首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Iberian Peninsula encompasses more than 80% of the species richness of European aquatic ranunculi. The floristic diversity of the phytocoenosis characterised by aquatic Ranunculus and the main physical–chemical factors of the water were studied in 43 localities of the central Iberian Peninsula. Four aquatic Ranunculus communities are found in most of the aquatic environments. These are species-poor and have an uneven distribution: three species of Batrachium are heterophyllous and their communities are distributed in different aquatic ecosystems on silicated substrates; one species is homophyllous and its community occurs in various aquatic ecosystems with carbonated waters. In the Mediterranean climate, Ranunculus species are present in different habitats, as shown by the results of all the statistical analyses. Ranunculus trichophyllus communities occur in base-rich waters with a high buffering capacity (2273.44 ± 794.57 mg CaCO3 L−1) and a high concentration of cations (Ca2+, 121 ± 33.12 mg L−1; Mg2+, 71.64 ± 82.77 mg L−1), nitrates (2.89 ± 4.80 mg L−1), ammonium (2.19 ± 1.36 mg L−1) and sulphates (216.25 ± 218.54 mg L−1). Ranunculus penicillatus communities are found in flowing waters with a high concentration of phosphates (0.48 ± 0.6 mg L−1) and intermediate buffering capacity (683.66 ± 446.76 mg CaCO3 L−1). Both Ranunculus pseudofluitans and Ranunculus peltatus communities grow in waters with low buffering capacity (R. pseudofluitans, 385.91 ± 209.2 mg CaCO3 L−1; R. peltatus, 263.3 ± 180.36 mg CaCO3 L−1), and a low concentration of cations (R. pseudofluitans: Ca2+, 12.57 ± 9.42 mg L−1; Mg2+, 3.42 ± 1.67 mg L−1; R. peltatus: Ca2+, 15 ± 18.26 mg L−1; Mg2+, 6.26 ± 8.89 mg L−1) and nutrients (R. pseudofluitans: nitrates, 0.23 ± 0.2 mg L−1; phosphates, 0.09 ± 0.1 mg L−1; R. peltatus: nitrates, 0.19 ± 0.21 mg L−1; phosphates, 0.09 ± 0.12 mg L−1); the first in flowing waters, the latter in still waters.  相似文献   

2.
Three wetlands from the Upper South East of South Australia were chosen to investigate how a past history of drought (dry since 2002, 2004 and 2005) and salinity (2800 to >20,000 mg L−1) influenced the response of the seed bank to two water regimes (drained and flooded) and four salinities (500, 1000, 3000 and 5000 mg L−1). The maximum number of germinants (1270 ± 850 m−2) and species richness (7 ± 2.4) was greatest under the fresher drained treatment compared with the flooded more saline treatment under which there was no germination at one site. There were significant interactions between water regime and wetland previous history for two wetlands, but not the third which was the most saline and had experienced the longest drought. This indicated that the previous drought and salinity conditions experienced by a wetland affected seedling emergence but in the two less impacted wetlands the imposition of fresher drained conditions mitigated against these impacts. This suggests that if drought conditions continued with repeated exposure to elevated salinities the number of seeds and the species diversity of the seed banks would continue to decline.  相似文献   

3.
The aim of this study was to investigate the cellular toxicity of copper-induced injury to the black tiger shrimp Penaeus monodon. The 24 h, 48 h, 72 h and 96 h LC50 (median lethal concentration) of Cu2+ on P. monodon (11.63 ± 1.14 g) were found to be 3.49, 1.54, 0.73 and 0.40 mg L− 1, respectively. Total haemocyte count (THC), phagocytic activity, respiratory burst (RB), cytoplasmic free-Ca2+ (cf-Ca2+) concentration and apoptotic cell ratio of shrimp were determined after exposure to different concentrations of Cu2+ (0, 0.05, 0.5, 1.5 and 3.5 mg L− 1) for 0, 6, 12, 24 and 48 h. There was no significant effect on the analytic indicator of shrimp exposed to 0.05 mg L− 1 Cu2+. THC decreased after Cu-exposure to 0.5 mg L− 1 for 48 h, 1.5 mg L− 1 for 24 h and 3.5 mg L− 1 for 12 h. Phagocytic activity decreased in P. monodon following 48 h exposure to 3.5 mg L− 1 Cu2+. RB was induced after 6 h exposure to 0.5, 1.5 and 3.5 mg L− 1 Cu2+. cf-Ca2+ concentration increased after 48 h exposure to 0.5 mg L− 1 Cu2+, and 12 h exposure to 1.5 and 3.5 mg L− 1 Cu2+. The percentage of apoptotic cells increased to 9.5%, 16.3% and 18.6% respectively following 48 h exposure to 0.5, 1.5 and 3.5 mg L− 1 Cu2+. These results indicate that Cu can induce oxidative stress, elevation of cf-Ca2+ and cell apoptosis, and inhibit phagocytic activity in the shrimp P. monodon, and the lethal injury of Cu2+ to P. monodon may be mainly due to the sharp reduction of THC caused by ROS-induced apoptosis.  相似文献   

4.
The effects of lead (Pb; 0-1000 mg L−1) stress on the growth and biochemical responses of seedlings of Avicennia marina were examined, with and without cotyledons. After 50 days exposure to Pb, the growth of A. marina was not affected at low concentrations (0-50 mg L−1 Pb). Roots tolerated to high Pb concentrations, with a significant reduction in biomass only at 1000 mg L−1 Pb. In leaves and stems, 500 mg L−1 Pb already caused a significant decline in biomass (0.6-fold). Accumulation of Pb occurred mainly in roots, with some accumulation in cotyledons but very little in leaves. Pb concentrations in both roots and cotyledons were proportional to the Pb levels in the substrate (y = 25.945x − 4281, r2 = 0.67, P = 0.001 for roots, and y = 0.249x + 45.636, r2 = 0.879, P < 0.001 for leaves). In treatments with 500 and 1000 mg L−1 Pb, nitrogen concentrations in cotyledons were higher, while the carbon to nitrogen ratios were significantly lower than in the control without Pb. The Pb levels had significant positive effects on sugar content, MDA concentration and POD activity in both roots and leaves, while the removal of cotyledons significantly decreased the POD activity and MDA content in roots A. marina seedlings according to the two-way multivariate analysis of variance test. The sugar content in the cotyledon of Pb-treated seedlings was significantly lower than that in the control (without Pb), suggesting that more carbohydrate reserves (e.g., sugar) stored in cotyledons had been mobilized to leaves and even roots under Pb treatment.  相似文献   

5.
Ammonia-N toxicity to early Portunus pelagicus juveniles at different salinities was investigated along with changes to haemolymph osmolality, Na+, K+, Ca2+ and ammonia-N levels, ammonia-N excretion and gill Na+/K+-ATPase activity. Experimental crabs were acclimated to salinities 15, 30 and 45‰ for one week and 25 replicate crabs were subsequently exposed to 0, 20, 40, 60, 80, 100 and 120 mg L− 1 ammonia-N for 96-h, respectively. High ammonia-N concentrations were used to determine LC50 values while physiological measurements were conducted at lower concentrations. When crabs were exposed to ammonia-N, anterior gill Na+/K+-ATPase activity significantly increased (p < 0.05) at all salinities, while this only occurred on the posterior gills at 30‰. For crabs exposed to 20 and 40 mg L− 1 ammonia-N, both posterior gill Na+/K+-ATPase activity and ammonia-N excretion were significantly higher at 15‰ than those at 45‰. Despite this trend, the 96-h LC50 value at 15‰ (43.4 mg L− 1) was significantly lower (p < 0.05) than at both 30‰ and 45‰ (65.8 and 75.2 mg L− 1, respectively). This may be due to significantly higher (p < 0.05) haemolymph ammonia-N levels of crabs at low salinities and may similarly explain the general ammonia-N toxicity pattern to other crustacean species.  相似文献   

6.
Wang B  Lan CQ 《Bioresource technology》2011,102(10):5639-5644
Biomass productivity of 350 mg DCW L−1 day−1 with a final biomass concentration of 3.15 g DCW L−1 was obtained with Neochloris oleoabundans grown in artificial wastewater at sodium nitrate and phosphate concentrations of 140 and 47 mg L−1, respectively, with undetectable levels of residual N and P in effluents. In secondary municipal wastewater effluents enriched with 70 mg N L−1, the alga achieved a final biomass concentration of 2.1 g DCW L−1 and a biomass productivity of 233.3 mg DCW L−1 day−1. While N removal was very sensitive to N:P ratio, P removal was independent of N:P ratio in the tested range. These results indicate that N. oleoabundans could potentially be employed for combined biofuel production and wastewater treatment.  相似文献   

7.
The genus Enterococcus belong to the genera of bacteria that produce lactic acid and can confer health benefits to living organisms. Selenium (Se) is an essential micronutrient for humans and animals. Thirty-six Enterococcus species isolated from dairy products were screened for Se(IV) sorption capacity for use as a probiotics in animal nutrition. Several isolates grew luxuriantly and significantly removed Se(IV) from Se(IV) amended medium. Two isolates, LAB 14 and LAB 18, identified by 16S rRNA gene sequence analysis as Enterococcus faecalis (98% nucleotide sequence similarity) and Enterococcus faecium (97% nucleotide sequence similarity), respectively, were selected for further studies. The two isolates grew optimally and removed selenium at initial pH 7.0. Optimum removal of Se(IV) from the medium was recorded at 25 °C. Time course studies showed that after 8 h of incubation LAB 14 and LAB 18 cultures displayed the highest biomass production and Se(IV) bioremoval and most selenite in culture depleted in 24 h. At initial concentrations of 10 mg L−1 and 60 mg L−1, E. faecium (LAB 18) removed 9.91 mg L−1 and 59.70 mg L−1, respectively after 24 h. Similar Se(IV) bioremoval capacity was recorded with E. faecalis (LAB 14). Substantial amount of Se was detected in biomass of E. faecium (0.4599 mg g−1 of dry weight) and E. faecalis (0.4759 mg g−1 of dry weight). The significant uptake and transformation of Se(IV) by the Enterococcus species observed in this study suggest that they can be used to deliver dietary Se through feed augmentation with Se(IV)-enriched Enterococcus biomass.  相似文献   

8.
Chromium (Cr), as a mutagenic agent in plants, has received less attention than other metal pollutants. To understand if Cr induces microsatellite instability (MSI), Pisum sativum seedlings were exposed for 28 days to different concentrations of Cr(VI) up to 2000 mg L−1, and the genetic instability of ten microsatellites (SSRs) was analyzed. In plants exposed to Cr(VI) up to 1000 mg  L−1, MSI was never observed. However, roots exposed to 2000 mg L−1 displayed MSI in two of the loci analyzed, corresponding to a mutation rate of 8.3%. SSR2 (inserted in the locus for plastid photosystem I 24 kDa light harvesting protein) and SSR6 (inserted in the locus for P. sativum glutamine synthetase) from Cr(VI)-treated roots presented alleles with, respectively, less 6 bp and more 3 bp than the corresponding controls. This report demonstrates that: (a) SSRs technique is sensitive to detect Cr-induced mutagenicity in plants, being Cr-induced-MSI dose and organ dependent (roots are more sensitive); (b) two Cr-sensitive loci are related with thylakoid photophosphorylation and with glutamine synthetase, respectively; (c) despite MSI is induced by Cr(VI), it only occurs in plants exposed to concentrations higher than 1000 mg L−1 (values rarely found in real scenarios). Considering these data, we also discuss the known functional changes induced by Cr(VI) in photosynthesis and in glutamine synthetase activity.  相似文献   

9.
Salt marshes near urban, industrial and mining areas are often affected both by heavy metals and by eutrophic water. The aim of this study was to assess and evaluate the main processes involved in the decrease of nitrate concentration in pore water of mine wastes flooded with eutrophic water, considering the presence or absence of plant rhizhosphere. Basic (pH ∼ 7.8) carbonated loam mine wastes and free-carbonated acidic (pH ∼ 6.2) sandy-loam mine wastes were collected from polluted coastal salt marshes of SE Spain which regularly receive nutrient-enriched water. The wastes were put in pots and flooded for 15 weeks with eutrophic water (dissolved organic carbon ∼26 mg L−1, PO43− ∼23 mg L−1, NO3 ∼180 mg L−1). Three treatments were assayed for each type of waste: pots with Sarcocornia fruticosa, pots with Phragmites australis and unvegetated pots. Soluble organic carbon, nitrate, soluble Cd, Pb and Zn, pH and Eh were monitored. But the 2nd day of flooding, nitrate concentrations had decreased between 70% and 90% (equivalent to 1.01-1.12 g N-NO3 m−2 day−1) with respect to the content in the water used for flooding, except in unvegetated pots with acidic wastes. Denitrification was the main mechanism associated with the removal of nitrate. The role of vegetation in improving the rhizospheric environment was relevant in the acidic wastes because higher sand content, lower pH and higher soluble metal concentrations might strongly hinder microbial activity Hence, revegetation of salt marshes polluted by acidic sandy mining wastes might improve the capacity of this type of environment to act as a green filter against excessive nitrate contents flowing through them.  相似文献   

10.
The porcelain crab Petrolisthes elongatus is a particulate suspension feeding species common to coastal areas of New Zealand (NZ). Consistent with the responses of other suspension feeding species, it is likely to be negatively influenced by elevated suspended sediment concentrations. Laboratory experiments were conducted to quantify the effect of temperature (12 °C, 15 °C and 18 °C) and suspended sediment concentration (total particulate matter (TPM): low < 100 mg L− 1; medium 100-1000 mg L− 1; high > 1000 mg L− 1) on the clearance rate (CR in L h− 1), oxygen uptake rate (VO2 in mL h−1), net absorption efficiency (AE), and net energy budget (NEB in J h− 1) of P. elongatus across a range of sizes. Variation in CR and AE was independent of temperature and of body size, but were significantly different (P < 0.05) at low and medium suspended sediment concentrations compared with high suspended sediment concentrations. CR responded in a non-linear manner to changes in TPM, increasing with TPM up to a maximum value at medium-low concentrations (approximately 250 mg L− 1) and then decreasing thereafter. CR had almost completely shut down at TPM concentrations of > 1000 mg L− 1 and at particulate organic matter (POM) concentrations of > 250 mg L− 1. AE was zero at approximate TPM and POM values of 1200 mg L− 1 and 300 mg L− 1, respectively. VO2 was positively correlated with body size and with temperature, but was independent of TPM. NEB values for P. elongatus were low (approx 110 J g− 1 h− 1) at low sediment concentrations, were high (approx 320 J g− 1 h− 1) at medium sediment concentrations, and were negative (approx − 114 J g− 1 h− 1) at high sediment concentrations. These findings indicate that P. elongatus is likely to be food-limited at sediment concentrations of < 100 mg L− 1, and severely negatively affected at sediment concentrations of > 1000 mg L− 1, at least for the duration of such events which may persist for 2-3 days in coastal environments where this crab occurs.  相似文献   

11.
We investigated the effects of 1 and 10 mg L−1 AgNPs on germinating Triticum aestivum L. seedlings. The exposure to 10 mg L−1 AgNPs adversely affected the seedling growth and induced morphological modifications in root tip cells. TEM analysis suggests that the observed effects were due primarily to the release of Ag ions from AgNPs.  相似文献   

12.
Chen S  Hu Q  Hu M  Luo J  Weng Q  Lai K 《Bioresource technology》2011,102(17):8110-8116
Fungal strain HU, isolated from activated sludge and identified as a member of the genus Cladosporium based on morphology and sequencing of 28S rRNA, was shown to degrade 90% of fenvalerate, fenpropathrin, β-cypermethrin, deltamethrin, bifenthrin, and permethrin (100 mg L−1) within 5 days. Fenvalerate was utilized as sole carbon and energy source and co-metabolized in the presence of sucrose. Degradation of fenvalerate occurred at pH 5-10 at 18-38 °C. The fungus first hydrolyzed the carboxylester linkage to produce α-hydroxy-3-phenoxy-benzeneacetonitrile and 3-phenoxybenzaldehyde, and subsequently degraded these two compounds with a qmax, Ks and Ki of 1.73 d−1, 99.20 mg L−1 and 449.75 mg L−1, respectively. Degradation followed first-order kinetics. These results show that the fungal strain may possess potential to be used in bioremediation of pyrethroid-contaminated environments.  相似文献   

13.
Shooting range soils frequently contain anomalous concentrations of metals (e.g. Pb, Zn, Mn) and Sb coming from bullets which may be released into the environment. In a pot experiment, we investigated metal and Sb uptake by three plant species (Plantago lanceolata, Lolium perenne and Triticum aestivum) growing on a calcareous shooting range soil (pH 7.8; 500 mg kg−1 Pb, 21 mg kg−1 Sb) and the uptake changes when an acidic fertilizer solution was applied to the soil. Metal and Sb solubility in the soil was determined by extraction with 0.1 M NaNO3. In addition, we measured pH, electrical conductivity and dissolved organic carbon in drainage samples. The results showed significant increase over time of pH (from 7.8 to 8.3) and decrease of electrical conductivity and dissolved organic carbon (from 230 to ∼130 mg L−1). Fertilizer application increased NaNO3-extractable Pb and Sb and root:shoot biomass ratio but not plant metal uptake. In T. aestivum spikes accumulated more Zn, Ni and Cu than shoots and grains. Mn and Zb uptake was correlated in L. perenne shoots. P. lanceolata, a Sb-bioindicator, did not accumulate high amounts of Sb (<1 mg kg−1).  相似文献   

14.
Previous work demonstrated that a mixture of NH4Cl and KNO3 as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH4)2SO4 plus NaNO3, varying the ammonium feeding time (T = 7-15 days), either controlling the pH by CO2 addition or not. A. platensis was cultivated in mini-tanks at 30 °C, 156 μmol photons m−2 s−1, and starting cell concentration of 400 mg L−1, on a modified Schlösser medium. T = 13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L−1, cell productivity of 179 mg L−1 d−1 and specific growth rate of 0.77 d−1) and satisfactory protein and lipid contents (around 30% each).  相似文献   

15.
Industrial wastewater treatment comprises several processes to fulfill the discharge permits or to enable the reuse of wastewater. For tannery wastewater, constructed wetlands (CWs) may be an interesting treatment option. Two-stage series of horizontal subsurface flow CWs with Phragmites australis (UP series) and Typha latifolia (UT series) provided high removal of organics from tannery wastewater, up to 88% of biochemical oxygen demand (BOD5) (from an inlet of 420 to 1000 mg L−1) and 92% of chemical oxygen demand (COD) (from an inlet of 808 to 2449 mg L−1), and of other contaminants, such as nitrogen, operating at hydraulic retention times of 2, 5 and 7 days. No significant (P < 0.05) differences in performance were found between both the series. Overall mass removals of up to 1294 kg COD ha−1 d−1 and 529 kg BOD5 ha−1 d−1 were achieved for a loading ranging from 242 to 1925 kg COD ha−1 d−1 and from 126 to 900 kg BOD5 ha−1 d−1. Plants were resilient to the conditions imposed, however P. australis exceeded T. latifolia in terms of propagation.  相似文献   

16.
The present work was aimed at studying the efficiency of the combined process of biofiltration with ozonation to improve the quality of secondary effluent. The secondary effluent from the Dinapur Sewage Treatment Plant Varanasi, India was used in this work. The process of biofiltration with the plant species of Eichornia crassipes and Lemna minor, at a flow rate of 262 ml min−1 and plant density of 30 mg L−1 for 48 h, in combination with the process of ozonation with ozone dose of 10 mg L−1 and contact time of 5 min was applied. Results revealed that combined process was statistically most suitable for the highest degradation of physico-chemical and microbial parameters with improving BDOC value. The biofiltration process is able to remove highest percentage of toxic heavy metals from the secondary effluent without production of toxicity. This technique is highly recommendable for tropical wastewater where sewage is mixed with industrial effluents.  相似文献   

17.
Irradiated carrageenan (IC) could elicit plant growth promoting activities in plants. The effect of foliar spray of five concentrations of IC (20, 40, 60, 80 and 100 mg L−1) was studied on Mentha arvensis L. in terms of plant growth, physiological attributes, herbage yield and the content and yield of essential oil and its components. Un-irradiated carrageenan and deionized water had no effect on the attributes studied. GPC study revealed formation of low molecular weight fractions in irradiated samples containing less than 20,000 molecular weight oligomers which are responsible for plant growth promotion in this study. 80 mg L−1 of IC was the most effective concentration which resulted in the highest values of growth attributes, herbage yield and the content and yield of essential oil and menthol content of the oil. It also improved the leaf-nutrient contents, photosynthetic rate and other physiological parameters. 100 mg L−1 of IC did not further improve the attributes studied, but it was always better than the control.  相似文献   

18.
The main impacts of cooling water from thermal (nuclear) power plants on aquatic organisms were caused by chlorination and temperature increase. In this study, we investigated the impacts of residual chlorine and short-term heat shocks on growth, pigment contents and photosynthesis of Phaeodactylum tricornutum. Growth of P. tricornutum was completely inhibited; Chlorophyll a and carotenoids contents deceased about 63.3% and 61.4% in 24 h treated with 0.2 mg L− 1 chlorine. The negative effects of chlorination increased with enhanced concentration and prolonged exposure time. Relative electrode transfer rate (rETR) of P. tricornutum was significantly suppressed when treated with 0.2 mg L− 1 residual chlorine for 24 h. Furthermore, the effective quantum yield (Fv'/Fm') decreased first but then recovered with prolonged exposure when residual chlorine ranged between 0.1 and 0.2 mg L− 1. The cells were less sensitive to heat shocks compared with chlorination: the rETR and Fv'/Fm' was suppressed only when the temperature exceeded 35 °C for 1 h. When P. tricornutum was exposed to chlorination combined with heat shocks, the rETR was further inhibited at 35 °C. It indicated that both chlorination and heat shocks had negative impacts on the primary producers living in discharging coastal waters; furthermore, there were synergistic effects of heat shocks on chlorination toxicity.  相似文献   

19.
Methane emissions from freshwater riverine wetlands   总被引:1,自引:0,他引:1  
To better understand methane emissions from freshwater riverine wetlands, seasonal and spatial patterns of methane emissions were measured over a 1-year period from created freshwater marshes and a river division oxbow, and at a river-floodplain edge (riverside) in central Ohio, USA. Plots were distributed from inflow to outflow and from shallow transition edges to deep water zones in the marshes and oxbow. Median values of CH4 emissions ranged from 0.33 to 85.7 mg-CH4-C m−2 h−1, at the riverside sites and 0.02-20.5 mg CH4-C m−2 h−1 in the created marshes. The naturally colonizing marsh had more methane emissions (p = 0.047) than did the planted marsh, probably due to a history of higher net primary productivity in the former. A significant dry period and lower productivity in the oxbow may explain its low range of methane emissions of −0.04 to 0.09 mg CH4-C m−2 h−1. There were significantly higher rates of methane emissions in deep water zones compared to transition zones in the created marshes. Overall CH4 emissions had significant relationships with organic carbon and soil temperature and appear to depend on the hydroperiod and vegetation development. Riparian wetlands can be designed to minimize greenhouse gas emissions while providing other ecosystem services.  相似文献   

20.
Lai HT  Lin JS  Chien YH 《Bioresource technology》2011,102(9):5425-5430
This study investigated the effects of light (visible light - 5800 lux, 24 h) or dark regime and aerobic or anaerobic condition on the decay of added oxolinic acid (OA) at 5, 10 and 20 mg L−1 in eel pond sediment. An asymptotic decaying exponential model Ct = Cmin + Co × exp (−k × t) was used to facilitate quantitative approach to OA transformation, where Ct is the concentration of OA after t days, Cmin the estimated level-off concentration of OA residue, Co the concentration of added OA and k the decaying coefficient. OA decayed faster under light (Cmin = 4.6 mg L−1) than under dark (Cmin = 7.8 mg L−1) and also decayed faster under aerobic (Cmin = 4.0 mg L−1) than under anaerobic condition (Cmin = 8.5 mg L−1). Cmin increased with Co. Sundrying and tilling eel pond bottom should be able to reduce OA residue significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号