. Platelet COX activity was inhibited by 2PTS in a dose-dependent manner up to 0.1 mM, but tended to return to the control level at 1 mM. In contrast, the platelet GSH concentration decreased in a dose-dependent manner after treatment with 2PTS and a significant decrease was observed at 0.1 mM (P<0.05) and 1 mM (P<0.001). Furthermore, the activity of purified COX-1 was directly inhibited by addition of GSH in a dose-dependent manner. From these results, we conclude that the 2PTS-induced inhibition of platelet aggregation occurs as a result of inhibition of COX activity. Additionally, 2PTS may have a modulatory effect on platelet aggregation by affecting the platelet GSH concentration.  相似文献   

5.
Over three decades ago, Parker and Snow (Am J Physiol 223: 888-893, 1972) demonstrated that canine erythrocytes undergo an increase in cation permeability when incubated with extracellular ATP. In this study we examined the expression and function of the channel/pore-forming P2X(7) receptor on canine erythrocytes. P2X(7) receptors were detected on canine erythrocytes by immunocytochemistry and immunoblotting. Extracellular ATP induced (86)Rb(+) (K(+)) efflux from canine erythrocytes that was 20 times greater than that from human erythrocytes. The P2X(7) agonist 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-trisphosphate (BzATP) was more potent than ATP, and both stimulated (86)Rb(+) efflux from erythrocytes in a dose-dependent fashion with EC(50) values of approximately 7 and approximately 309 microM, respectively. 2-Methylthioadenosine 5'-triphosphate and adenosine 5'-O-(3-thiotriphosphate) induced a smaller (86)Rb(+) efflux from erythrocytes, whereas ADP, AMP, UTP, or adenosine had no effect. ATP-induced (86)Rb(+) efflux from erythrocytes was inhibited by oxidized ATP, KN-62, and Brilliant blue G, known P2X(7) antagonists. ATP also induced uptake of choline(+) into canine erythrocytes that was 60 times greater than that into human erythrocytes. Overnight incubation of canine erythrocytes with ATP and BzATP induced phosphatidylserine exposure in >80% of cells and caused up to 20% hemolysis. In contrast, <30% of human erythrocytes showed phosphatidylserine exposure after overnight incubation with ATP and BzATP, and hemolysis was negligible. Flow cytometric measurements of ATP-induced ethidium(+) uptake showed that P2X(7) function was three times lower in canine monocytes than in human monocytes. These data show that the massive cation permeability increase induced by extracellular ATP in canine erythrocytes results from activation and opening of the P2X(7) receptor channel/pore.  相似文献   

6.
1. Erythrocytes in whole blood samples from dogs with phosphofructokinase (PFK) deficiency had lower 2,3-diphosphoglycerate (2,3-DPG) concentrations, higher ATP concentrations, and were more alkaline fragile than normal canine erythrocytes. 2. Reticulocytes from a PFK-deficient dog contained nearly three times the ATP concentration of normal canine erythrocytes, and had 2,3-DPG concentrations similar to normal canine erythrocytes. 3. PFK-deficient reticulocytes are not alkaline fragile. 4. The erythrocyte 2,3-DPG concentration in whole blood samples from PFK-deficient dogs was increased to normal by in vitro incubation with dihydroxyacetone, pyruvate and phosphate. This incubation resulted in only a slight increase in ATP concentration. 5. The alkaline fragility of these 2,3-DPG replenished PFK-deficient erythrocytes was normal. 6. Findings in this study indicate that the increased alkaline fragility of canine PFK-deficient erythrocytes is the result of decreased intracellular 2,3-DPG concentration.  相似文献   

7.
The oxidative effects of sodium n-propylthiosulfate, one of the causative agents of onion-induced hemolytic anemia in dogs, were investigated in vitro using three types of canine erythrocytes, which are differentiated by the concentration of reduced glutathione and the composition of intracellular cations. After incubation with sodium n-propylthiosulfate, the methemoglobin concentration and Heinz body count in all three types of erythrocytes increased and a decrease in the erythrocyte reduced glutathione concentration was then observed. The erythrocytes containing high concentrations of potassium and reduced glutathione (approximately five times the normal values) were more susceptible to oxidative damage by sodium n-propylthiosulfate than were the normal canine erythrocytes. The susceptibility of the erythrocytes containing high potassium and normal reduced glutathione concentrations was intermediate between those of erythrocytes containing high concentrations of potassium and reduced glutathione and normal canine erythrocytes. In addition, the depletion of erythrocyte reduced glutathione by 1-chloro-2, 4-dinitrobenzene resulted in a marked decrease in the oxidative injury induced by sodium n-propylthiosulfate in erythrocytes containing high concentrations of potassium and reduced glutathione. The generation of superoxide in erythrocytes containing high concentrations of potassium and reduced glutathione was 4.1 times higher than that in normal canine erythrocytes when the cells were incubated with sodium n-propylthiosulfate. These observations indicate that erythrocyte reduced glutathione, which is known as an antioxidant, accelerates the oxidative damage produced by sodium n-propylthiosulfate.  相似文献   

8.
We previously demonstrated that canine erythrocytes express the P2X7 receptor, and that the function and expression of this receptor is greatly increased compared with human erythrocytes. Using 86Rb+ (K+) and organic cation flux measurements, we further compared P2X7 in erythrocytes and mononuclear leukocytes from these species. Concentration response curves of BzATP- and ATP-induced 86Rb+ efflux demonstrated that canine P2X7 was less sensitive to inhibition by extracellular Na+ ions compared to human P2X7. In contrast, canine and human P2X7 showed a similar sensitivity to the P2X7 antagonists KN-62 and Mg2+. KN-62 and Mg2+ also inhibited ATP-induced choline+ uptake into canine and human erythrocytes. BzATP and ATP but not ADP or NAD induced ethidium+ uptake into canine monocytes, T- and B-cells. ATP-induced ethidium+ uptake was twofold greater in canine T-cells compared to canine B-cells and monocytes. KN-62 inhibited the ATP-induced ethidium+ uptake in each cell type. P2X7-mediated uptake of organic cations was 40- and fivefold greater in canine erythrocytes and lymphocytes (T- and B-cells), respectively, compared to equivalent human cell types. In contrast, P2X7 function was threefold lower in canine monocytes compared to human monocytes. Thus, P2X7 activation can induce the uptake of organic cations into canine erythrocytes and mononuclear leukocytes, but the relative levels of P2X7 function differ to that of equivalent human cell types.  相似文献   

9.
The Salmonella typhimurium phs chromosomal locus essential for the reduction of thiosulfate to hydrogen sulfide was cloned, and some features of its regulation were examined. The phs locus conferred H2S production on Escherichia coli, suggesting that it contains the structural gene for thiosulfate reductase. H2S production by the E. coli host was, as in S. typhimurium, suppressed by nitrate or glucose in the growth medium. The presence of plasmid-borne phs genes in a S. typhimurium chl+ host containing a chromosomal phs::lacZ operon fusion was found to significantly increase the relative induction efficiency of beta-galactosidase by thiosulfate. These results are consistent with a model for phs regulation in which the true inducer is not thiosulfate per se and in which the action of a phs-encoded molybdoprotein, possibly the reductase itself, converts thiosulfate into a compound that resembles the true inducer more closely than does thiosulfate.  相似文献   

10.
Enzymatic hydrolysis of a mixture of (chloromethyldimethylsilyl)-2-propenyl acetate isomers was investigated by using immobilized Candida antarctica lipase as biocatalyst. TLC analysis and 1H NMR spectroscopy were used to monitor the extent of the reaction. At 60 degrees C, the enzyme exhibited a high selectivity towards 3-(chloromethyldimethylsilyl)-2-propenyl acetate which was almost quantitatively hydrolyzed, whereas, only 11% of 2-(chloromethyldimethylsilyl)-2-propenyl acetate reacted with the lipase. Consequently, the unreacted acetate was readily purified from the reaction medium by flash column chromatography and deacetoxylated in acidic methanol to give the corresponding hydroxy compound in a 71% global yield. On the other hand, without lipase, chemical treatment of the acetate mixture resulted in much lower yields in hydroxy compounds followed by a tedious purification process.  相似文献   

11.
A panel of 18 protein tyrosine kinase antagonists were tested for their inhibitory effect on human P2X7 receptor-mediated 86Rb+ (K+) efflux. The most potent compound (compound P), a phthalazinamine derivative and an inhibitor of vascular endothelial growth factor receptor kinase, blocked ATP-induced 86Rb+-efflux in human B-lymphocytes and erythrocytes by 76% and 66%, respectively. This inhibition was dose-dependent in both cell types with an IC50 of ∼5 μM. Kinetic analysis showed compound P was a non-competitive inhibitor of P2X7. This compound also inhibited ATP-induced ethidium+ influx into B-lymphocytes and P2X7-transfected-HEK-293 cells, as well as ATP-induced 86Rb+-efflux from canine erythrocytes. Externally, but not internally, applied compound P impaired ATP-induced inward currents in P2X7-transfected-HEK-293 cells. This study demonstrates that a novel protein tyrosine kinase antagonist directly impairs native and recombinant human P2X7 receptors. The data suggests that antagonists which target ATP-binding sites of kinases may potentially block the P2X7 receptor.  相似文献   

12.
Nystatin is a membrane-active polyene macrolide antibiotic and a channel-forming ionophore. Nystatin exhibits in vitro activity against Babesia gibsoni infecting normal canine erythrocytes containing low potassium (LK) and high sodium concentrations, i.e., LK erythrocytes. The calculated IC(50) value of nystatin against B. gibsoni infecting LK erythrocytes was 31.96 μg/ml. The anti-babesial activity of nystatin disappeared when B. gibsoni in LK erythrocytes were incubated in culture media containing high potassium concentrations (HK). Moreover, when the parasites were harbored in canine HK erythrocytes, which contained high potassium and low sodium concentrations as a result of high Na-K-ATPase activity, the in vitro anti-babesial activities of nystatin also disappeared, apparently due to protection by HK erythrocytes. This suggested that nystatin could show in vitro anti-babesial activity against B. gibsoni by its ionophorous activity, the same as other ionophores such as valinomycin. Subsequently, the effects of nystatin on the host cells were observed. Nystatin could not modify the intracellular concentrations of potassium, sodium, adenosine triphosphate, or glucose in either LK or HK erythrocytes, although it caused weak hemolysis in HK erythrocytes. In addition, nystatin did not affect the survival of canine peripheral polymorphonuclear leukocytes. In conclusion, nystatin destroyed B. gibsoni by ionophorous activity but did not affect either canine erythrocytes or leukocytes in vitro.  相似文献   

13.
When cell-free preparations of Chlorella pyrenoidosa Chick (Emerson strain 3) form thiosulfate from labeled sulfate, another radioactive compound also appears. This compound has been isolated in quantity and is shown to be identical with adenosine-3′-phosphate-5′-phosphosulfate (PAPS) on the basis of its chromatographic and electrophoretic behavior, chemical composition, sensitivity to selective degradative enzymes, and its ability to serve as a substrate for rat liver aryl sulphotransferase. In addition, as expected for PAPS, the compound on mild acid treatment yields all of its radioactive sulfur as sulfate, and is converted to a compound identical with adenosine-3′,5′-diphosphate (PAP). Replacement of sulfate and ATP by this PAP35S in the usual incubation mixture yields the same product, thiosulfate, which can be isolated as such or detected as acid-volatile radioactivity. This conversion of PAP35S to thiosulfate still requires the addition of Mg2+ and a reductant such as 2,3-dimercaptopropan-1-ol (BAL). The cause of our previous result that high concentrations of ATP inhibit thiosulfate formation from sulfate can be ascribed to a small amount of PAP contaminating the ATP preparations, since PAP proves to be an exceedingly effective inhibitor of the conversion of PAP35S to thiosulfate. Sulfate reduction to thiosulfate by Chlorella extracts is discussed and compared with similar systems from other organisms.  相似文献   

14.
Mixotrophic growth of the facultatively autotrophic acidophile Thiobacillus acidophilus on mixtures of glucose and thiosulfate or tetrathionate was studied in substrate-limited chemostat cultures. Growth yields in mixotrophic cultures were higher than the sum of the heterotrophic and autotrophic growth yields. Pulse experiments with thiosulfate indicated that tetrathionate is an intermediate during thiosulfate oxidation by cell suspensions of T. acidophilus. From mixotrophic growth studies, the energetic value of thiosulfate and tetrathionate redox equivalents was estimated to be 50% of that of redox equivalents derived from glucose oxidation. Ribulose 1,5-bisphosphate carboxylase (RuBPCase) activities in cell extracts and rates of sulfur compound oxidation by cell suspensions increased with increasing thiosulfate/glucose ratios in the influent medium of the mixotrophic cultures. Significant RuBPCase and sulfur compound-oxidizing activities were detected in heterotrophically grown T. acidophilus. Polyhedral inclusion bodies (carboxysomes) could be observed at low frequencies in thin sections of cells grown in heterotrophic, glucose-limited chemostat cultures. Highest RuBPCase activities and carboxysome abundancy were observed in cells from autotrophic, CO2-limited chemostat cultures. The maximum growth rate at which thiosulfate was still completely oxidized was increased when glucose was utilized simultaneously. This, together with the fact that even during heterotrophic growth the organism exhibited significant activities of enzymes involved in autotrophic metabolism, indicates that T. acidophilus is well adapted to a mixotrophic lifestyle. In this respect, T. acidophilus may have a competitive advantage over autotrophic acidophiles with respect to the sulfur compound oxidation in environments in which organic compounds are present.  相似文献   

15.
Estrone sulfamate (EMATE) is a potent irreversible inhibitor of steroid sulfatase (STS). In order to further expand SAR, the compound was substituted at the 2- and/or 4-positions and its 17-carbonyl group was also removed. The following general order of potency against STS in two in vitro systems is observed for the derivatives: The 4-NO(2) > 2-halogens, 2-cyano > EMATE (unsubstituted)>17-deoxyEMATE > 2-NO(2) > 4-bromo>2-(2-propenyl), 2-n-propyl > 4-(2-propenyl), 4-n-propyl > 2,4-(2-propenyl)= 2,4-di-n-propyl. There is a clear advantage in potency to place an electron-withdrawing substituent on the A-ring with halogens preferred at the 2-position, but nitro at the 4-position. Substitution with 2-propenyl or n-propyl at the 2- and/or 4-position of EMATE, and also removal of the 17-carbonyl group are detrimental to potency. Three cyclic sulfamates designed are not STS inhibitors. This further confirms that a free or N-unsubstituted sulfamate group (H(2)NSO(2)O-) is a prerequisite for potent and irreversible inhibition of STS as shown by inhibitors like EMATE and Irosustat. The most potent derivative synthesized is 4-nitroEMATE (2), whose IC(50)s in placental microsomes and MCF-7 cells are respectively 0.8 nM and 0.01 nM.  相似文献   

16.
A challenge for photobiological production of hydrogen gas (H(2)) as a potential biofuel is to find suitable electron-donating feedstocks. Here, we examined the inorganic compound thiosulfate as a possible electron donor for nitrogenase-catalyzed H(2) production by the purple nonsulfur phototrophic bacterium (PNSB) Rhodopseudomonas palustris. Thiosulfate is an intermediate of microbial sulfur metabolism in nature and is also generated in industrial processes. We found that R. palustris grew photoautotrophically with thiosulfate and bicarbonate and produced H(2) when nitrogen gas was the sole nitrogen source (nitrogen-fixing conditions). In addition, illuminated nongrowing R. palustris cells converted about 80% of available electrons from thiosulfate to H(2). H(2) production with acetate and succinate as electron donors was less efficient (40 to 60%), partly because nongrowing cells excreted the intermediary metabolite α-ketoglutarate into the culture medium. The fixABCX operon (RPA4602 to RPA4605) encoding a predicted electron-transfer complex is necessary for growth using thiosulfate under nitrogen-fixing conditions and may serve as a point of engineering to control rates of H(2) production. The possibility to use thiosulfate expands the range of electron-donating compounds for H(2) production by PNSBs beyond biomass-based electron donors.  相似文献   

17.
The growth of Thiobacillus (T.) intermedius strain K12 and Thiobacillus versutus strain DSM 582 on thiosulfate and tetrathionate was studied combining on-line measurements of metabolic activity and sulfur compound analysis. Most results indicate that T. intermedius oxidized thiosulfate via tetrathionate to sulfate. Concomittantly, sulfur compound intermediates like triand pentathionate were detectable. The formation is probably the result of highly reactive sulfane monosulfonic acids. The formation of tetrathionate allows the cells to buffer temporarily the proton excretion from sulfuric acid production. With T. versutus intermediate sulfur compounds were not detectable, however, sulfur was detectable. The possibility of a thiosulfate oxidation via dithionate, S2O inf6 sup2- , is discussed. The on-line measurement of metabolic activity by microcalorimetry enabled us to detect that cells of T. intermedius adhere to surfaces and produce a biofilm by a metabolic process whereas those of T. versutus fail to do so. The importance of the finding is discussed.  相似文献   

18.
Valinomycin and salinomycin-Na, 2 ionophorous antibiotics, exhibited in vitro antibabesial activities against Babesia gibsoni that infected normal canine erythrocytes containing low potassium (LK) and high sodium concentrations, i.e., LK erythrocytes, which completely lack Na,K-ATPase activity. The level of parasitemia of B. gibsoni was significantly decreased when the parasites were incubated in culture medium containing either 10(-1) ng/ml valinomycin or 10(2) ng/ml salinomycin-Na for 24 hr. Four-hour incubation in the culture medium containing 5 μg/ml salinomycin-Na led to the destruction of most parasites. In contrast, when the parasites infected canine erythrocytes containing high potassium (HK) and low sodium concentrations, i.e., HK erythrocytes, the in vitro antibabesial activities of both ionophorous antibiotics seemed to be weakened, apparently due to the protection by the host cells. Therefore, differential influences of ionophorous antibiotics on LK and HK erythrocytes were observed. In LK erythrocytes, the intracellular concentrations of potassium, sodium, and adenosine triphosphate (ATP) were not modified, and hemolysis was not observed after incubation in the medium containing each ionophorous antibiotic. These results suggested that these ionophorous antibiotics did not affect cells without Na,K-ATPase, and directly affected B. gibsoni. In HK erythrocytes, the ionophorous antibiotics increased the intracellular sodium concentration, and decreased the intracellular potassium and ATP concentrations, causing obvious hemolysis. Additionally, the decrease of the intracellular ATP concentration and the hemolysis in HK erythrocytes caused by valinomycin disappeared when the activity of Na,K-ATPase was inhibited by ouabain. These results indicate that modification of the intracellular cation concentrations by the ionophorous antibiotics led to the activation of Na,K-ATPase and increased consumption of intracellular ATP, and that the depletion of intracellular ATP resulted in hemolysis in HK erythrocytes. Moreover, the antibabesial activity of valinomycin disappeared when B. gibsoni in LK erythrocytes were incubated in culture media containing high potassium concentrations. This showed that the intracellular cation concentration in the parasites was not modified in those media and would remain the same.  相似文献   

19.
Two synthetic retinoids were examined for their ability to support growth in male vitamin A-deficient rats. One of the compounds, (E)-4-[2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1 -propenyl]-benzoic acid (TTNPB), was found to be highly effective; it was 35-fold more active than all-trans-retinoic acid. Thus, the in vivo results were in agreement with the in vitro activity of this compound published by previous investigators, and support the view that this compound may be useful in determining the molecular mechanism of action of the retinoids. Another analog, 4,4-difluororetinoic acid, was only 12% as effective as retinoic acid. However, the possible instability of this compound and the electronegativity of the fluoro groups prohibited conclusions concerning the biological function of metabolic modification on the 4 position of retinoic acid.  相似文献   

20.
Acetylcholine mustard aziridinium ion inhibited the transport of [3H]choline into human erythrocytes. Treatment of the erythrocytes with 1 X 10(-4) M tetraethylpyrophosphate prevented the inhibition of [3H]choline transport by acetylcholine mustard aziridinium ion. Hydrolyzed acetylcholine mustard aziridinium ion inhibited choline transport both in the presence and absence of 1 X 10(-4) M tetraethylpyrophosphate. The product of hydrolysis was equipotent with acetylcholine mustard in its ability to inhibit choline transport; incubation of this product with sodium thiosulfate prevented inhibition of choline transport thereby indicating the presence of an aziridinium ion. The hydrolysis product is likely to be choline mustard aziridinium ion. Results on the efflux of [3H]choline from erythrocytes in the presence of the proposed choline mustard aziridinium ion showed that the mustard moiety was transported into the red cells on the choline carrier. The rate of efflux of [3H]choline produced by choline mustard aziridinium ion was 55% of that produced by the same concentration of choline. It is concluded that acetylcholinesterase (EC 3.1.1.7) of red cells rapidly hydrolyzes acetylcholine mustard aziridinium ion to acetate and choline mustard aziridinium and the latter compound can act as a potent inhibitor of choline transport. This finding would indicate that the hemicholinium-like toxicity of acetylcholine mustard in the mouse is due to the formation of choline mustard aziridinium ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号