首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We showed previously that a mutant strain of group B Streptococcus (GBS) defective in capsule production was avirulent. This study describes the derivation of an unencapsulated mutant from a highly encapsulated wild-type strain of type III GBS, COH1, by transposon mutagenesis with Tn916ΔE. The mutant, COH1-13, was sensitive to phagocytic killing by human leukocytes in vitro and was relatively avirulent in a neonatal rat sepsis model compared with the wild-type strain. No capsular polysaccharide was evident in the cytoplasm or on the cell surface of the mutant strain. The Tn916ΔE insertion site in COH1-13 was mapped to the same chromosomal location as the Tn916 insertion site in the unencapsulated type III mutant COH31-15 reported previously. Nucleotide sequencing of DNA flanking the insertion site in COH1-13 revealed an open reading frame, designated cpsD, with significant homology to the rfbP gene of Salmonella typhimurium. RfbP encodes a galactosyl transferase enzyme that catalyses the transfer of galactose to undecaprenol phosphate, the initial step in O-polysaccharide synthesis. A particulate fraction of a lysate of wild-type strain GBS COH1 mediated the transfer of galactose from UDP-galactose to an endogenous acceptor. The galactose–acceptor complex partitioned into organic solvents, suggesting it is lipid in nature or membrane-associated. Galactosyl transferase activity was significantly reduced in the unencapsulated mutant strain COH1-13. These results, together with the similarity in deduced amino acid sequence between cpsD and rfbP suggest that cpsD encodes a galactosyl transferase essential for assembly of the GBS type III capsular polysaccharide.  相似文献   

3.
Summary Transposon and deletion analysis of the cloned K1 capsule biosynthesis genes of Escherichia coli revealed that approximately 17 kb of DNA, split into three functional regions, is required for capsule production. One block (region 1) is required for translocation of polysaccharide to the cell surface and mutations in this region result in the intracellular appearance of polymer indistinguishable on immunoelectrophoresis to that found on the surface of K1 encapsulated bacteria. This material was released from the cell by osmotic shock indicating that the polysaccharide was probably present in the periplasmic space. Insertions in a second block (region 2) completely abolished polymer production and this second region is believed to encode the enzymes for the biosynthesis and polymerisation of the K1 antigen. Addition of exogenous N-acetylneuraminic acid to one insertion mutant in this region restored its ability to express surface polymer as judged by K1 phage sensitivity. This insertion probably defines genes involved in biosynthesis of N-acetylneuraminic acid. Insertions in a third block (region 3) result in the intracellular appearance of polysaccharide with a very low electrophoretic mobility. The presence of the cloned K1 capsule biosynthesis genes on a multicopy plasmid in an E. coli K-12 strain did not increase the yields of capsular polysaccharide produced compared to the K1+ isolate from which the genes were cloned.  相似文献   

4.
Capsular polysaccharide (CP) plays an important role in the pathogenicity and immunogenicity of Staphylococcus aureus, yet the common serotypes of S. aureus isolated from US pediatric patients have not been reported. We investigated capsular serotype as well as methicillin susceptibility, presence of Panton-Valentine leukocidin (PVL), and clonal relatedness of pediatric S. aureus isolates. Clinical isolates were tested for methicillin susceptibility, presence of mecA, lukS-PV and lukF-PV, cap5 and cap8 genes by PCR, and for capsular or surface polysaccharide expression (CP5, CP8, or 336 polysaccharide) by agglutination. Genetic relatedness was determined by pulsed-field gel electrophoresis. All S. aureus isolates encoded cap5 or cap8. Sixty-nine percent of 2004-2005 isolates were methicillin-susceptible (MSSA) and most expressed a detectable capsule. The majority of MRSA isolates (82%) were unencapsulated, exposing an expressed cell wall techoic acid antigen 336. Pulsed-field type USA300 were MRSA, PVL-positive, unencapsulated strains that were associated with deep skin infections and recurrent disease. Over half (58%) of all isolates from invasive pediatric dermatologic infections were USA300. All pediatric isolates contained either capsule type 5 or capsule type 8 genes, and roughly half of the S. aureus clinical disease isolates from our population were diverse MSSA-encapsulated strains. The majority of the remaining pediatric clinical disease isolates were unencapsulated serotype 336 strains of the PVL(+) USA300 community-associated-MRSA clone.  相似文献   

5.
Although capsular polysaccharide (CPS) is critical for meningococcal virulence, the molecular basis of alternative complement pathway (AP) regulation by meningococcal CPSs remains unclear. Using serum with only the AP active, the ability of strains to generate C3a (a measure of C3 activation) and subsequently deposit C3 fragments on bacteria was studied in encapsulated group A, B, C, W-135, and Y strains and their isogenic unencapsulated mutants. To eliminate confounding AP regulation by membrane-bound factor H (fH; AP inhibitor) and lipooligosaccharide sialic acid, the meningococcal fH ligands (fHbp and NspA) and lipooligosaccharide sialylation were deleted in all strains. Group A CPS expression did not affect C3a generation or C3 deposition. C3a generated by encapsulated and unencapsulated group B and C strains was similar, but CPS expression was associated with reduced C3 deposition, suggesting that these CPSs blocked C3 deposition on membrane targets. Paradoxically, encapsulated W-135 and Y strains (including the wild-type parent strains) enhanced C3 activation and showed marked C3 deposition as early as 10 min; at this time point C3 was barely activated by the unencapsulated mutants. W-135 and Y CPSs themselves served as a site for C3 deposition; this observation was confirmed using immobilized purified CPSs. Purified CPSs bound to unencapsulated meningococci, simulated findings with naturally encapsulated strains. These data highlight the heterogeneity of AP activation on the various meningococcal serogroups that may contribute to differences in their pathogenic mechanisms.  相似文献   

6.
Fine Structure of Extracellular Polysaccharide of Erwinia amylovora   总被引:4,自引:2,他引:2       下载免费PDF全文
Virulent E9 and avirulent E8 strains of Erwinia amylovora were shown by means of light, transmission, and scanning microscopy to be, respectively, encapsulated and unencapsulated. Difficulty was encountered in stabilizing the fibrillar-appearing capsular extracellular polysaccharide. We suggest that the ephemeral nature of extracellular polysaccharide is due to the collapse of its extended structure upon dehydration. This occurs when bacteria are prepared for either transmission or scanning electron microscopy. The electron micrographs support our previous biochemical and immunological studies contending that the capsule is composed of tightly bound and loosely held components. The preparation of bacteria in freeze-dried colonies has permitted us to observe and explain the fluidity of the encapsulated strain. We suggest that this fluidity is a reflection of the loosely held extracellular polysaccharide or slime.  相似文献   

7.
Expression of serogroup B meningococcal capsular polysaccharide undergoes frequent phase variation involving reversible frameshift mutations within a homopolymeric repeat in the siaD gene. A high rate of phase variation is the consequence of a biochemical defect in methyl-directed mismatch repair. The mutator phenotype is associated to the absence of DNA adenine methyltransferase (Dam) activity in all pathogenic isolates and in 50% of commensal strains. Analysis of the meningococcal dam gene region revealed that in all Dam- strains a gene encoding a putative restriction endonuclease (drg) that cleaves only the methylated DNA sequence 5'-GmeATC-3' replaced the dam gene. Insertional inactivation of the dam and/or drg genes indicated that high rates of phase variation and hypermutator phenotype are caused by absence of a functional dam gene.  相似文献   

8.
The serogroups B, C, W135 and Y of Neisseria meningitidis express chemically and immunologically distinct capsular polysaccharides containing sialic acid. In the case of serogroup B meningococci sialic acid is synthesized by the gene products of a locus termed sia and forms the homopolymers of the capsule. The organization of the genes required for sialic acid synthesis in serogroups B, C, W135 and Y was elucidated by PCR technology. Cloning, sequencing and the functional expression of the polysialyltransferase (PST) genes of serogroups B and C demonstrated that the difference in capsule composition derives from the presence of related, but distinct siaD genes coding for PSTs. Analysis of meningococci of serogroups W135 and Y expressing sialic acid heteropolymers revealed that the DNA sequences of the corresponding genetic loci in these serogroups were highly homologous, but differed completely from the siaD genes of serogroups B and C. This finding suggests that enzymes unrelated to those of serogroups B and C are required for the formation of sialic acid heteropolymers characteristic of the capsules of serogroups W135 and Y. Received: 24 June 1997 / Accepted: 23 September 1997  相似文献   

9.
Capsule switching in Neisseria meningitidis is thought to occur by horizontal DNA exchange between meningococcal strains. Antigenic variants may be generated by allelic replacement of the siaD gene; the variants may then be selected by specific immunity against the capsular antigen. There were several vaccination campaigns against serogroup C in France in 2002, following an increase in the prevalence of invasive isolates of serogroup C of the phenotype C:2a:P1.5 and C:2a:P1.5,2 belonging to the ET-37/ST-11 clonal complex. We evaluated the emergence of capsule variants by the detection of B:2a:P1.5 and B:2a:P1.5,2 meningococcal isolates of the ET-37/ST-11 clonal complex. These isolates were significantly more frequent after the year 2002. Pulsed field gel electrophoresis profiles of the serogroup B (ET-37/ST-11) isolates differed from that of serogroup C (ET-37/ST-11) isolates by the bands that harbor the siaD genes responsible for the serogroup specificity. However, serogroup B and C, ET37/ST-11 isolates both express similar virulence as assessed from colonization and invasiveness in a mouse model. Our results indicate that capsule switching events within the same clonal complex can arise frequently with no alteration in virulence. This justifies an enhanced system of surveillance by molecular typing of such isolates, particularly after serogroup-specific vaccination.  相似文献   

10.
We describe the characterization of a new insertion sequence, IS1515, identified in the genome of Streptococcus pneumoniae I41R, an unencapsulated mutant isolated many years ago (R. Austrian, H. P. Bernheimer, E. E. B. Smith, and G. T. Mills, J. Exp. Med. 110:585–602, 1959). A copy of this element located in the cap1EI41R gene was sequenced. The 871-bp-long IS1515 element possesses 12-bp perfect inverted repeats and generates a 3-bp target duplication upon insertion. The IS encodes a protein of 271 amino acid residues similar to the putative transposases of other insertion sequences, namely IS1381 from S. pneumoniae, ISL2 from Lactobacillus helveticus, IS702 from the cyanobacterium Calothrix sp. strain PCC 7601, and IS112 from Streptomyces albus G. IS1515 appears to be present in the genome of most type 1 pneumococci in a maximum of 13 copies, although it has also been found in the chromosome of pneumococcal isolates belonging to other serotypes. We have found that the unencapsulated phenotype of strain I41R is the result of both the presence of an IS1515 copy and a frameshift mutation in the cap1EI41R gene. Precise excision of the IS was observed in the type 1 encapsulated transformants isolated in experiments designed to repair the frameshift. These results reveal that IS1515 behaves quite differently from other previously described pneumococcal insertion sequences. Several copies of IS1515 were also able to excise and move to another locations in the chromosome of S. pneumoniae. To our knowledge, this is the first report of a functional IS in pneumococcus.  相似文献   

11.
12.
The polysaccharide capsule is the primary virulence factor in Streptococcus pneumoniae. There are at least 90 serotypes of S. pneumoniae, identified based on the immunogenicity of different capsular sugars. The aim of this study was to construct pneumococcal strains that are isogenic except for capsular type. Serotype 4 strain TIGR4 was rendered unencapsulated by recombinational replacement of the capsular polysaccharide synthesis (cps) locus with the bicistronic Janus cassette (C. K. Sung, J. P. Claverys, and D. A. Morrison, Appl. Environ. Microbiol. 67:5190-5196, 2001). In subsequent transformation with chromosomal DNA, the cassette was replaced by the cps locus derived from a strain of a different serotype, either 6B, 7F, 14, or 19F. To minimize the risk of uncontrolled recombinational replacements in loci other than cps, the TIGRcps::Janus strain was “backcross” transformed three times with chromosomal DNA of subsequently constructed capsular type transformants. Capsular serotypes were confirmed in all new capsule variants by the Quellung reaction. Restriction fragment length polymorphism (RFLP) analysis of the cps locus confirmed the integrity of the cps region transformed into the TIGR strain, and RFLP of the flanking regions confirmed their identities with the corresponding regions of the recipient. Transformants had in vitro growth rates greater than or equal to that of TIGR4. All four strains were able to colonize C57BL/6 mice (female, 6 weeks old) for at least 7 days when mice were intranasally inoculated with 6 × 106 to 8 × 106 CFU. The constructed capsular variants of TIGR4 are suitable for use in studies on the role of S. pneumoniae capsular polysaccharide in immunity, colonization, and pathogenesis.  相似文献   

13.
14.
15.
Neisseria meningitidis is a commensal and accidental pathogen exclusively of humans. Although the production of polysaccharide capsules is considered to be essential for meningococcal virulence, there have been reports of constitutively unencapsulated strains causing invasive meningococcal disease (IMD). Here we report the genome sequence of a capsule null locus (cnl) strain of sequence type 198 (ST-198), which is found in half of the reported cases of IMD caused by cnl meningococcal strains.  相似文献   

16.
The polysaccharide capsule is a major virulence factor of Streptococcus pneumoniae as it confers resistance to phagocytosis. The encapsulated serotype 4 TIGR4 strain was shown to be efficiently phagocytosed by the mouse microglial cell line BV2, whereas the type 3 HB565 strain resisted phagocytosis. Comparing survival after uptake of TIGR4 or its unencapsulated derivative FP23 in gentamicin protection and phagolysosome maturation assays, it was shown that TIGR4 was protected from intracellular killing. Pneumococcal capsular genes were up-regulated in intracellular TIGR4 bacteria recovered from microglial cells. Actual presence of bacteria inside BV2 cells was confirmed by transmission electron microscopy (TEM) for both TIGR4 and FP23 strains, but typical phagosomes/phagolysosomes were detected only in cells infected with the unencapsulated strain. In a mouse model of meningitis based on intracranic inoculation of pneumococci, TIGR4 caused lethal meningitis with an LD50 of 2 × 102 CFU, whereas the LD50 for the unencapsulated FP23 was greater than 107 CFU. Phagocytosis of TIGR4 by microglia was also demonstrated by TEM and immunohistochemistry on brain samples from infected mice. The results indicate that encapsulation does not protect the TIGR4 strain from phagocytosis by microglia, while it affords resistance to intracellular killing.  相似文献   

17.
We have identified and defined the function of kpsF of Neisseria meningitidis and the homologues of kpsF in encapsulated K1 and K5 Escherichia coli. KpsF was shown to be the arabinose-5-phosphate isomerase, an enzyme not previously identified in prokaryotes, that mediates the interconversion of ribulose 5-phosphate and arabinose 5-phosphate. KpsF is required for 3-deoxy-d-manno-octulosonic acid (Kdo) biosynthesis in N. meningitidis. Mutation of kpsF or the gene encoding the CMP-Kdo synthetase (kpsU/kdsB) in N. meningitidis resulted in expression of a lipooligosaccharide (LOS) structure that contained only lipid A and reduced capsule expression in the five invasive disease-associated meningococcal serogroups (A, B, C, Y, and W-135). The step linking meningococcal capsule and LOS biosynthesis was shown to be Kdo production as the expression of capsule was wild type in a Kdo transferase (kdtA) mutant. Thus, in addition to lipooligosaccharide assembly, Kdo is required for meningococcal capsular polysaccharide expression. Furthermore, N. meningitidis, unlike enteric Gram-negative bacteria, can survive and synthesize only unglycosylated lipid A.  相似文献   

18.
Lysophosphatidic acid (LPA) acyltransferases of Neisseria meningitidis and Neisseria gonorrhoeae were identified which share homology with other prokaryotic and eukaryotic LPA acyltransferases. In Escherichia coli, the conversion of LPA to phosphatidic acid, performed by the 1-acyl-sn-glycerol-3-phosphate acyltransferase PlsC, is a critical intermediate step in the biosynthesis of membrane glycerophospholipids. A Tn916-generated mutant of a serogroup B meningococcal strain was identified that exhibited increased amounts of capsular polysaccharide, as shown by colony immunoblots, and a threefold increase in the number of assembled pili. The single, truncated 3.8 kb Tn916 insertion in the meningococcal mutant was localized within a 771 bp open reading frame. The gonococcal equivalent of this gene was identified by transformation with the cloned meningococcal mutant gene. In N. gonorrhoeae, the mutation increased piliation fivefold. The insertions were found to be within a gene that was subsequently designated nIaA (n eisserial L PA acyltransferase). The predicted neisserial LPA acyltransferases were homologous (>20% identity,>40% amino acid similarity) to the family of PlsC protein homologues. A cloned copy of the meningococcal nIaA gene complemented in trans a temperature-sensitive E. coli PlsCts? mutant. Tn916 and Ω-cassette insertional inactivations of the neisserial nIaA genes altered the membrane glycerophospholipid compositions of both N. meningitidis and N. gonorrhoeae but were not lethal. Therefore, the pathogenic Neisseria spp. appear to be able to utilize alternative enzyme(s) to produce phosphatidic acid. This hypothesis is supported by the observation that, although the amounts of mature glycerophospholipids were altered in the meningococcal and the gonococcal nIaA mutants, glycerophospholipid synthesis was detectable at significant levels. In addition, acyltransferase enzymatic activity, while reduced in the gonococcal nIaA mutant, was increased in the meningococcal nIaA mutant. We postulate that the pathogenic Neisseria spp. are able to utilize alternate acyltransferases to produce glycerophospholipids in the absence of nIaA enzymatic activity.Implementation of these secondary enzymes results in alterations of glycerophospholipid composition that lead to pleiotropic effects on the cell surface components, including effects on capsule and piliation.  相似文献   

19.
20.
Expression of capsule-associated genes of Cryptococcus neoformans   总被引:2,自引:0,他引:2  
Cryptococcus neoformans produces an extracellular polysaccharide capsule that is related to its virulence. The production of capsular components was reported to be accelerated when cultured on media with lower amount of glucose. In this study, relationship between capsule synthesis and expression of capsule-associated genes (CAP genes) was investigated by quantitative real-time PCR analysis. Normally encapsulated strains and a stable acapsular strain were cultured in 1% polypepton medium with 0.1% or 15% glucose. The results of assessment of the capsule size showed that the capsule of yeast cells cultured in the medium with low amount of glucose was thicker than that with high amount of glucose. The CAP gene expressions of normally encapsulated strains were higher in the medium with 0.1% glucose than in the medium with 15% glucose. Furthermore, CAP10, CAP59 and CAP60 genes were expressed very low in a stable acapsular strain, and CAP64 gene was not expressed. Results of assessment of capsule size and CAP gene expressions by quantitative real-time PCR analysis indicated that CAP gene expressions might be related to the production of capsule, and that glucose concentration in culture media might be related to the expression of CAP genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号