首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lakes can be sources or sinks of carbon, depending on local conditions. Recent studies have shown that the CO2 efflux increases when lakes recover from eutrophication, mainly as a result of a reduction in phytoplankton biomass, leading to less uptake of CO2 by producers. We hypothesised that lake restoration by removal of coarse fish (biomanipulation) or invasion of mussels would have a similar effect. We studied 14–22 year time series of five temperate Danish lakes and found profound effects on the calculated CO2 efflux of major shifts in ecosystem structure. In two lakes, where limited colonisation of submerged macrophytes occurred after biomanipulation or invasion of zebra mussels (Dreissena polymorpha), the efflux increased significantly with decreasing phytoplankton chlorophyll a. In three lakes with major interannual variation in macrophyte abundance, the efflux declined with increasing macrophyte abundance in two of the lakes, while no relation to macrophytes or chlorophyll a was found in the third lake, likely due to high groundwater input to this lake. We conclude that clearing water through invasive mussels or lake restoration by biomanipulation may increase the CO2 efflux from lakes. However, if submerged macrophytes establish and form dense beds, the CO2 efflux may decline again.  相似文献   

2.
Submerged macrophytes enhance water transparency and aquatic biodiversity in shallow water ecosystems. Therefore, the return of submerged macrophytes is the target of many lake restoration projects. However, at present, north-western European aquatic ecosystems are increasingly invaded by omnivorous exotic crayfish. We hypothesize that invasive crayfish pose a novel constraint on the regeneration of submerged macrophytes in restored lakes and may jeopardize restoration efforts. We experimentally investigated whether the invasive crayfish (Procambarus clarkii Girard) affects submerged macrophyte development in a Dutch peat lake where these crayfish are expanding rapidly. Seemingly favourable abiotic conditions for macrophyte growth existed in two 0.5 ha lake enclosures, which provided shelter and reduced turbidity, and in one lake enclosure iron was added to reduce internal nutrient loading, but macrophytes did not emerge. We transplanted three submerged macrophyte species in a full factorial exclosure experiment, where we separated the effect of crayfish from large vertebrates using different mesh sizes combined with a caging treatment stocked with crayfish only. The three transplanted macrophytes grew rapidly when protected from grazing in both lake enclosures, demonstrating that abiotic conditions for growth were suitable. Crayfish strongly reduced biomass and survival of all three macrophyte species while waterfowl and fish had no additive effects. Gut contents showed that crayfish were mostly carnivorous, but also consumed macrophytes. We show that P. clarkii strongly inhibit macrophyte development once favourable abiotic conditions for macrophyte growth are restored. Therefore, expansion of invasive crayfish poses a novel threat to the restoration of shallow water bodies in north-western Europe. Prevention of introduction and spread of crayfish is urgent, as management of invasive crayfish populations is very difficult.  相似文献   

3.
Shallow lakes are susceptible to catastrophic regime shifts characterised by the presence or absence or macrophytes. However, the long-term controls on macrophyte succession in shallow lakes are incompletely understood. To investigate this, we analysed multiple sediment proxies in Lake Rotcze (Eastern Poland), a small, shallow and densely macrophyte-covered lake to (1) reconstruct the ‘reference conditions’ (sensu WFD) and development of the lake in recent centuries, (2) compare historical evidence with the sedimentary record, and (3) identify the natural and anthropogenic drivers of macrophyte succession. Before the twentieth century, conditions in the lake may be referred to as ‘reference conditions’. Subsequently forest clearance in the catchment resulted in lower water transparency, but concurrent catchment drainage lowered water levels and increased macrophyte development. Since 1950 elevated nutrient supply and climatically driven increases in water levels led to the deterioration of water transparency and partial macrophyte withdrawal. At the end of the twentieth century lake-level drawdown led to low phytoplankton biomass and clear water creating a novel ecosystem where macrophytes invade the whole lake. These patterns suggest that both natural and anthropogenically induced water level fluctuations have been critical drivers of macrophyte development.  相似文献   

4.
In regions with thousands of lakes, large scale regional macrophyte surveys are rarely done due to logistical difficulties and high costs. We examined whether remote sensing can be used for regional monitoring of macrophytes in inland lakes using a field study of 13 lakes in Michigan, USA (nine model development lakes and four model testing lakes). Our objectives were: (1) to determine if different levels of macrophyte cover, different growth forms or specific species could be detected using the Landsat-5 TM sensor, and (2) to determine if we could improve predictions of macrophyte abundance and distribution in lakes by including sediment type or measures of water clarity (Secchi disk transparency, chlorophyll a, phytoplankton biovolume, or water color) in our models. Using binomial and multinomial logistic regression models, we found statistically significant relationships between most macrophyte measures and Landsat-5 TM values in the nine model development lakes (percent concordant values: 58–97%). Additionally, we found significant correlations between three lake characteristics and the TM values within lake pelagic zones, despite the inability of these variables to improve model predictions. However, model validation using four lakes was generally low, suggesting caution in applying these models to other lakes. Although the initial model development results suggest that remote sensing is a potentially promising tool for regionally assessing macrophytes, more research is necessary to refine the models in order for them to be applied to unsampled lakes.  相似文献   

5.
This study tested the hypothesis that lake augmentation with well water impacts the distribution and abundance of aquatic plants in lakes. Water chemistry was measured from 14 wells, 14 augmented lakes, and 14 lakes without augmentation. Nine in-lake aquatic macrophyte abundance and species distribution metrics were measured in all lakes. Net photosynthetic rate (NPR) of nine submersed species was also measured in well and lake water. Augmentation increased alkalinity in receiving lakes, but total phosphorus was significantly lower, which resulted in lower chlorophyll and greater Secchi depths. Although measured NPR was higher for all plants incubated in well water, only one (emergent species richness) in-lake aquatic macrophyte metric was different in lakes with and without augmentation. Lake augmentation significantly changed water chemistry of receiving waters, but effects on aquatic macrophytes were minimal, suggesting that other environmental factors are limiting the distribution and abundance of macrophytes in the study lakes. The lower phosphorus levels in augmented lakes were unexpected because phosphorus concentrations in well water were significantly greater than in lakes with or without augmentation. Precipitation of calcium phosphate likely accounts for the reduced phosphorus levels in augmented lakes.  相似文献   

6.
Pettersson  Kurt  Grust  Karin  Weyhenmeyer  Gesa  Blenckner  Thorsten 《Hydrobiologia》2003,501(1-3):75-81
The effect of submerged macrophytes on interactions among epilimnetic phosphorus, phytoplankton, and heterotrophic bacterioplankton has been acknowledged, but remains poorly understood. Here, we test the hypotheses that the mean summer phytoplankton biomass (chlorophyll a): phosphorus ratios decrease with increased macrophyte cover in a series of nine lakes. Further, we test that both planktonic respiration and bacterioplankton production increase with respect to phytoplankton biomass along the same gradient of increasing macrophyte cover. Increased macrophyte cover was associated with a lower fraction of particulate phosphorus in epilimnia, with total particulate phosphorus declining from over 80% of total phosphorus in a macrophyte free lake to less than 50% in a macrophyte rich lake. Phytoplankton biomass (chlorophyll a) too was lower in macrophyte dominated lakes, despite relatively high levels of total dissolved phosphorus. Planktonic respiration and bacterioplankton production were higher in macrophyte rich lakes than would be expected from phytoplankton biomass alone, pointing to a subsidy of bacterioplankton metabolism by macrophyte beds at the whole lake scale. The results suggest that the classical view of pelagic interactions, which proposes phosphorus determines phytoplankton abundance, which in turn determines bacterial abundance through the production of organic carbon, becomes less relevant as macrophyte cover increases.  相似文献   

7.
It has been suggested that shallow lakes in warm climates have a higher probability of being turbid, rather than macrophyte dominated, compared with lakes in cooler climates, but little field evidence exists to evaluate this hypothesis. We analyzed data from 782 lake years in different climate zones in North America, South America, and Europe. We tested if systematic differences exist in the relationship between the abundance of submerged macrophytes and environmental factors such as lake depth and nutrient levels. In the pooled dataset the proportion of lakes with substantial submerged macrophyte coverage (> 30% of the lake area) decreased in a sigmoidal way with increasing total phosphorus (TP) concentration, falling most steeply between 0.05 and 0.2 mg L−1. Substantial submerged macrophyte coverage was also rare in lakes with total nitrogen (TN) concentrations above 1–2 mg L−1, except for lakes with very low TP concentrations where macrophytes remain abundant until higher TN concentrations. The deviance reduction of logistic regression models predicting macrophyte coverage from nutrients and water depth was generally low, and notably lowest in tropical and subtropical regions (Brazil, Uruguay, and Florida), suggesting that macrophyte coverage was strongly influenced by other factors. The maximum TP concentration allowing substantial submerged macrophyte coverage was clearly higher in cold regions with more frost days. This is in agreement with other studies which found a large influence of ice cover duration on shallow lakes' ecology through partial fish kills that may improve light conditions for submerged macrophytes by cascading effects on periphyton and phytoplankton. Our findings suggest that, in regions where climatic warming is projected to lead to fewer frost days, macrophyte cover will decrease unless the nutrient levels are lowered.  相似文献   

8.
Macrophytes and factors affecting their distribution were studied in 19 coastal lakes of Estonia. The aim of the study was to determine the factors influencing the distribution of macrophytes in coastal lakes and to assess the suitability of valid macrophyte metrics. Our hypothesis was that in coastal lakes most of the macrophyte distribution patterns are caused by lake-specific variables. Morphological, physico-chemical and catchment area characteristics of the lakes varied greatly. Lakes were in different development stages—lakes nearest to the Baltic Sea were younger and more influenced by brackish water and the furthest lakes were older with more freshwater. All that variability was reflected in macrophyte parameters. Factor analysis of environmental indices divided them into three groups—catchment area, morphometric and water chemistry factors. The first factor may be considered as a pressure and the other two as lake-type-specific factors. Lake catchment area parameters had an influence on Bolboschoenus maritimus, Chara tomentosa and Typha latifolia abundance. Morphometric parameters had an influence on the depth distribution of macrophytes and water chemistry factors on the abundance of helophytes. Current indicator species showed more variability associated with lake-specific factors than with changes in status or the influence of pressures.  相似文献   

9.
The diversity and community structure of macrophyte vegetation was studied in 50 boreal lakes forming several upper reaches of lake chains around Lammi, southern Finland. Water chemical parameters and morphometry of the basins were included in a multivariate analysis. Floating-leaved vegetation was the dominant growth form, followed by emergent plants. In downstream lakes, the dominance of floating-leaved macrophytes declined, and emergent species increased in abundance. Species richness was highest in larger lakes, with a wider range of littoral habitats than smaller lakes. Electrical conductivity (range 18–151 mS cm−1, 25 °C) of the water correlated well with patterns in diversity among lakes, but this was not the case for nutrient concentrations. As a whole, morphometrical characteristics of lake basins showed better correlations with vegetation structure than any of the measured chemical parameters. The macrophyte vegetation of neighbouring lake chains differed considerably, depending on the surrounding landscape properties, water quality of the lakes and immigration history of plant species.  相似文献   

10.
Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long‐term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole‐lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P < 0.01). A redundancy analysis (RDA) of the 41‐lake data set identified BiomEpiV as a significant (P < 0.05) variable in structuring sedimentary diatom assemblages. The MRT analysis classified the lakes into three groups. These groups were (A) high‐macrophyte, nutrient‐limited lakes (BiomEpiV ≥525 μg · L?1; total phosphorus [TP] <35 μg · L?1; 23 lakes); (B) low‐macrophyte, nutrient‐limited lakes (BiomEpiV <525 μg · L?1; TP <35 μg · L?1; 12 lakes); and (C) eutrophic lakes (TP ≥35 μg · L?1; six lakes). A semiquantitative model correctly predicted the MRT group of the lake 71% of the time (P < 0.001). These results suggest that submerged macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance.  相似文献   

11.
SUMMARY 1. Macrophyte abundance and distribution was assessed in a chain of six interconnected lakes (all with the same flooding frequency) in the Arctic, where increasing distance from the Mackenzie River channel resulted in a gradient of water transparency (‘chain‐set’ lakes), and in a group of 26 spatially discrete lakes where increasing frequency and duration of lake flooding with river water (controlled by sill height) also resulted in a transparency gradient (‘sill‐set’ lakes). 2. Among the chain‐set lakes, above‐ground macrophyte biomass increased from 0 to 1000 g m?2 with increasing water transparency. Among the sill‐set lakes, the transparency gradient among the lakes was less well defined and the relations with biomass were more varied. A decrease in flooding was associated with increasing water transparency and an increasing biomass of macrophytes from about 0 to over 2000 g m?2. For a specific flood frequency, however, the effect of flooding was much greater when lakes were directly connected to a river channel than when floodwaters flowed first through an intervening lake. Among infrequently flooded lakes the effect of flooding on water transparency and biomass was negligible. 3. Among relatively clear lakes in both sets of lakes, biomass increased with increasing water transparency and decreasing lake depth. Among relatively turbid lakes, however, biomass increased with the combined effect of increasing water colour (decreasing water transparency) and increasing lake water depth. The increases in biomass with increasing water colour (coloured dissolved organic matter) and increasing depth, which together result in reduced light at the bed, may be explained by reduced exposure to ultra violet light. 4. An average light attenuation of 1.3 m?1 (Secchi depth about 1 m) over the growing season appears to represent a threshold water transparency which, in combination with water depths early in the growing season, is consistent with a light supply on the bed required for growth of the common macrophytes in lakes of the Mackenzie Delta. However, a comparison with other systems indicates that macrophytes among lakes of the Mackenzie Delta grow deeper, for a given level of transparency, than is reported in lakes at lower latitude, despite the lower sun angles and increased reflectivity of water surfaces in the arctic. 5. A complete accounting of water transparency (at PAR and UV wavelengths), lake depth, summer sun angle and duration of sunlight may be necessary to explain patterns of macrophyte growth among lakes across a full range of latitudes.  相似文献   

12.
Change in the abundance of benthic macroinvertebrates and the stable isotope composition (C, N) of benthic invertebrates and zooplankton in Lake Vaeng, Denmark, was investigated over an 18-year period following biomanipulation (removal of cyprinids). During the first nine years after biomanipulation, the lake was clear and submerged macrophytes were abundant; after this period, a shift occurred to low plant abundance and high turbidity. Two years after the biomanipulation, total density of benthic macroinvertebrates reached a maximum of 17042 (±2335 SE) individuals m−2 and the density was overall higher when the lake was in a clear state. Redundancy analysis (RDA) suggested macrophyte abundance and total nitrogen (TN) concentration were the dominant structuring forces on the benthic macroinvertebrate assemblage. Stable isotope analysis revealed that δ13C of macroinvertebrates and zooplankton was markedly higher in years with high submerged macrophyte abundance than in years without macrophytes, most likely reflecting elevated δ13C of phytoplankton and periphyton mediated by a macrophyte-induced lowering of lake water CO2 concentrations. We conclude that the strong relationship between macrophyte coverage and δ13C of macroinvertebrates and cladocerans may be useful in paleoecological studies of past changes in the dynamics of shallow lakes, as change in macrophyte abundance may be tracked by the δ13C of invertebrate remains in the sediment.  相似文献   

13.
Eutrophication is common in shallow lakes in lowland areas. In their natural state, most shallow lakes would have clear water and a thriving aquatic plant community. However, eutrophication often causes turbid water, high algal productivity, and low species diversity and abundance of submerged macrophytes. A key indicator of the ecological state of lake ecosystems is the maximum growing depth (MGD) of aquatic plants. However, few studies have yet quantified the relationship between changes in external phosphorus (P) input to a lake and associated variation in MGD. This study examines the relationship between these variables in Loch Leven, a shallow, eutrophic loch in Scotland, UK. A baseline MGD value from 1905 and a series of more recent MGD values collected between 1972 and 2006 are compared with estimated P loads over a period of eutrophication and recovery. The results suggest a close relationship between changes in MGD of macrophytes and changes in the external P load to the loch. Variation in MGD reflected the ‘light history’ that submerged macrophytes had been exposed to over the 5-year period prior to sampling, rather than responding to short term, within year, variations in water clarity. This suggests that changes in macrophyte MGD may be a good indicator of overall, long term, changes in water quality that occur during the eutrophication and restoration of shallow lakes.  相似文献   

14.
西太湖水生植物时空变化   总被引:37,自引:3,他引:37  
水生植物在浅水湖泊生态系统中具有十分重要的作用。根据中国科学院太湖湖泊生态系统研究站1989年以来的常规监测资料,将西太湖(除东太湖以外的湖区)划分为9个区,采用点截法(point intercept method),于2002~2005年对各区水生植物的种类、生物量和空间分布情况进行了6次调查。结果表明:西太湖现有水生植物16种,分属于11科12属;水生植物总面积约10220hm^2,其中沉水植物分布面积约占64.58%;挺水植物约占0.29%;漂浮植物约占38.16%。各个种之间生物量差异显著,马来眼子菜、荇菜、芦苇的生物量在所有水生植物中居前3位。多样性分析表明,水生植物种类4a来未发生明显变化,但种类和生物量季节性差异较大。水生植物呈环状分布在距湖岸5km以内的水域和部分岛屿周围,东岸和南岸为水生植物的主要集中分布区域,分布区连续性好,且水草种类齐全。挺水植物种类单一,仅有芦苇(Phragmites communis)一种,分布区域多限于水深小于1.6m的湖岸;沉水植物共有8种,为水生植物的主要组成部分,马来眼子菜(Potamogeton malaianus)的分布频度最高,在西山岛周围水域逐年扩张,成为该区域的先锋种;漂浮植物3种,主要以荇菜(Nymphoides peltata)为主,在七都水域有逐渐扩张的趋势。马来眼子菜、芦苇、荇菜表现出对水环境较强的适应能力,目前为西太湖的3个优势种。20世纪50年代以来,西太湖水生植物种类减少了50种,其中水质下降是导致水生植物种类不断减少甚至消失的一个重要原因。围网养殖和不合理的捕捞方式也对局部水域的植物造成极大的破坏。水生植物生存环境日益严峻,种群单一化趋势日益明显。  相似文献   

15.
SUMMARY 1. We analysed the vegetation structure of 215 lakes in the flood plain of the river Lower Rhine in relation to environmental variables related to hydrological connectivity, lake morphometry, lake age and land use on adjacent land. 2. The frequency distribution of the cover of submerged macrophytes was not normal, implying that submerged macrophytes in any one lake were either scarce or abundant. 3. We observed clear water lakes with submerged macrophyte dominance over a wide range of total P concentration (0.020–0.40 mg total P L?1). 4. Multiple logistic regression indicated that the probability of dominance by submerged macrophytes decreased markedly with the surface area, depth and age of the lakes. The surface area effect occurred independently of the depth. Further, there was a negative relationship between submerged macrophyte dominance and the long‐term annual duration of inundation by the river. 5. Nymphaeid cover showed a distinct optimum with respect to mean lake depth, being almost absent in lakes shallower than 0.5 m. In contrast to what was found for submerged plants, the probability of occurrence of nymphaeids increased with lake age. 6. The probability of helophyte occurrence increased with lake age, and decreased with the presence of trees, cattle grazing, surface area, use of manure and mean lake depth. 7. In all cases the critical level of one factor (e.g. mean lake depth) depended on other factors (e.g. surface area or age of lake). Thus, in the present study, small lakes tended to remain dominated by submerged macrophytes up to a greater depth than large lakes, and helophytes colonised smaller lakes in an earlier phase. 8. The effect of inundation by the river was modest. This could be because most of our lakes are rarely inundated during the growing season and experience only moderate current velocities while flooded. 9. The results have practical implications for future management of flood plains for conservation purposes. In new water bodies, macrophyte domination will be promoted if many small shallow lakes, rather than few large deep ones, are excavated.  相似文献   

16.
Submerged hydrophyte vegetation consists of a highly important biotic component of maintaining lake ecosystems towards a “clear water” ecological status. Aquatic macrophytes are well known to play a significant multidimensional role in lakes by competing with phytoplankton growth, stabilising sediment and offering refuge to fishes, macro-invertebrates and littoral zooplankton, amongst others. Zooplanktons that are associated with macrophyte beds, in particular, may act as a positive feedback mechanism that contributes to maintaining a clear-water state. Although there are several studies investigating the relationships between macrophytes and zooplankton in European lakes, few have yet been carried out in Greek lakes. Seasonal field sampling was conducted from spring 2006 to autumn 2008 in four lakes of northwestern Greece. Zooplankton samples were collected from within hydrophyte beds in each lake to estimate their relative abundance and species density. Hydrophyte abundance and composition was recorded on a five-point scale. Moreover, water samples were analysed to determine nutrient and chlorophyll-a concentration. Pearson correlations between zooplankton density and key physicochemical variables were conducted to distinguish significant abiotic variables related with major zooplankton groups. Kruskal–Wallis non-parametric analysis was used to test for significant differences in zooplankton composition and environmental variables amongst the five hydrophyte abundance classes. In addition, Canonical correspondence analysis was used to distinguish possible correlations amongst the macrophyte and zooplankton species. Zooplankton density was significantly higher in dense macrophyte vegetation. Small-sized species (e.g. Rotifera) dominated the zooplankton community, indicating the eutrophic nature of the lakes. Large Cladocera were present in low abundance and were mostly littoral. The current research contributes to a better understanding of relationships between biotic groups in selected Greek lakes.  相似文献   

17.
Colonization of submerged macrophytes and changes in species composition were studied in shallow Lake Væng during the first five years (1987–91) following fish manipulation in 1986–1988 and a resultant significant improvement in lake water transparency. No submerged macrophytes were present in the lake from 1981–1986, during which time the summer mean Secchi depth ranged from 0.6 and 0.8 m. From 1987 to 1990, Secchi depth increased from 0.9 m to 1.8 m and macrophyte coverage consequently increased (1 % of the lake area in 1987, 2% in 1988, 50% in 1989, 80% in 1990 and 90% in 1991). At the same time, the macrophytes became taller, and the weedbeds more dense. The macrophytes colonized from the exposed and deeper part of the lake towards the sheltered and more shallow part of the lake, a colonization pattern that was confirmed by transplantation experiments. The delay in colonization of the shallow parts may be caused by waterfowl grazing. The vegetation was initially dominated by Potamogeton crispus L., but there was a gradual change during 1988–1989 and Elodea canadensis Michx became exclusively dominant in 1990–1991.  相似文献   

18.
Global warming may affect snail–periphyton–macrophyte relationships in lakes with implications also for water clarity. We conducted a 40-day aquaria experiment to elucidate the response of submerged macrophytes and periphyton on real and artificial plants to elevated temperatures (3°C) under eutrophic conditions, with and without snails present. With snails, the biomass and length of Vallisneria spinulosa leaves increased more at the high temperature, and at both temperatures growth was higher than in absence of snails. The biomass of periphyton on V. spinulosa as well as on artificial plants was higher at the highest temperature in the absence but not in the presence of snails. The biomass of Potamogeton crispus (in a decaying state) declined in all treatments and was not affected by temperature or snails. While total snail biomass did not differ between temperatures, lower abundance of adults (size >1 cm) was observed at the high temperatures. We conclude that the effect of elevated temperature on the snail–periphyton–macrophyte relationship in summer differs among macrophyte species in active growth or senescent species in subtropical lakes and that snails, when abundant, improve the chances of maintaining actively growing macrophytes under eutrophic conditions, and more so in a warmer future with potentially denser growth of periphyton.  相似文献   

19.
The aim of this study was to examine the combined effect of water transparency and narrow macrophyte belts on zooplankton assemblages in two oxbow lakes (Krapina River, Croatia). Samples were collected in open water and among helophytes in the littoral zone from April until September 2008. Rotifers were the most abundant group of zooplankton in both lakes, and dominated in the Krapina oxbow lake 1 (KO1). Lake KO1 had significantly lower transparency, lower percentage macrophyte cover and higher chlorophyll a concentration than Krapina oxbow lake 2 (KO2). In lake KO1, variation in the horizontal distribution of cladocerans and rotifers in terms of their abundance seemed to be determined by competition between Bosmina longirostris and Keratella cochlearis, initiated by oscillation in transparency and detritus availability. In lake KO2, with higher transparency and higher percentage macrophyte cover, the abundance of small‐ and large‐bodied cladocerans increased in the littoral zone simultaneously with higher transparency, suggesting fish predation. Results of this study indicated that small differences in transparencies between the two lakes caused significant differences in horizontal distribution of the zooplankton assemblage. Even narrow helophyte belts offered a refuge to zooplankton, although lower transparencies reduced the effectiveness of macrophytes as a refuge from predators. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
1. Seasonal relationships between macrophyte and phytoplankton populations may alter considerably as lakes undergo eutrophication. Understanding of these changes may be key to the interpretation of ecological processes operating over longer (decadal‐centennial) timescales. 2. We explore the seasonal dynamics of macrophytes (measured twice in June and August) and phytoplankton (measured monthly May–September) populations in 39 shallow lakes (29 in the U.K. and 10 in Denmark) covering broad gradients for nutrients and plant abundance. 3. Three site groups were identified based on macrophyte seasonality; 16 lakes where macrophyte abundance was perennially low and the water generally turbid (‘turbid lakes’); 7 where macrophyte abundance was high in June but low in August (‘crashing’ lakes); and 12 where macrophyte abundance was high in both June and August (‘stable’ lakes). The seasonal behaviour of the crashing and turbid lakes was extremely similar with a consistent increase in nutrient concentrations and chlorophyll‐a over May–September. By contrast in the stable lakes, seasonal changes were dampened with chlorophyll‐a consistently low (<10–15 μg L?1) over the entire summer. The crashing lakes were dominated by one or a combination of Potamogeton pusillus, Potamogeton pectinatus and Zannichellia palustris, whereas Ceratophyllum demersum and Chara spp. were more abundant in the stable lakes. 4. A long‐term loss of macrophyte species diversity has occurred in many shallow lakes affected by eutrophication. One common pathway is from a species‐rich plant community with charophytes to a species‐poor community dominated by P. pusillus, P. pectinatus and Z. palustris. Such compositional changes may often be accompanied by a substantial reduction in the seasonal duration of plant dominance and a greater tendency for incursions by phytoplankton. We hypothesise a slow‐enacting (10–100 s years) feedback loop in nutrient‐enriched shallow lakes whereby increases in algal abundance are associated with losses of macrophyte species and hence different plant seasonal strategies. In turn such changes may favour increased phytoplankton production thus placing further pressure on remaining macrophytes. This study blurs the distinction between so‐called turbid phytoplankton‐dominated and clear plant‐dominated shallow lakes and suggests that plant loss from them may be a gradual process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号