首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subtelomeric chromosomal rearrangements detected in patients with idiopathic mental retardation and dysmorphic features: Cryptic aberrations involving the subtelomeric regions of chromosomes are thought to be responsible for idiopathic mental retardation (MR) and multiple congenital anomalies, although the exact incidence of these aberrations is still unclear. With the advent of chromosome-specific telomeric Fluorescence In Situ Hybridization (FISH) probes, it is now possible to identify submicroscopic rearrangements of distal ends of the chromosomes that can not be detected by conventional cytogenetic methods. In this study, cryptic subtelomeric chromosomal aberrations were detected in two of ten patients with idiopathic MR and dysmorphic features by using FISH probes of subtelomeric regions of all chromosome arms. A cryptic unbalanced de novo translocation was detected between the subtelomeric regions of the chromosome 10p and 18p in a patient with severe mental retardation, sensorineuronal deafness and several dysmorphic features. In the other patient, with mild mental retardation and dysmorphic features, a de novo subtelomeric deletion of chromosome 2q was found. In conclusion, in both familial and sporadic cases with idiopathic MR and dysmorphic features, the detection of chromosomal aberrations including subtelomeric rearrangements is of great importance in offering genetic counseling and prenatal diagnosis.  相似文献   

2.
In idiopathic or nonspecific mental retardation, the overall rate of cryptic subtelomeric rearrangements is estimated to be about 5%. Development of cost-effective screening for subtelomeric deletions would help clinical geneticists to make specific diagnoses in children with idiopathic mental retardation. Current screening modalities include fluorescence in situ hybridization (FISH) using subtelomeric probes and PCR-based quantitative analyses. Reductions in the cost and turnaround time will make the complete screening of subtelomeric rearrangements more widely used in clinical settings. Recently, a versatile method, called the multiplex PCR/liquid chromatography assay (MP/LC), was developed to assess copy numbers in this assay. Multiple genomic regions are amplified using unlabeled primers, then separated by ion-pair reversed-phase high-performance liquid chromatography. In the present study, we developed an MP/LC-based subtelomeric screening system that involves 21 multiple reactions and validated the protocol by analyzing 16 publicly available cell lines with known cytogenetic abnormalities involving at least one subtelomere per patient. To confirm the validity of the MP/LC method, we analyzed these cell lines concurrently with array-based comparative genomic hybridization (array-CGH), which gives higher resolution than the conventional G-banding technique. Among those 16 samples, the results from MP/LC and array-CGH agreed with each other perfectly. In 2 of the 16 samples, MP/LC correctly revealed subtelomeric duplications that were detected by array-CGH but were undetected by conventional cytogenetics, demonstrating the sensitivity of the MP/LC assay. This system is expected to be useful for making specific diagnoses and in genetic counseling for children with idiopathic mental retardation, a sizable fraction of whom have subtelomeric rearrangements.  相似文献   

3.
Subtelomeric rearrangements significantly contribute to idiopathic mental retardation and result in several mental retardation syndromes; however, most subtelomeric defects lack a characteristic phenotype. Thirty patients with unexplained mental retardation, a normal R banded karyotype at the 550 band, and no clinically recognizable syndrome were screened by Multiplex ligation-dependent probe amplification (MLPA). Four anomalies were identified: deletion 17q, duplications (4q), and associated duplications 15q and Xq. This duplication was found in two sisters of the proband. Anomalies were unidentified by the conventional technique. The prevalence of subtelomeric imbalances in our cohort of moderate to severe mental retardation is around 13% and is consistent with the literature. The sensitivity of the MLPA technique was characterized on cytogenetically verified positive and negative controls. MLPA is a fast, reliable, and relatively inexpensive technique to detect subtelomeric rearrangement in comparison with the fluorescence in situ hybridization (FISH) technique.  相似文献   

4.
Cryptic unbalanced rearrangements involving chromosome ends are a significant cause of idiopathic mental retardation. The most frequently used technique to screen for these subtle rearrangements is Multiprobe fluorescence in situ hybridization (FISH). As this is a labor-intensive technique, we used microsatellite genotyping to detect possible subtelomeric rearrangements in a study population. Out of the 70 patients we screened, three chromosomal rearrangements were detected: a deletion of marker D2S2986, a deletion of marker D7S594 and a deletion of marker D19S424. However, none of these aberrations appeared to be disease causing.  相似文献   

5.
BACKGROUND: Fluorescent subtelomeric probes for the 41 different subtelomeric regions (the p arms of the acrocentric chromosomes were excluded) have been developed over the last 10 years. These probes can detect deletions, duplications, and translocations in the gene-rich subtelomeric regions of human chromosomes, regions where crossing over frequently occurs and where a high number of abnormalities have been found. Recently, commercially produced probes have become available, which has led to the detection of subtelomeric abnormalities in 7.4% of patients with moderate to severe mental retardation (Knight et al., 1999). CASES: We evaluated 43 dysmorphic children with developmental delay and/or mental retardation of unknown etiology and/or autism who were previously assessed for chromosome abnormalities, metabolic disorders, or recognizable dysmorphic syndromes, all of which were ruled out. Of the 43 children tested, 6 (14%) were found to have subtelomeric aberrations. CONCLUSIONS: We recommend that patients with dysmorphic features and mental retardation of unknown etiology who also have a normal standard chromosome analysis should have subtelomeric FISH testing performed earlier in their clinical workup.  相似文献   

6.
Cryptic subtelomeric chromosome rearrangements are a major cause of mild to severe mental retardation pointing out the necessity of sensitive screening techniques to detect such aberrations among affected patients. In this prospective study a group of 30 patients with unexplained developmental retardation and dysmorphic features or congenital abnormalities were analysed using the recently published multiplex FISH telomere (M-TEL) integrity assay in combination with conventional G-banding analysis. The patients were selected by one or more of the following criteria defined by de Vries et al.: (a) family history with two or more affected individuals, (b) prenatal onset growth retardation, (c) postnatal growth abnormalities, (d) facial dysmorphic features, (e) non-facial dysmorphism and congenital abnormalities. In addition, we included two patients who met these criteria and revealed questionable chromosome regions requiring further clarification. In four patients (13.3%) cryptic chromosome aberrations were successfully determined by the M-TEL integrity assay and in two patients with abnormal chromosome regions intrachromosomal aberrations were characterized by targetted FISH experiments. Our results accentuate the requirement of strict selection criteria prior to patient testing with the M-TEL integrity assay. Another essential precondition is high-quality banding analysis to identify structural abnormal chromosomes. The detection of familial balanced translocation carriers in 50% of the cases emphasizes the significance of such an integrated approach for genetic counselling and prenatal diagnosis.  相似文献   

7.
Vundinti BR  Korgaonkar S  Ghosh K 《Gene》2012,498(1):128-130
Small supernumerary marker chromosomes (sSMCs) are a heterogeneous group with regards to their clinical effects as well as their chromosomal origin and their shape. The sSMCs are associated with mental retardation and dysmorphic features. Multiple sSMCs are rarely reported. We report four sSMCs in a case of dysmorphic features and intellectual disabilities. Among the four sSMCs, one sSMC confirmed to be chromosome 5 derived sSMC using fluorescence in situ hybridization (FISH) and spectral karyotyping (SKY). The sSMCs were de novo originated as parental chromosomal analysis revealed normal karyotypes. The sSMC derived from chromosome 5 might be associated with mental retardation and dysmorphic features in the present case. However the remaining three sSMCs might have originated from repetitive sequences of chromosomes.  相似文献   

8.
We report the first case of inherited ring chromosome 8 syndrome without loss of subtelomeric sequences. The proband is a 6 1/2-year-old boy with short stature, microcephaly, mild mental retardation, and behavioral problems including hyperactivity and attention deficit. His mother presented the same physical features but intelligence was normal. Family history also revealed an uncle and a grandmother, with short stature and microcephaly. Moderate mental retardation was reported in the uncle. Karyotypes and fluorescence in situ hybridization (FISH) analyses were performed on peripheral blood lymphocytes for both child and mother. The child's karyotype was reported as 46,XY,r(8)(p23q24.3)[24]/45,XY,-8[2] and the mother's karyotype 46,XX,r(8)(p23q24.3)[22]/45,XX,-8[2]/47,XX,r(8)(p23q24.3), +r(8)(p23q24.3)[1]. FISH studies showed no deletion of subtelomeric sequences for both child and mother indicating that no or little chromosomal euchromatic material has been deleted. These findings indicate that ring chromosome 8 without loss of subtelomeric sequences can be inherited and that carriers in a same family present with cognitive function ranging from mild mental retardation to normal intelligence.  相似文献   

9.
An 8-year-old boy presenting with hypotonia, moderate mental retardation, developmental delay, and psychomotor retardation is reported. Magnetic resonance imaging of the brain at age 3 years revealed a Dandy-Walker variant. Cytogenetic analysis of the peripheral blood revealed a derivative chromosome 12 with unknown additional material attached to the distal region of the long arm of chromosome 12. The parental karyotypes were normal. Spectral karyotyping (SKY) using the 24-color SKY probes and fluorescence in situ hybridization (FISH) using the specific 7p, 7q, 12p, and 12q telomeric probes confirmed a duplication of distal 7p and a deletion of terminal 12q. The karyotype of the proband was designated as 46,XY.ish der(12)t(7;12) (p21.2;q24. 33)(SKY+, 7pTEL+, 12qTEL-). The present case provides evidence for the association of partial trisomy 7p (7p21.2-->pter) and partial monosomy 12q (12q24.33-->qter) with a cerebellar malformation and the usefulness of SKY and FISH in the identification of a de novo aberrant chromosome resulting from an unbalanced translocation.  相似文献   

10.
Fluorescent in situ hybridization (FISH) was performed in 76 patients referred to our department because of intellectual disability and dysmorphic features that can be related to subtelomeric microaberrations. In all the patients, conventional cytogenetic methods revealed normal karyotype. Four (5.3%) subtelomeric rearrangements were detected by FISH: 2 subtelomeric 1p36 deletions, an unbalanced translocation involving chromosomes 1 and 12 with 1p36 deletion, and a de novo balanced translocation involving chromosomes 19 and 22. Thus, 3 cases of 1p36 subtelomeric deletion were found (3.95%). To confirm subtelomeric rearrangements in 2 patients, comparative genomic hybridization (CGH) was applied. Moreover, 3 cases of polymorphism without phenotypic effects were found: in 2 patients, the polymorphism involved the long arm of chromosome 2 (maternal derivative in both patients), while in the third patient, a polymorphism of the long arm of chromosome 7 was diagnosed. The latter polymorphism was also found in the patient’s mother and grandfather.  相似文献   

11.
A case with de novo interstitial deletion of chromosome 7q21.1-q22: A patient with multiple congenital anomalies was found to have a de novo proximal interstitial deletion of chromosome 7q21.1-q22. The patient was 10.5 years of age, and manifestations include growth retardation (below 3rd percentile), mental retardation, mild microcephaly, hypersensitivity to noise, mild spasticity, short palpebral fissures, alternant exotropia, compensated hypermetropic astigmatism, hypotelorism, hypoplastic labia majora and minora, clinodactyly of fingers 4 and 5. Molecular studies revealed that the deletion had a paternal origin, while chromosomes of both parents cytogenetically were shown to be normal. Molecular, and fluorescence in situ hybridization (FISH) analyses confirmed no deletion at the Williams-Beuren Syndrome region. Some of the heterogeneous clinical findings were consistent with previously reported cases of same chromosomal breakpoints.  相似文献   

12.
"Ring syndrome" is described as those cases with complete ring chromosomes showing, independently of the chromosome involved, severe growth failure, minor dysmorphic features, and mild-to-moderate mental retardation, without major malformations. We present a girl with ring 2 chromosome, exhibiting severe growth failure, minor dysmorphic features, spontaneously closed ventricular septum defect, and normal development. G-banding chromosome analysis and fluorescence in situ hybridization (FISH) analysis using chromosome-specific subtelomeric probes (2ptel, 2qtel) demonstrated the major karyotype as 46,XX,r(2)(p25.3q37.3).ish r(2)(2ptel+,2qtel+). We review the cases with "ring syndrome" confirmed by FISH using chromosome-specific subtelomeric probes, suggesting that this method might be useful to predict developmental prognosis in a case with an apparently complete ring chromosome.  相似文献   

13.
We present a female child with mild mental retardation and congenital malformations. After fluorescence in situ hybridization (FISH) we found only abnormal karyotype in all cells. We used rapid FISH and original DNA probes--PAC62.10.1 and PAC20.19.N, specific for segments of chromosome 16q24. Karyotype of proband 46,XX.ish del(16)(q24.2:) (PAC20.19.N,PAC62.10.1-). Parent karyotypes are normal. This case may suggest the presence of clinical picture 16q- with defined clinical polymorphism at small telomeric loss, and also its necessary of the use of molecular-cytogenetic techniques in genetic departments.  相似文献   

14.
Fluorescence in situ hybridization (FISH) with biotin-labeled probes mapping to 11p13 has been used for the molecular analysis of deletions of the WAGR (Wilms tumor, aniridia, genitourinary abnormalities, and mental retardation) locus. We have detected a submicroscopic 11p13 deletion in a child with inherited aniridia who subsequently presented with Wilms tumor in a horseshoe kidney, only revealed at surgery. The mother, who has aniridia, was also found to carry a deletion including both the aniridia candidate gene (AN2) and the Wilms tumor predisposition gene (WT1). This is therefore a rare case of an inherited WAGR deletion. Wilms tumor has so far only been associated with sporadic de novo aniridia cases. We have shown that a cosmid probe for a candidate aniridia gene, homologous to the mouse Pax-6 gene, is deleted in cell lines from aniridia patients with previously characterized deletions at 11p13, while another cosmid marker mapping between two aniridia-associated translocation breakpoints (and hence a second candidate marker) is present on both chromosomes. These results support the Pax-6 homologue as a strong candidate for the AN2 gene. FISH with cosmid probes has proved to be a fast and reliable technique for the molecular analysis of deletions. It can be used with limited amounts of material and has strong potential for clinical applications.  相似文献   

15.
The clinical implementation of array comparative genomic hybridization has revolutionized the diagnosis of patients with syndromic or nonsyndromic mental retardation. Multiple studies of hundreds of patients with idiopathic mental retardation, and normal karyotype and/or subtelomeric testing using genome-wide microarray platforms with approximately 2000 to >30,000 (tiling-path) interrogating BAC/PAC probes have detected chromosome abnormalities in up to 17% of cases. Surprisingly, some of the pathogenic changes are mosaic and not detectable in conventional karyotyping. Commercially available genome-wide microarrays with >300,000 synthesized oligonucleotide probes enable higher resolution and sensitivity and will probably replace the BAC/PAC arrays in clinical laboratories.  相似文献   

16.
In the search for genetic causes of mental retardation, we have studied a five-generation family that includes 10 individuals in generations IV and V who are affected with mild-to-moderate mental retardation and mild, nonspecific dysmorphic features. The disease is inherited in a seemingly autosomal dominant fashion with reduced penetrance. The pedigree is unusual because of (1) its size and (2) the fact that individuals with the disease appear only in the last two generations, which is suggestive of anticipation. Standard clinical and laboratory screening protocols and extended cytogenetic analysis, including the use of high-resolution karyotyping and multiplex FISH (M-FISH), could not reveal the cause of the mental retardation. Therefore, a whole-genome scan was performed, by linkage analysis, with microsatellite markers. The phenotype was linked to chromosome 16p13.3, and, unexpectedly, a deletion of a part of 16pter was demonstrated in patients, similar to the deletion observed in patients with ATR-16 syndrome. Subsequent FISH analysis demonstrated that patients inherited a duplication of terminal 3q in addition to the deletion of 16p. FISH analysis of obligate carriers revealed that a balanced translocation between the terminal parts of 16p and 3q segregated in this family. This case reinforces the role of cryptic (cytogenetically invisible) subtelomeric translocations in mental retardation, which is estimated by others to be implicated in 5%-10% of cases.  相似文献   

17.
Unbalanced submicroscopic subtelomeric chromosomal rearrangements represent a significant cause of unexplained moderate to severe mental retardation with and without phenotypic abnormalities. We investigated 254 patients (102 from Zürich, 152 from Liège) for unbalanced subtelomeric rearrangements by using fluorescence in situ hybridisation with probes mapping to 41 subtelomeric regions. Mental retardation combined with a pattern of dysmorphic features, with or without major malformations, and growth retardation and a normal karyotype by conventional G-banding were the criteria of inclusion. Selection criteria were more restrictive for the Zürich series in terms of clinical and cytogenetic pre-investigation. We found 13 unbalanced rearrangements and two further aberrations, which, following the investigation of other family members, had to be considered as variants without influence on the phenotype. The significant aberrations included three de novo deletions (two of 1pter, one of 5pter), three de novo duplications (8pter, 9pter, Xpter), one de novo deletion 13qter-duplication 4qter, and five familial submicroscopic translocations [(1q;18p), (2q;4p), (2p;7q), (3p;22q), (4q;10q), (12p;22q)], most of them with several unbalanced offspring with deletion-duplication. Although the incidence of abnormal results was higher (10/152) in the Liège versus the Zürich series (3/102), similar selection criteria in Zürich as in Liège would have resulted in an incidence of 7/106 and thus similar figures. In our series, submicroscopic unbalanced rearrangements explain the phenotype in 13/254 study probands. The most important selection criterion seems to be the presence of more than one affected member in a family. An examination of subtelomeric segments should be included in the diagnostic work-up of patients with unexplained mental retardation combined with physical abnormalities, when a careful conventional examination of banded chromosomes has yielded a normal result and a thorough clinical examination does not lead to another classification. The proportion of abnormal findings depends strongly on selection criteria: more stringent selection can eliminate some examinations but necessitates a high workload for experienced clinical geneticists. Once the costs and workload of screening are reduced, less selective approaches might finally be more cost-effective.  相似文献   

18.
Idiopathic mental retardation is a common condition the origins of which are poorly understood. Following initial reports that small chromosomal rearrangements affecting telomeres could be an important aetiological contributor, several new methods for screening patients have been developed. Over the past few years, 22 studies have reported results from 2585 patients. The prevalence of abnormalities in the entire group is 5.1%; but the figure is higher (6.8%) in individuals with moderate to severe mental retardation. About half the cases are caused by a de novo deletion, and about half by a balanced translocation segregating in a patient's family. Despite the large sample size available, it is still not clear whether a combination of thorough clinical examination and assiduous cytogenetic investigation might not be as effective at detecting subtelomeric anomalies as molecular assays.  相似文献   

19.
A number of human telomeres have been successfully cloned using a modified yeast artificial chromosome (YAC) vector (half-YAC) cloning strategy, but to date, human chromosome 22q has not been identified by this approach. We used an alternative approach of genomic walking, starting from a subtelomeric sequence, TelBam3.4, present on a number of human chromosomes including 22q. This approach was successful in the development of a cosmid contig representing the terminal 140 kb of human chromosome 22q, providing telomeric closure of the genetic and physical maps for 22q. The most distal region of the contig contains subtelomeric repeats which crosshybridize to a number of chromosomes, while the proximal sequences are unique for 22q. The unique sequence cosmid was used as a 22qter-specific probe for fluorescence in situ hybridization (FISH) analysis, which confirmed that this cosmid was distal to the most telomeric marker previously available for chromosome 22. In addition, this cosmid was used to document a 22q terminal deletion that was not detectable by conventional cytogenetic analysis. Unique telomere-specific FISH probes such as this one will have significant diagnostic value in the detection of cryptic deletions and translocations in patients with unexplained mental retardation and other patient populations. Received: 21 November 1995  相似文献   

20.
We report the cases of two unrelated patients with psychomotor retardation and craniofacial abnormalities, in whom cytogenetic studies have revealed a terminal deletion of chromosome 13 confirmed by fluorescence in situ hybridization (FISH). This del(13)(q33.2) is the smallest terminal deletion of the 13q reported so far. Interestingly enough, the serum level of coagulation factors VII and X, whose genes are located in 13q34, were reduced in both patients. These cases illustrate the difficulties in identifying precisely chromosome deletions and demonstrate that FISH techniques allow to obtain a more precise correlation between clinical phenotype and cytogenetic abnormalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号