首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Etiolated Avena sativa L. leaves were fed with [l-14C]acetatefor 20 h in the dark and labeled fatty acids in glycerolipidswere chased during 24 h in the light (greening condition) orin the dark, to determine the light effect on the fatty aciddesaturation. Oleate decrease in phosphatidylcholine was thesame in the light and in the dark, showing that oleate desaturationis independent of light (or greening). Linoleate desaturationin galactolipids, especially in monogalactosyl diacylglycerol,was enhanced by light and palmitate desaturation to hexadecenoatein phosphatidylglycerol was strictly light-dependent. (Received May 11, 1983; Accepted August 16, 1983)  相似文献   

2.
After 7 days of germination in the dark, the three sections of pea seedlings studied (cotyledons, stems, and young leaves) are rich in linoleic acid; after illumination of the seedlings a very significant increase in linolenic acid is observed in the young leaves section, whereas only small variations are noted in the fatty acid composition of the other sections. The increase in linolenic acid results from the increase in galactolipid content of the young leaves; these already linolenic acid-rich galactolipids are present but only in small amounts in the etiolated seedlings (10% of total lipid).  相似文献   

3.
Evidence is given that a selective light-pretreatment of the embryonic axis exerts a deep influence on the greening in primary leaves of 8-day-old etiolated bean seedlings (Phaseolus vulgaris cv. Limburg). After a subsequent dark incubation of sufficient length and a final exposure of the entire plants to continuous illumination the lag phase of chlorophyll synthesis is completely removed. In particular the highly meristematic hook tissue seems to be responsible for this light effect. Lengthening of the dark period following pre-irradiation increased the capability of chlorophyll production in the main white light period, reaching its maximum after about 12 hours of darkness. The period of dark incubation for elimination of the lag phase is considerably longer in plants with shielded leaves than the length of the lag phase in etiolated seedlings of the same age, exposed entirely to continuous light. This difference may be explained by the synergistic effect between leaves and embryonic axis. Evidence for this interorgan cooperation is given by experiments with a selective light-pretreatment of leaves and embryonic axis. After a 5 min pre-exposure to white light of whole plants the leaves of some of the plants were shielded and these plants received a further pre-illumination of 2 hours on their embryonic axis. In all the pre-irradiated, etiolated plants the lag phase of chlorophyll synthesis was eliminated during the main white light period, following a dark incubation of 2 hours. Additional and preferential light activation of the embryonic axis during the pretreatment had no significant effect on chlorophyll production during the white light illumination after a 2 hours dark incubation, but resulted in a lower yield of chlorophylls after 18 hours dark incubation compared to the white light controls, receiving no selective light-pretreatment on the embryonic axis. From our results we can decisively conclude that a simultaneous light-pretreatment of both, leaves and embryonic axis, is more effective and beneficial for building up a capacity of chlorophyll synthesis in the leaves than either a selective light-pretreatment of the embryonic axis alone or a simultaneous pre-illumination of leaves and embryonic axis, immediately followed by an additional preirradiation of the embryonic axis. Therefore, we think that several photoactive sites are involved in de-etiolation processes of intact, etiolated seedings. Light activation of the embryonic axis stimulates the development of this organ and contributes to the greening processes in the leaf. At the same time, by irradiating the leaf, light activates the photo-sensitive site in the leaf itself, which also develops a capacity for chlorophyll synthesis. Both photo-acts are cooperative, explaining the enhanced chlorophyll production. Additional pre-irradiation of the embryonic axis after a short illumination of whole plants favours its own development and reduces the synthetic capacity of the leaf. A prolonged far-red pretreatment induces qualitatively the same response as white light. We assume that these effects on lag phase removal and chlorophyll production, induced in etiolated, primary bean leaves by selective irradiation of the embryonic axis, is a phytochrome-mediated process. Our results indicate a transmission of light-induced stimuli from one organ to another.  相似文献   

4.
Seven-day-old dark-grown bean leaves were greened under continuous light. The amount of chlorophyll, the ratio of chlorophyll a to chlorophyll b, the O2 evolving capacity and the primary photochemical activities of Photosystem I and Photosystem II were measured on the leaves after various times of greening. The primary photochemical activities were measured as the photo-oxidation of P700, the photoreduction of C-550, and the photo-oxidation of cytochrome b559 in intact leaves frozen to −196 C. The results indicate that the reaction centers of Photosystem I and Photosystem II begin to appear within the first few minutes and that Photosystem II reaction centers accumulate more rapidly than Photosystem I reaction centers during the first few hours of greening. The very early appearances of the primary photochemical activity of Photosystem II was also confirmed by light-induced fluorescence yield measurements at −196 C.  相似文献   

5.
6.
Protochlorophyll Formation and Greening in Etiolated Barley Leaves   总被引:2,自引:0,他引:2  
  相似文献   

7.
In 6–14-day-old etiolated seedlings of Euphorbia lashyrisa latex triterpene synthesis of 19 µg day–1 wasrecorded. This production was proportional to stem growth. Laticiferdistribution in the cotyledons and stem was studied. In ultra-thinsections the occurrence of many mitochondria was observed. A14C-latex triterpene synthesis was measured after 14C-glucoseand 14C-sucrose uptake by the cotyledons in which most of the14C-triterpenes were synthesized. 14C-incorporation into theselipids from [1–14C]glucose, [6-14C]glucose and [3,4–14points to a glycolytic catabolism of glucose prior to terpenesynthesis. The possible involvement of mitochondria in thissynthesis is discussed. Euphorbia lathyris, triterpene synthesis, laticifer, latex, mitochondria, ultrastructure  相似文献   

8.
Kaveh D  Harel E 《Plant physiology》1973,51(4):671-676
The effect of light on protein synthesis during the early stages of greening of etiolated maize (Zea mays) leaves was studied using double labeling with leucine and fractionation of proteins by gel filtration and acrylamide gel electrophoresis. The incorporation of labeled leucine into a relatively small number of plastid proteins is effected within the first 30 to 60 minutes of illumination. These proteins do not accumulate with time. When illumination is prolonged, additional proteins are effected.  相似文献   

9.
MER  C. L. 《Annals of botany》1969,33(5):915-935
The effects of carbon dioxide, of phosphate, and of nitratenutrition on the growth of etiolated oat seedlings in relationto the amounts of reserves and of phosphorus translocated fromthe endosperm, have been studied in a 23 factorially arrangedexperiment. For each mg of translocate 4.37 µg of phosphorus weretransferred in the untreated seedlings, and this rate was slightlyincreased by nitrates, reduced by phosphates, and hardly changedby carbon dioxide, at the concentrations used. Under treatment with phosphates a high content of phosphoruswas quickly built up in the roots, but there was an initialreduction in the quantity found in the coleoptile and leaves.Apparently, upward transport from the roots took place onlyslowly; the phosphorus in the coleoptile and leaves may thereforehave come preferentially from the endosperm. Although nitrate supply increased the flow of phosphorus fromthe endosperm, it decreased the content in the plants. Thiseffect appears to be due to a smaller uptake of phosphorus inthe presence of nitrates.  相似文献   

10.
The pigment changes that occur during transformation of etioplaststo fully developed chloroplasts have been studied in seedlingsof barley (Hordeum vulgare L.) by greening with white lightof low (15–25 µmol m–2 s–1) and medium(150 µmol m–2 s–1) intensity. At least 24h longer was required in the low light regime for the same concentrationof pigment to be accumulated in the seedlings. The increasein pigment content was mainly due to the synthesis of chlorophyllsa and b. Of the carotenoids present, the increases in the levelsof neoxanthin and, especially, ß-carotene were muchgreater than those observed for the other carotenoids. Levelsof lutein also increased but this change was small by comparisonto those observed for neoxanthin and ß-carotene. Inthe long-term the concentration of violaxanthin remained unalteredalthough significant transient changes were recorded. The levelsof antheraxanthin and zeaxanthin were markedly reduced duringgreening. The rate of pigment synthesis decreased with increasingcell age, i.e. from the base to the tip of the primary leaf.Overall, carotenoid levels increased by approximately 100% atthe base of the seedling but hardly at all at the tip. Key words: Hordeum vulgare, carotenoids, violaxanthin-cycle, etiolation  相似文献   

11.
The chemical induction of porphyrin synthesis has been investigated in etiolated and greening leaves of Phaseolus vulgaris L. var. Red Kidney. When these leaves are incubated in darkness with solutions of transition metal ion chelators such as α,α′-dipyridyl, 1,10-phenanthroline, pyridine-2-aldoxime, or other related aromatic heterocyclic nitrogenous bases, they synthesize large amounts of protochlorophyllide and Mg protoporphyrins. Greening leaves produce more porphyrin than do etiolated leaves under such conditions. If the leaves are then transferred to 1 millimolar solutions of various transition metal salts such as Fe2+, Zn2+, or Co2+ (but not Mn2+ or Mg2+), Mg protoporphyrin (monomethyl ester) synthesis immediately ceases and the pigment(s) rapidly disappear(s); protochlorophyllide synthesis gradually diminishes during 4 to 8 hours of treatment. The loss in Mg protoporphyrin(s) can be accounted for by a simultaneous increase in protochlorophyllide in partially greened leaves but not in etiolated leaves. In the latter, the decline in Mg protoporphyrin(s) initiated by the application of Zn2+ is retarded by low temperature and anaerobiosis but not by respiratory inhibitors. Cycloheximide inhibits the loss of Mg protoporphyrin(s) but does not affect their conversion to protochlorophyllide.  相似文献   

12.
Photoinduction of NADP-linked glyceraldehyde-3-phosphate dehydrogenase activity in etiolated pea seedlings was investigated in the presence of various concentrations of four inhibitors of protein synthesis (cycloheximide, actinomycin D, chloramphenicol and puromycin) and one photosynthesis inhibitor (DCMU), and compared with increase in chlorophyll and total protein contents. The enzymatic activity and chlorophyll showed similar responses to the action of the antibiotics, whereas they were not significantly affected by the presence of DCMU.  相似文献   

13.
Water stress retards accumulation of chlorophyll and chlorophylla/b protein complex during greening of barley seedlings in light.The rate of 2,6-dichlorophenol indophenol (DCPIP) photoreductionin isolated chloroplast which decreases under water stress isenhanced significantly in the presence of electron donors, diphenylcarbazide (DPQ) and Mn2+. Under water stress, the decrease ofthe rate of oxygen evolution measured in continuous white lightwas 40–73% and that of oxygen uptake (as a measure ofelectron transport through PS I from reduced DCPIP) was onlyabout 20%. During greening, under water stress, (i) a differentialinhibition of PS II biosynthesis as compared to PS I occurs,(ii) the site of electron donation by DPC seems to be closerto the reaction center ofPS II, (iii) the oxidizing side ofPS II near the oxygen-evolving system is affected maximallyby water stress. (Received March 11, 1980; Accepted November 13, 1980)  相似文献   

14.
A short impulse of red light has a varying effect on carotenoid synthesis in dark-grown wheat seedlings. Except for β-carotene, which remains unchanged in the dark (it increases in continuous light), the carotenoid synthesis shows the same tendency as during constant irradiation. Thus, lutein and neoxanthin slowly increases, while violaxanthin decreases. During a period of constant light following various periods of darkness after the short impulse of light, the pigment changes correspond to those occurring in the dark, but are much more pronounced. The changes are discussed on the basis of phytochrome action.  相似文献   

15.
16.
The assimilation of CO2 by etiolated Hordeum vulgare seedlings during an illumination period indicates a conversion of the organisms to autotrophy.

After 1 hour illumination, increases in the photo-assimilation of CO2 are observed and the distribution of C14 in the soluble fraction of the plants is predominantly in intermediates of the Calvin cycle.

  相似文献   

17.
黄化水稻幼苗转绿期AOX1基因家族的表达与功能分析   总被引:1,自引:0,他引:1  
完全黄化的水稻幼苗叶片在持续光照下总呼吸速率、交替途径的速率以及交替途径在总呼吸中的比值均上升,但以水稻AOX1基因家族3个成员的特异性片段为探针,仅观察到其中AOX1c转录本的增加。交替途径的专一性抑制剂SHAM可以降低水稻幼苗在持续光照过程中的相对光合放氧速率与叶绿素含量。同时,水稻黄化幼苗光照前黑暗处理时间越长,在恢复光照后交替途径能力的增加越显著,表现了转绿进程与交替途径之间的相关性。推测加强交替途径可能是植物缓和能量和物质需求矛盾的一个重要调控机制。  相似文献   

18.
Protochlorophyllide and chlorophyll(ide) holochromes (Pchl-H and Chl-H) were extracted from dark-grown and greening seedlings with saponin and partly purified by ammonium sulfate fractionation. Sephadex gel filtration in the presence of saponin showed that the photoactive saponin Pchl-H from dark-grown leaves of bean (Phaseolus vulgaris L. cv. Redlands Pioneer) or pea (Pisum sativum L. cv. Greenfeast) has an apparent molecular weight of about 170,000, compared with 51,000 to 75,000 for the saponin Pchl-H from barley (Hordeum vulgare L. cv. Svalöfs Bonus). Photoconversion of saponin Pchl-H from dark-grown barley seedlings yields Chl-H with an absorption maximum at 678 nm, and with no change in apparent molecular weight. Above 0 C, a spectral shift from 678 to 672 nm follows, and a change in apparent molecular weight from about 63,000 to 29,000 is observed.  相似文献   

19.
We could demonstrate that greening of primary bean leaves in etiolated seedlings of Phaseolus vulgaris cv. Limburg can be controlled by a selective light-pretreatment of the embryonic axis. This light-induced interorgan synergism proved to be a phytochrome-mediated process. The red/farred photoreversible effect on the embryonic axis seems to be primarily linked to changes in the energy metabolism of the primary leaves. Phototransformation of the protochlorophyll present and pigment synthesis are very dependent upon an adequate supply of biochemical energy. When the embryonic axis is selectively pre-exposed to red light for a short time, respiration is markedly enhanced in the leaves and photosynthesis starts immediately upon illumination of the etiolated leaves after an incubation period of optimal length in the dark. The stimulatory effect of the red pretreatment on leaf respiration and photosynthetic capacity could be abolished to the level of the dark controls by a subsequent far-red irradiation on the embryonic axis. It is therefore postulated that phytochrome plays a regulatory role in interorgan cooperation. The metabolic changes involved in photomorphogenesis of etiolated seedlings are closely related to changes in energy production. Our data indicate that the primary act of phytochrome becomes operative at the biochemical level by its directional influence on the energy balance of the cell and coordinates the use of metabolic energy within a tissue and between organs.  相似文献   

20.
Biogenesis of the pigment apparatus was studied in coleoptiles of postetiolated barley seedlings (Hordeum vulgare L.) and triticale (Triticale), differing in chlorophyll content, during growing in a “ light-darkness” regime with a 16-h photoperiod. Photoactive protochlorophyllide with a fluorescence maximum at 655 nm (Pchlide655), which accumulates in coleoptiles of etiolated seedlings, was converted in the light into a chlorophyll pigment with a fluorescence maximum at 690 nm (excitation at 440 nm, temperature ?196°C). The spectral transition 690 nm → 675 nm forms was completed in darkness for 15 min illumination. There was almost no resynthesis of new portions of Pchlide655 in coleoptiles under darkness conditions, even after a 5–6-h darkness period after brief illumination of seedlings with flashes of white light. Chlorophyllide (Chlide) formed from Pchlide655 was not esterified and was destroyed both in the light (4 h, 1.0–1.5 klx) and darkness. In coleoptiles of greening etiolated seedlings, chlorophyll formation started only by 24 h of illumination. The instability of the chlorophyll pigment formed after etiolation indicates that plastids of coleoptiles do not contain the system of chlorophyll biosynthesis centers typical of leaves, which are bound to membranes and protect pigment from destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号