首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Replication Protein A (RPA), the replicative single-strand DNA binding protein from eukaryotic cells, is a stable heterotrimeric complex consisting of three polypeptides. Cytological studies have investigated the subcellular distribution and association characteristics of the three RPA subunits during different stages of the cell cycle with varying results. In this study, various HeLa cell fractions were subjected to separation by either immunoprecipitation or velocity sedimentation. These separations were evaluated by immunoblotting for specific RPA subunits to determine whether the RPA in these fractions retains its heterotrimeric association. Immunoprecipitation of either the large (RPA70) or middle-sized (RPA32) subunit of RPA followed by immunoblotting for the other subunits demonstrate that RPA remains complexed throughout the G1, S and G2 phases of the cell cycle. Immunoprecipitation and sedimentation separations of both the nucleosolic and chromatin-bound RPA populations from both cycling and nocodazole-blocked cells showed that the majority of RPA remains complexed under all conditions examined. Consistent with previous reports, hypotonic extracts from 293 cells were shown to contain some RPA32 not complexed with RPA70. These results indicate that in some cell types, extracts may contain small amounts of RPA32 free of RPA70; however, in HeLa cells the majority of RPA clearly remains complexed as a heterotrimer throughout the cell cycle.  相似文献   

2.
Replication Protein A (RPA) is a single-stranded DNA-binding protein essential for DNA replication, repair, recombination and cell-cycle regulation. A human homolog of the RPA2 subunit, called RPA4, was previously identified and shown to be expressed in colon mucosal and placental cells; however, the function of RPA4 was not determined. To examine the function of RPA4 in human cells, we carried out knockdown and replacement studies to determine whether RPA4 can substitute for RPA2 in the cell. Unlike RPA2, exogenous RPA4 expression did not support chromosomal DNA replication and lead to cell-cycle arrest in G2/M. In addition, RPA4 localized to sites of DNA repair and reduced γ-H2AX caused by RPA2 depletion. These studies suggest that RPA4 cannot support cell proliferation but can support processes that maintain the genomic integrity of the cell.  相似文献   

3.
4.
Replication protein A (RPA), a heterotrimeric single-stranded DNA binding protein, is required for recombination, and stimulates homologous pairing and DNA strand exchange promoted in vitro by human recombination protein HsRad51. Co-immunoprecipitation revealed that purified RPA interacts physically with HsRad51, as well as with HsDmc1, the homolog that is expressed specifically in meiosis. The interaction with HsRad51 was mediated by the 70 kDa subunit of RPA, and according to experiments with deletion mutants, this interaction required amino acid residues 169-326. In exponentially growing mammalian cells, 22% of nuclei showed foci of RPA protein and 1-2% showed foci of Rad51. After gamma-irradiation, the percentage of cells with RPA foci increased to approximately 50%, and those with Rad51 foci to 30%. All of the cells with foci of Rad51 had foci of RPA, and in those cells the two proteins co-localized in a high fraction of foci. The interactions of human RPA with Rad51, replication proteins and DNA are suited to the linking of recombination to replication.  相似文献   

5.
Replication protein A (RPA), the trimeric single-stranded DNA-binding protein complex of eukaryotic cells, is important to DNA replication and repair. Phosphorylation of the p34 subunit of RPA is modulated by the cell cycle, occurring during S and G2 but not during G1. The function of phosphorylated p34 remains unknown. We show that RPA p34 phosphorylation is significantly induced by ionizing radiation. The phosphorylated form, p36, is similar if not identical to the phosphorylated S/G2 form. gamma-Irradiation-induced phosphorylation occurs without new protein synthesis and in cells in G1. Mutation of cdc2-type protein kinase phosphorylation sites in p34 eliminates the ionizing radiation response. The gamma-irradiation-induced phosphorylation of RPA p34 is delayed in cells from ataxia telangiectasia, a human inherited disease conferring DNA repair defects and early-onset tumorigenesis. UV-induced phosphorylation of RPA p34 occurs less rapidly than gamma-irradiation-induced phosphorylation but is kinetically similar between ataxia telangiectasia and normal cells. This is the first time that modification of a repair protein, RPA, has been linked with a DNA damage response and suggests that phosphorylation may play a role in regulating DNA repair pathways.  相似文献   

6.
7.
A higher plant has three different types of RPA heterotrimeric complex   总被引:2,自引:0,他引:2  
Replication protein A (RPA) is a protein complex composed of three subunits known as RPA70, RPA32, and RPA14. Generally, only one version of each of the three RPA genes is present in animals and yeast (with the exception of the human RPA32 ortholog). In rice (Oryza sativa L.), however, two paralogs of RPA70 have been reported. We screened the rice genome for RPA subunit genes, and identified three OsRPA70 (OsRPA70a, OsRPA70b and OsRPA70c), three OsRPA32 (OsRPA32-1, OsRPA32-2 and OsRPA32-3), and one OsRPA14. Through two-hybrid assays and pull down analyses, we showed that OsRPA70a interacted preferentially with OsRPA32-2, OsRPA70b with OsRPA32-1, and OsRPA70c with OsRPA32-3. OsRPA14 interacted with all OsRPA32 paralogs. Thus, rice has three types of RPA complex: OsRPA70a-OsRPA32-2-OsRPA14 (type A), OsRPA70b-OsRPA32-1-OsRPA14 (type B), and OsRPA70c-OsRPA32-3-OsRPA14 (type C). Subcellular localization analysis suggested that the type-A RPA complex is required for chloroplast DNA metabolism, whereas types B and C function in nuclear DNA metabolism.  相似文献   

8.
Replication protein A (RPA) is a complex of three polypeptides of 70, 34, and 13 kDa isolated from diverse eukaryotes. The complex is a single-stranded DNA-binding protein essential for simian virus 40-based DNA replication in vitro and for viability in the yeast Saccharomyces cerevisiae. We have identified a new 30-kDa human protein which interacts with the 70- and 13-kDa subunits of RPA, with a yeast two-hybrid/interaction trap method. This protein, Rpa4, has 47% identity with Rpa2, the 34-kDa subunit of RPA. Rpa4 associates with the 70- and 13-kDa subunits to form a trimeric complex capable of binding to single-stranded DNA. Rpa4 is preferentially expressed in placental and colon mucosa tissues. In the placenta, Rpa4 is more abundant than the 70-kDa Rpa1 subunit and is not associated with either Rpa1 or with any other single-stranded DNA-binding protein. In proliferating cells in culture, Rpa4 is considerably less abundant than Rpa1 and Rpa2. Northern (RNA) blot analysis suggest that there are alternatively processed forms of the RPA4 mRNA, and Southern blot analysis indicates that beside RPA4 there may be other members of the RPA2 gene family.  相似文献   

9.
Replication protein A (RPA) is a trimeric single-stranded DNA (ssDNA)-binding complex of eukaryotic cells that plays an important role in DNA metabolism by stabilising single-stranded regions of DNA. The functionally important binding activity towards ssDNA is mainly localised on the large subunit, RPA70, whereas the middle subunit, RPA32, appears to have a regulatory function. It has been shown previously that RPA32 is phosphorylated both during the S-phase of a normal cell cycle and in response to DNA damage. In this study we demonstrate that phosphorylation of RPA32 is rapidly induced during apoptotic cell death of Jurkat T-lymphocytes, resulting in a hyperphosphorylated form with reduced electrophoretic mobility. In contrast, the large subunit of RPA is neither modified nor cleaved during apoptosis. Phosphorylation of RPA32 begins in parallel to the degradation of DNA to high molecular weight fragments, and slowly continues until late apoptosis. Experiments with specific kinase inhibitors indicate that RPA32 hyperphosphorylation requires the activities of DNA-dependent protein kinase and of a cyclin-dependent protein kinase. Interestingly, the hyperphosphorylated, but not the less phosphorylated forms of RPA32, sediments independently from the trimeric complex in sucrose gradients under high ionic strength, and is not bound to the complex in immunoprecipitation assays.  相似文献   

10.
Nuclear protein import in eukaryotic cells is mediated by karyopherin proteins, which bind to specific nuclear localization signals on substrate proteins and transport them across the nuclear envelope and into the nucleus. Replication protein A (RPA) is a nuclear protein comprised of three subunits (termed Rfa1, Rfa2, and Rfa3 in Saccharomyces cerevisiae) that binds single-stranded DNA and is essential for DNA replication, recombination, and repair. RPA associates with two different karyopherins in yeast, Kap95, and Msn5/Kap142. However, it is unclear which of these karyopherins is responsible for RPA nuclear import. We have generated GFP fusion proteins with each of the RPA subunits and demonstrate that these Rfa-GFP chimeras are functional in yeast cells. The intracellular localization of the RPA proteins in live cells is similar in wild-type and msn5Δ deletion strains but becomes primarily cytoplasmic in cells lacking functional Kap95. Truncating the C-terminus of any of the RPA subunits results in mislocalization of the proteins to the cytoplasm and a loss of protein-protein interactions between the subunits. Our data indicate that Kap95 is likely the primary karyopherin responsible for RPA nuclear import in yeast and that the C-terminal regions of Rfa1, Rfa2, and Rfa3 are essential for efficient nucleocytoplasmic transport of each RPA subunit.  相似文献   

11.
DNA replication is a process that is highly conserved among eukaryotes. Nonetheless, little is known about the proteins involved in it in plants. Replication protein A (RPA) is a heterotrimeric, single-stranded DNA-binding protein with several functions in DNA metabolism in humans and yeast and supposedly also in plants. Here we report on the regulation of OsRPA2, the 32-kDa subunit of RPA from rice ( Oryza sativa L.). We found conserved regulation mechanisms at the level of gene expression between animal and plant RPA2 genes and distinct features of OsRPA2 regulation at the level of protein expression. Unlike in animals or in yeast, protein abundance in rice was regulated in a cell cycle phase-specific manner and was altered after UV-C light exposure. On the other hand, posttranslational modification through phosphorylation did not appear to play a pivotal role in rice as it does in animal cells. Our results indicate that plant-specific mechanisms of regulation have evolved for RPA2 within the generally well-conserved process of DNA replication, suggesting specific requirements for regulation of DNA metabolism in plants as compared to other eukaryotes.  相似文献   

12.
Replication protein A (RPA) is a heterotrimeric, single-stranded DNA-binding complex comprised of 70-kDa (RPA1), 32-kDa (RPA2), and 14-kDa (RPA3) subunits that is essential for DNA replication, recombination, and repair in eukaryotes. In addition, recent studies using vertebrate model systems have suggested an important role for RPA in the initiation of cell cycle checkpoints following exposure to DNA replication stress. Specifically, RPA has been implicated in the recruitment and activation of the ATM-Rad3-related protein kinase, ATR, which in conjunction with the related kinase, ATM (ataxia-telangiectasia-mutated), transmits checkpoint signals via the phosphorylation of downstream effectors. In this report, we have explored the effects of RPA insufficiency on DNA replication, cell survival, and ATM/ATR-dependent signal transduction in response to genotoxic stress. RNA interference-mediated suppression of RPA1 caused a slowing of S phase progression, G2/M cell cycle arrest, and apoptosis in HeLa cells. RPA-deficient cells demonstrated high levels of spontaneous DNA damage and constitutive activation of ATM, which was responsible for the terminal G2/M arrest phenotype. Surprisingly, we found that neither RPA1 nor RPA2 were essential for the hydroxyurea- or UV-induced phosphorylation of the ATR substrates CHK1 and CREB (cyclic AMP-response element-binding protein). These findings reveal that RPA is required for genomic stability and suggest that activation of ATR can occur through RPA-independent pathways.  相似文献   

13.
Exonuclease-1 (EXO1) mediates checkpoint induction in response to telomere dysfunction in yeast, but it is unknown whether EXO1 has similar functions in mammalian cells. Here we show that deletion of the nuclease domain of Exo1 reduces accumulation of DNA damage and DNA damage signal induction in telomere-dysfunctional mice. Exo1 deletion improved organ maintenance and lifespan of telomere-dysfunctional mice but did not increase chromosomal instability or cancer formation. Deletion of Exo1 also ameliorated the induction of DNA damage checkpoints in response to gamma-irradiation and conferred cellular resistance to 6-thioguanine-induced DNA damage. Exo1 deletion impaired upstream induction of DNA damage responses by reducing ssDNA formation and the recruitment of Replication Protein A (RPA) and ATR at DNA breaks. Together, these studies provide evidence that EXO1 contributes to DNA damage signal induction in mammalian cells, and deletion of Exo1 can prolong survival in the context of telomere dysfunction.  相似文献   

14.
The single-stranded DNA-binding protein, Replication Protein A (RPA), is a heterotrimeric complex with subunits of 70, 32 and 14 kDa involved in DNA metabolism. RPA may be a target for cellular regulation; the 32 kDa subunit (RPA32) is phosphorylated by several cellular kinases including the DNA-dependent protein kinase (DNA-PK). We have purified a mutant hRPA complex lacking amino acids 1-33 of RPA32 (rhRPA x 32delta1-33). This mutant bound ssDNA and supported DNA replication; however, rhRPA x 32delta1-33 was not phosphorylated under replication conditions or directly by DNA-PK. Proteolytic mapping revealed that all the sites phosphorylated by DNA-PK are contained on residues 1-33 of RPA32. When wild-type RPA was treated with DNA-PK and the mixture added to SV40 replication assays, DNA replication was supported. In contrast, when rhRPA x 32delta1-33 was treated with DNA-PK, DNA replication was strongly inhibited. Because untreated rhRPA x 32delta1-33 is fully functional, this suggests that the N-terminus of RPA is needed to overcome inhibitory effects of DNA-PK on other components of the DNA replication system. Thus, phosphorylation of RPA may modulate DNA replication indirectly, through interactions with other proteins whose activity is modulated by phosphorylation.  相似文献   

15.
The constitutive and gamma -linolenic acid (GLA)-induced expression of peroxisome proliferator-activated receptor gamma (PPAR gamma) immunoreactive protein in a panel of human malignant brain (U87MG, T98G); breast (MCF-7, MB MDA-231, MB MDA 435) and prostate (ALVA, DU-145, LNCaP, PC3) cell lines have been compared with those for their normal cell counterparts, the human normal astrocyte (NHA), mammary epithelial (HMEC) and prostate epithelial (PrEC) cells, respectively. Constitutive levels of expression for PPAR gamma protein were significantly higher in the malignant cell lines relative to their normal cells. GLA supplementation did not affect the protein expression in malignant cells but caused 6- and 3-fold increases in normal breast and prostate cells, respectively. Since activation of PPAR gamma protein in some human malignant cell lines has been demonstrated to induce tumour cell death, these findings signal the need to exploit the significantly elevated expression of this protein in the therapy of human cancer.  相似文献   

16.
17.
18.
Maintaining the integrity of the genome requires the high fidelity duplication of the genome and the ability of the cell to recognize and repair DNA lesions. The heterotrimeric single stranded DNA (ssDNA) binding complex Replication Protein A (RPA) is central to multiple DNA processes, which are coordinated by RPA through its ssDNA binding function and through multiple protein-protein interactions. Many RPA interacting proteins have been reported through large genetic and physical screens; however, the number of interactions that have been further characterized is limited. To gain a better understanding of how RPA functions in DNA replication, repair, and cell cycle regulation and to identify other potential functions of RPA, a yeast two hybrid screen was performed using the yeast 70 kDa subunit, Replication Factor A1 (Rfa1), as a bait protein. Analysis of 136 interaction candidates resulted in the identification of 37 potential interacting partners, including the cell cycle regulatory protein and DNA damage clamp loader Rad24. The Rfa1-Rad24 interaction is not dependent on ssDNA binding. However, this interaction appears affected by DNA damage. The regions of both Rfa1 and Rad24 important for this interaction were identified, and the region of Rad24 identified is distinct from the region reported to be important for its interaction with Rfc2 5. This suggests that Rad24-Rfc2-5 (Rad24-RFC) recruitment to DNA damage substrates by RPA occurs, at least partially, through an interaction between the N terminus of Rfa1 and the C terminus of Rad24. The predicted structure and location of the Rad24 C-terminus is consistent with a model in which RPA interacts with a damage substrate, loads Rad24-RFC at the 5’ junction, and then releases the Rad24-RFC complex to allow for proper loading and function of the DNA damage clamp.  相似文献   

19.
Replication protein A (RPA) is a heterotrimeric protein complex required for a large number of DNA metabolic processes, including DNA replication and repair. An alternative form of RPA (aRPA) has been described in which the RPA2 subunit (the 32-kDa subunit of RPA and product of the RPA2 gene) of canonical RPA is replaced by a homologous subunit, RPA4. The normal function of aRPA is not known; however, previous studies have shown that it does not support DNA replication in vitro or S-phase progression in vivo. In this work, we show that the RPA4 gene is expressed in normal human tissues and that its expression is decreased in cancerous tissues. To determine whether aRPA plays a role in cellular physiology, we investigated its role in DNA repair. aRPA interacted with both Rad52 and Rad51 and stimulated Rad51 strand exchange. We also showed that, by using a reconstituted reaction, aRPA can support the dual incision/excision reaction of nucleotide excision repair. aRPA is less efficient in nucleotide excision repair than canonical RPA, showing reduced interactions with the repair factor XPA and no stimulation of XPF-ERCC1 endonuclease activity. In contrast, aRPA exhibits higher affinity for damaged DNA than canonical RPA, which may explain its ability to substitute for RPA in the excision step of nucleotide excision repair. Our findings provide the first direct evidence for the function of aRPA in human DNA metabolism and support a model for aRPA functioning in chromosome maintenance functions in nonproliferating cells.  相似文献   

20.
Replication protein A (RPA), a stable complex of three polypeptides, is the single-stranded DNA-binding protein essential for DNA replication in eukaryotic cells. Previous studies of the subcellular distribution and stability of the RPA heterotrimer during the mammalian cell cycle have produced conflicting results. Here, we present evidence that these inconsistencies can be accounted for by the presence of an extractable pool of soluble RPA within the nucleus. Indirect immunofluorescence experiments in both CHO and HeLa cells showed that all three RPA subunits associated specifically with sites of ongoing DNA synthesis, similar to the replication fork protein proliferating cell nuclear antigen. Furthermore, we found no evidence for disassembly of the chromatin-bound heterotrimeric RPA complex in vivo. Our results are consistent with a role for RPA in the initiation and elongation steps of replication, as previously defined in the viral in vitro replication systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号