首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our study aimed to test the ability of aquatic plants to use bicarbonate when acclimated to three different bicarbonate concentrations. To this end, we performed experiments with the three species Ceratophyllum demersum, Egeria densa, Lagarosiphon major to determine photosynthetic rates under varying bicarbonate concentrations. We measured bicarbonate use efficiency, photosynthetic performance and respiration. For all species, our results revealed that photosynthetic rates were highest in replicates grown at low alkalinity. Thus, E. densa had approx. five times higher rates at low (264 ± 15 μmol O2 g−1 DW h−1) than at high alkalinity (50 ± 27 μmol O2 g−1 DW h−1), C. demersum had three times higher rates (336 ± 95 and 120 ± 31 μmol O2 g−1 DW h−1), and L. major doubled its rates at low alkalinity (634 ± 114 and 322 ± 119 μmol O2 g−1 DW h−1). Similar results were obtained for bicarbonate use efficiency by E. densa (136 ± 44 and 43 ± 10 μmol O2 mequiv. L−1 g−1 DW h−1) and L. major (244 ± 29 and 82 ± 24 μmol O2 mequiv. L−1 g−1 DW h−1). As to C. demersum, efficiency was high but unaffected by alkalinity, indicating high adaptation ability to varied alkalinities. A pH drift experiment supported these results. Overall, our results suggest that the three globally widespread worldwide species of our study adapt to low inorganic carbon availability by increasing their efficiency of bicarbonate use.  相似文献   

2.
Three wetlands from the Upper South East of South Australia were chosen to investigate how a past history of drought (dry since 2002, 2004 and 2005) and salinity (2800 to >20,000 mg L−1) influenced the response of the seed bank to two water regimes (drained and flooded) and four salinities (500, 1000, 3000 and 5000 mg L−1). The maximum number of germinants (1270 ± 850 m−2) and species richness (7 ± 2.4) was greatest under the fresher drained treatment compared with the flooded more saline treatment under which there was no germination at one site. There were significant interactions between water regime and wetland previous history for two wetlands, but not the third which was the most saline and had experienced the longest drought. This indicated that the previous drought and salinity conditions experienced by a wetland affected seedling emergence but in the two less impacted wetlands the imposition of fresher drained conditions mitigated against these impacts. This suggests that if drought conditions continued with repeated exposure to elevated salinities the number of seeds and the species diversity of the seed banks would continue to decline.  相似文献   

3.
This study investigated the absorption of arsenic (As), sulfur (S), and phosphorus (P) in the desert plant Chilopsis linearis (Desert willow). A comparison between an inbred line (red flowered) and wild type (white flowered) plants was performed to look for differential responses to As treatment. One month old seedlings were treated for 7 days with arsenate (As2O5, AsV) at 0, 20, and 40 mg AsV L−1. Results from the ICP-OES analysis showed that at 20 mg AsV L−1, red flowered plants had 280 ± 11 and 98 ± 7 mg As kg−1 dry wt in roots and stems, respectively, while white flowered plants had 196 ± 30 and 103 ± 13 mg As kg−1 dry wt for roots and stems. At this treatment level, the concentration of As in leaves was below detection limits for both plants. In red flowered plants treated with 40 mg AsV L−1, As was at 290 ± 77 and 151 ± 60 mg As kg−1 in roots and stems, respectively, and not detected in leaves, whereas white flowered plants had 406 ± 36, 213 ± 12, and 177 ± 40 mg As kg−1 in roots, stems, and leaves. The concentration of S increased in all As treated plants, while the concentration of P decreased in roots and stems of both types of plants and in leaves of red flowered plants. X-ray absorption spectroscopy analyses demonstrated partial reduction of arsenate to arsenite in the form of As-(SX)3 species in both types of plants.  相似文献   

4.
A case study on Centaurea gymnocarpa Moris & De Not., a narrow endemic species, was carried out by analyzing its morphological, anatomical, and physiological traits in response to natural habitat stress factors under Mediterranean climate conditions. The results underline that the species is particularly adapted to the environment where it naturally grows. At the plant level, the above-ground/below-ground dry mass (1.73 ± 0.60) shows its investment predominately in the above-ground structure with a resulting total leaf area per plant of 1399 ± 94 cm2. The senescent attached leaves at the base of the plant contribute to limit leaf transpiration by shading soil around the plant. Moreover, the dense C. gymnocarpa leaf pubescence, leaf rolling, the relatively high leaf mass area (LMA = 12.3 ± 1.3 mg cm−2) and leaf tissue density (LTD = 427 ± 44 mg cm−3) contribute to limit leaf transpiration, also postponing leaf death under dry conditions. At the physiological level, a relatively low respiration/photosynthesis ratio (R/PN) in spring results from high R [2.26 ± 0.59 μmol (CO2) m−2 s−1] and PN [12.3 ± 1.5 μmol (CO2) m−2 s−1]. The high photosynthetic nitrogen use efficiency [PNUE = 15.5 ± 0.4 μmol (CO2) g−1 (N) s−1] shows the large amount of nitrogen (N) invested in the photosynthetic machinery of new leaves, associated to a high chlorophyll content (Chl = 35 ± 5 SPAD units). On the contrary, the highest R/PN ratio (1.75 ± 0.19) in summer is due to a significant PN decrease and increase of R in response to drought. The low PNUE [1.5 ± 0.2 μmol (CO2) g−1 (N) s−1] in this season is indicative of a greater N investment in leaf cell walls which may contribute to limit transpiration. On the contrary, the low R/PN ratio (0.05 ± 0.02) in winter is resulting from the limited enzyme activity of the respiratory apparatus [R = 0.23 ± 0.08 μmol (CO2) m−2 s−1] while the low PNUE [3.5 ± 0.2 μmol (CO2) g−1 (N) s−1] suggests that low temperatures additionally limit plant production. The experiment of the imposed water stress confirms that the C. gymnocarpa growth capability is in conformity with the severe conditions of its natural habitat, likewise as it may be the case with others narrow endemic species that have occupied niches with similar extreme conditions.  相似文献   

5.
The specific metabolic rate (SMR) and haemolymph osmolality (HO) of the mud crab Rhithropanopeus harrisii Gould, 1841 from Baltic brackish waters were measured at a habitat salinity of 7 psu (T = 15 °C, full air saturation) and after step-wise acclimation to a salinity range of 3-27 psu. Values of SMR at 7 psu varied between 0.40 and 3.89 J g− 1 WW h− 1 (n = 25, wet weight range 0.051-1.142 g) and were significantly (p < 0.05) related to the specimen's wet weight (WW) according to the power regression SMR = 0.94 WW 0.41 (R2 = 0.68). The SMR of females did not differ significantly (p > 0.05) from those of males. When exposed to higher salinities, the SMR of R. harrisii decreased significantly (p < 0.05) and reached a minimum value at 23 psu (0.55 ± 0.05 J g− 1 WW h− 1, n = 6). Mean haemolymph osmolality at 7 psu amounted to 581 ± 26 mOsm kg− 1 (n = 5) and was 2.9 times higher than that of the external medium. R. harrisii hyperosmoregulated its body fluids up to 24 psu (727 mOsm kg− 1) at which salinity the isosmotic point was reached.  相似文献   

6.
The Iberian Peninsula encompasses more than 80% of the species richness of European aquatic ranunculi. The floristic diversity of the phytocoenosis characterised by aquatic Ranunculus and the main physical–chemical factors of the water were studied in 43 localities of the central Iberian Peninsula. Four aquatic Ranunculus communities are found in most of the aquatic environments. These are species-poor and have an uneven distribution: three species of Batrachium are heterophyllous and their communities are distributed in different aquatic ecosystems on silicated substrates; one species is homophyllous and its community occurs in various aquatic ecosystems with carbonated waters. In the Mediterranean climate, Ranunculus species are present in different habitats, as shown by the results of all the statistical analyses. Ranunculus trichophyllus communities occur in base-rich waters with a high buffering capacity (2273.44 ± 794.57 mg CaCO3 L−1) and a high concentration of cations (Ca2+, 121 ± 33.12 mg L−1; Mg2+, 71.64 ± 82.77 mg L−1), nitrates (2.89 ± 4.80 mg L−1), ammonium (2.19 ± 1.36 mg L−1) and sulphates (216.25 ± 218.54 mg L−1). Ranunculus penicillatus communities are found in flowing waters with a high concentration of phosphates (0.48 ± 0.6 mg L−1) and intermediate buffering capacity (683.66 ± 446.76 mg CaCO3 L−1). Both Ranunculus pseudofluitans and Ranunculus peltatus communities grow in waters with low buffering capacity (R. pseudofluitans, 385.91 ± 209.2 mg CaCO3 L−1; R. peltatus, 263.3 ± 180.36 mg CaCO3 L−1), and a low concentration of cations (R. pseudofluitans: Ca2+, 12.57 ± 9.42 mg L−1; Mg2+, 3.42 ± 1.67 mg L−1; R. peltatus: Ca2+, 15 ± 18.26 mg L−1; Mg2+, 6.26 ± 8.89 mg L−1) and nutrients (R. pseudofluitans: nitrates, 0.23 ± 0.2 mg L−1; phosphates, 0.09 ± 0.1 mg L−1; R. peltatus: nitrates, 0.19 ± 0.21 mg L−1; phosphates, 0.09 ± 0.12 mg L−1); the first in flowing waters, the latter in still waters.  相似文献   

7.
To understand how a major cosmopolitan pest responds to two very different insecticidal proteins and to determine whether herbivorous insects and their frass could be environmental sources of recombinant proteins from transgenic plants, Spodoptera litura (Fab.) (Lepidoptera, Noctuidae) larvae were fed on tobacco leaves expressing either the biotin-binding protein, avidin, or the protease inhibitor, aprotinin. Control larvae received non-transgenic tobacco. Samples of larvae were taken after 5, 6 or 7 days’ feeding and frass was collected after two 24-h periods at 6 and 7 days. Insects in all treatments grew significantly during the experiment, but the avidin-fed larvae were significantly smaller than the others on Day 7. Avidin was found in all samples of avidin-fed larvae (7.0±0.86 ng mg−1, n=45), at a lower level than in their frass (31.9±5.08 ng mg−1, n=30), and these frass levels were lower than those of the the leaves fed to the larvae (69.0±6.71 ng mg−1, n=45). All of the avidin detected in these samples was capable of binding biotin. On average, between 10 and 28% of avidin was recovered with the methods used, whereas almost full recovery of aprotinin was effected. Aprotinin levels in larvae (8.2±0.53 ng mg−1, n=45) were also lower than aprotinin levels in frass (77.4±6.9 ng mg−1, n=30), which were somewhat lower than those in the leaves fed to the larvae (88.6±2.51 ng mg−1, n=45). Approximately half the trypsin-binding ability of aprotinin was lost in larvae, and in frass, aprotinin had lost about 90% of its ability to bind trypsin.  相似文献   

8.
In order for cryopreservation to become a practical tool for aquaculture, optimized protocols must be developed for each species and cell type. Knowledge of a cell’s osmotic tolerance and membrane permeability characteristics can assist in optimized protocol development. In this study, these characteristics were determined for Pacific oyster oocytes and modified methods for loading and unloading ethylene glycol (EG) were tested. Oocytes were found to behave as ideal osmometers and their osmotically inactive fraction (Vb) was calculated to be 0.48. Oocytes exposed to NaCl solutions of 0.6 to 2.3 Osm fertilized at rates equivalent to oocytes left in seawater. This corresponds to volume changes of +27.3 and −38.1 ± 1.2%. The permeability of the oocytes to water (Lp) was determined to be 3.8 ± 0.4 × 10−2, 5.7 ± 0.8 × 10−2, and 13.2 ± 1.3 × 10−2 μm min−1 atm−1, when measured at temperatures of 5, 10 and 20 °C. The respective EG permeability values (Ps) were 9.5 ± 0.1 × 10−5, 14.6 ± 1.2 × 10−5, and 41.7 ± 2.4 × 10−5 cm min−1. The activation energies for Lp and Ps were determined to be 14.5 and 17.5 kcal mol−1, respectively. Different models for EG loading and unloading from oocytes were developed and tested. Post-thaw fertilization did not differ significantly between a published step addition method and single step addition at 20 °C. This represents a considerable reduction in handling. The results of this study demonstrate that the cryobiological characteristics of a given cell type should be taken into account when developing cryopreservation methods.  相似文献   

9.
Physiological performance (feeding, metabolism, growth and excretion) across a broad range of salinity (5-30 psu) were determined for the benthic amphipod Gammarus oceanicus, a species of marine origin inhabiting brackish waters of the southern Baltic Sea. Feeding rates decreased with increasing salinity, whereas the nutritive absorption efficiency increased. Faeces production and ammonia excretion rates decreased strongly from the lowest to the highest salinity by 60% and 58%, respectively. Increasing salinity was accompanied by a reduction in the metabolic rate from 438 J g− 1 dry wt d− 1 (5.1 mW g− 1) at 5 psu to 245 J g− 1 (2.8 mW g− 1) at 30 psu. Individuals were able to maintain a positive energy balance at all experimental salinities. The greatest values for scope for growth were recorded at the environmental salinity (7 psu) with a mean of 769 J g− 1 dry wt d− 1 (8.7 mW g− 1).  相似文献   

10.
Changes in photosynthetic pigment ratios showed that the Chlorophyll d-dominated oxyphotobacterium Acaryochloris marina was able to photoacclimate to different light regimes. Chl d per cell were higher in cultures grown under low irradiance and red or green light compared to those found when grown under high white light, but phycocyanin/Chl d and carotenoid/Chl d indices under the corresponding conditions were lower. Chl a, considered an accessory pigment in this organism, decreased respective to Chl d in low irradiance and low intensity non-white light sources. Blue diode PAM (Pulse Amplitude Modulation) fluorometry was able to be used to measure photosynthesis in Acaryochloris. Light response curves for Acaryochloris were created using both PAM and O2 electrode. A linear relationship was found between electron transport rate (ETR), measured using a PAM fluorometer, and oxygen evolution (net and gross photosynthesis). Gross photosynthesis and ETR were directly proportional to one another. The optimum light for white light (quartz halogen) was about 206 ± 51 μmol m− 2 s− 1 (PAR) (Photosynthetically Active Radiation), whereas for red light (red diodes) the optimum light was lower (109 ± 27 μmol m− 2 s− 1 (PAR)). The maximum mean gross photosynthetic rate of Acaryochloris was 73 ± 7 μmol mg Chl d− 1 h− 1. The gross photosynthesis/respiration ratio (Pg/R) of Acaryochloris under optimum conditions was about 4.02 ± 1.69. The implications of our findings will be discussed in relation to how photosynthesis is regulated in Acaryochloris.  相似文献   

11.
Canopy transpiration (Ec) of a 150-year-old Pinus sylvestris L. stand in an inner Alpine dry valley, Tyrol, Austria was estimated throughout two growing seasons 2011 and 2012 by means of xylem sap flow measurements. Although there were prolonged periods of limited soil water availability, Ec did not show a clear trend with respect to soil water availability and averaged 0.4 ± 0.19 mm day−1 under conditions of non-limiting soil water availability and 0.37 ± 0.17 mm day−1 when soil water availability was limited. This is because canopy conductance declined significantly with increasing evaporative demand and thus significantly reduced tree water loss. The growing season total of Ec was 74 mm and 88 mm in 2011 and 2012, respectively, which is significantly below the values estimated for other P. sylvestris forest ecosystems in Central Europe, and thus reflecting a strong adaptation to soil drought during periods of high evaporative demands.  相似文献   

12.
The effects of short term hypoxia on bioturbation activity and inherent solute fluxes are scarcely investigated even if increasing number of coastal areas are subjected to transient oxygen deficits. In this work dark fluxes of oxygen (O2), dissolved inorganic carbon (TCO2) and nutrients across the sediment-water interface, as well as rates of denitrification (isotope pairing), were measured in intact sediment cores collected from the dystrophic pond of Sali e Pauli (Sardinia, Italy). Sediments were incubated at 100, 70, 40 and 10% of O2 saturation in the overlying water, with both natural benthic communities, dominated by the polychaete Polydora ciliata (11.100 ± 2.500  ind. m− 2), and after the addition of individuals of the deep-burrower polychaete Hediste diversicolor. Below an uppermost oxic layer of ~ 1 mm, sediments were highly reduced, with up to 6 mM of S2− in the 5 mm layer. Flux of S2− and O2 calculated from pore water gradients were 8.61 ± 1.12 and − 2.27 ± 0.56 mmol m− 2 h− 1, respectively. However, sediment oxygen demand (SOD) calculated from core incubation was − 10.52 ± 0.33 mmol m− 2 h− 1, suggesting a major contribution of P. ciliata to O2-mediated sulphide oxidation. P. ciliata also strongly stimulated NH4+ and PO43− fluxes, with rates ~ 15 and ~ 30 folds higher, respectively, than those estimated from pore water gradients. P. ciliata activity was significantly reduced at 10% O2 saturation, coupled to decreased rates of solutes transfer. The addition of H. diversicolor further stimulated SOD, NH4+ efflux and SiO2 mobilisation. Similarly to P. ciliata, the degree of stimulation of SOD and NH4+ flux by H. diversicolor depended on the level of oxygen saturation. TCO2 regeneration, respiratory quotients, PO43− fluxes and denitrification of added 15NO3 were not affected by the addition of H. diversicolor, but depended upon the O2 levels in the water column. Denitrification rates supported by water column 14NO3 and sedimentary nitrification were both negligible (< 0.5 µmol m− 2 h− 1). They were not significantly affected by oxygen saturation nor by bioturbation, probably due to the limited availability of NO3 in the water column (< 3 µM) and O2 in the sediments. This study demonstrates for the first time the integrated short term effect of transient hypoxia and bioturbation on solute fluxes across the sediment-water interface within a simplified lagoonal benthic community.  相似文献   

13.
The most extensively studied ficins have been isolated from the latex of Ficus glabrata and Ficus carica. However the proteases (ficins) from other species are less known. The purification and characterization of a protease from the latex of Ficus racemosa is reported. The enzyme purified to homogeneity is a single polypeptide chain of molecular weight of 44,500 ± 500 Da as determined by MALDI-TOF. The enzyme exhibited a broad spectrum of pH optima between pH 4.5-6.5 and showed maximum activity at 60 ± 0.5 °C. The enzyme activity was completely inhibited by pepstatin-A indicating that the purified enzyme is an aspartic protease. Far-UV circular dichroic spectra revealed that the purified enzyme contains predominantly β-structures. The purified protease is thermostable. The apparent Tm, (mid point of thermal inactivation) was found to be 70 ± 0.5 °C. Thermal inactivation was found to follow first order kinetics at pH 5.5. Activation energy (Ea) was found to be 44.0 ± 0.3 kcal mol−1. The activation enthalpy (ΔH), free energy change (ΔG) and entropy (ΔS) were estimated to be 43 ± 4 kcal mol−1, −26 ± 3 kcal mol−1 and 204 ± 10 cal mol−1 K−1, respectively. Its enzymatic specificity studied using oxidized B chain of insulin indicates that the protease preferably hydrolyzed peptide bonds C-terminal to glutamate, leucine and phenylalanine (at P1 position). The broad specificity, pH optima and elevated thermal stability indicate the protease is distinct from other known ficins and would find applications in many sectors for its unique properties.  相似文献   

14.
Stand structure and biomass production of Phragmites australis (Cav.) Trin. ex Steud. were analyzed along north-south and east-west transects in the Burullus coastal lagoon (N Egypt, 410 km2) at monthly intervals over a period of 1 year (February 2003 until January 2004). For this purpose, young and old stands were selected at eight different locations in the lagoon. It was found that the north-south transect mainly represented a fertility gradient (207-286 mg l−1 TN, 30-106 mg l−1 TP), while the east-west transect was associated with significantly decreasing salinity (7-4 ppt). All morphological and biomass variables of P. australis were significantly different between young and old stands. On average, the old (7.3 ± 0.2 kg DW m−2) accumulated three times more total above-ground biomass than the young stands (2.5 ± 0.1 kg DW m−2). Shoot height, diameter and shoot dry weight significantly increased by 25-50% with increasing fertility along the north-south transect. Shoot density significantly decreased from north to south, while it almost doubled in the north sites from 109 ± 6 to 216 ± 7 shoots m−2 along the west-east transect. In separate stepwise multiple regressions, variation in water quality explained 34-63% of the variation in morphology and total above-ground biomass in the old stands (salinity and water level were most important for biomass, transparency also for height and density) while it explained 16-42% of variation in young stands (mainly transparency).  相似文献   

15.
The brown alga Laminaria japonica is distributed from southern Hokkaido to the northeastern Honshu in Japan. Recently, aquaculture of L. japonica has expanded to the southern coast of Japan and to China along the East China Sea. In order to elucidate the growth, biomass and productivity of L. japonica in a subtropical area, we cultivated and examined it in the Uwa Sea, in southwestern Japan over a period of 2 years. The seawater temperature ranged from 13.8 to 26.8 °C in 2001/2002 and from 13.1 to 27.2 °C in 2002/2003. In 2001/2002, the maximum density, maximum mean length and maximum mean wet wt. of L. japonica were 59.7 ± 28.0 ind. 50 cm− 1 (mean ± S.D.), 187.5 ± 82.7 cm (360 cm in the largest individual) and 130.1 ± 94.6 g wet wt., respectively. In 2002/2003, these values were 94.7 ± 22.2 ind. 50 cm− 1, 159.3 ± 74.4 cm (300 cm in the largest individual) and 95.2 ± 69.5 g wet wt., respectively. Thus, the length and weight increased when the density was low (2001/2002), and the length and weight decreased when the density was high (2002/2003). The maximum biomass was estimated to be 7200 ± 3400 g wet wt. 50 cm− 1 in 2001/2002 and 7300 ± 2000 g wet wt. 50 cm− 1 in 2002/2003. Annual production was estimated to be 33.3 kg wet wt. m− 1 year− 1 in 2001/2002 and 34.0 kg wet wt. m− 1 year− 1 in 2002/2003. The present study indicates that the annual production of L. japonica per rope of 1 m at Uwajima Bay, the Uwa Sea corresponded to 1.1-2.2 m2 of that of Hokkaido in their native area. Thus, the present study indicates that L. japonica is highly adaptable because it is able to keep a high level of productivity when grown in water with a high temperature.  相似文献   

16.
Outdoor pot experiments were conducted in California to quantify differences in rice and Schoenoplectus mucronatus susceptibility to drought and to identify morphological and physiological traits that would favor rice over S. mucronatus under drought. Plants were grown in flooded soil for approximately 5 weeks, and then subjected to different drought periods after which pots were re-flooded. Chlorophyll fluorescence assays revealed that rice and S. mucronatus Fv/Fm first became <0.8 after leaf water potential (Ψleaf) had decreased to approximately −4 MPa and −2 MPa, respectively. Thus, by suffering less photosynthetic damage from drought, rice had better recovery after re-flooding than S. mucronatus. When drought reduced Ψleaf to −3 MPa, S. mucronatus re-growth was nearly suppressed but that of rice was unaffected. Rice plants depleted soil moisture 1.6 faster than S. mucronatus due to larger and deeper roots and a high water-spending strategy (when Ψleaf decreased from approximately −0.5 MPa to −2.5 MPa, 13δ increased from −27.8 to −27.4 and from −28.1 to −26.0 for rice and S. mucronatus, respectively). Rice under interspecific competition sustained its Ψleaf by extracting more water from greater depths, while causing severe moisture stress and photosynthetic damage to S. mucronatus. Thus temporary drought enhanced rice competitiveness over S. mucronatus, supporting the concept of using brief drought as a tool for S. mucronatus suppression in rice. The Ψleaf developed by the end of the drought period predicted rice yields (R2 = 0.77, P < 0.0001) and the capacity of S. mucronatus to recover from drought upon irrigation resumption (R2 = 0.62, P < 0.001). Brief (8-10 d) drought imposed on 5-week-old rice did not significantly depress late-season rice biomass growth or grain yields, while S. mucronatus never fully recovered from drought. Rice yields were only reduced after Ψleaf reached values below approximately −2.5 MPa. Longer drought (∼20 d) delayed maturity and reduced rice yields by approximately 60-80%. The dry-down approach could help suppress weeds similar to S. mucronatus in organic rice where premium prices can compensate for lower grain yield.  相似文献   

17.
The ocean is a nutritionally heterogeneous environment. For feeding larval forms, food variability has significant consequences for growth and later recruitment success. In this study, the physiological and biochemical responses to a range of different food concentrations (unfed, 4, 20, and 40 algal cells μl− 1) were examined in larvae of the asteroid, Asterina miniata. Measurements of growth, protein synthesis rates, and the energetic cost of protein synthesis were made. Under conditions of rapid growth, protein comprised a larger percent (66%) of a larva's organic biomass compared to similar-aged, slower-growing larvae (26%). Larvae fed at the highest food concentration tested (40 algal cells μl− 1) had a protein depositional efficiency of 80% (± 16%), a value 3-fold higher than larvae fed 20 algal cells μl− 1 (28% ± 11%). Also, faster-growing larvae required 3-fold less energy per unit mass of protein growth. Larvae fed 40 algal cells μl− 1 deposited protein at a respiratory cost of 65 ± 11 pmol O2 h− 1 (μg protein)− 1; larvae fed 20 algal cells μl− 1 had a cost of 192 ± 47 pmol O2 h− 1 (μg protein)− 1. While there were differences in the cost to deposit protein (i.e., protein growth, the balance of synthesis and degradation), there were no differences in the energetic cost of protein synthesis for all food concentrations tested. The energetic cost of protein synthesis was fixed at 13.8 (± 0.92) Joules (mg protein synthesized)− 1 and was independent of developmental stage, growth rates, and large changes (58-fold) in protein synthesis rates. A major conclusion from this study is that larvae grown in high-food environments not only grew faster, but did so for considerably less energy. Defining the complex relationships of food availability and metabolic efficiency will provide more accurate predictions of larval growth under variable food conditions in the ocean.  相似文献   

18.
In a 4-week study, we investigated the effects of increasing soil NaCl (100–400 mM) on photosynthesis, salt uptake and transport, and intracellular compartmentation of Na+ and Cl in 1-year-old seedlings of Kandelia candel (L.) Druce and Bruguiera gymnorhiza (L.) Savigny. Increasing NaCl stress significantly elevated Na+ and Cl in root and shoot tissues (stem + leaf) of both species, but B. gymnorhiza showed a rapid Na+ accumulation upon the initiation of salt stress and leaves contained 90% more Na+ and 40% more Cl than K. candel at the end of experiment. Net photosynthetic rate (Pn) declined with increasing salinity, and the most marked reduction occurred after exposure of mangrove seedlings to a severe salinity, 400 mM NaCl. However, the inhibitory effects of severe stress varied with species: Pn decreased by 80% in K. candel whereas in B. gymnorhiza the decline was 60%. The quantum yield (AQY) and carboxylation efficiency (CE) response to severe salinity showed a trend similar to Pn, in which a lesser reduction of AQY and CE was observed in B. gymnorhiza (33–35%), as compared to K. candel (43–52%). X-ray microanalysis of leaf mesophyll cells showed evidence of distinct vacuolar compartmentation of Na+ in K. candel but Cl in B. gymnorhiza after seedlings were subjected to 100 mM NaCl for 7 d. Moreover, Na+ within cell wall, cytoplasm, vacuole and chloroplast remained 23–72% lower in stressed B. gymnorhiza as compared to K. candel. In conclusion, B. gymnorhiza exhibited effective salt exclusion from chloroplasts although increasing salt stress caused a rapid and higher build up of Na+ and Cl in the leaves. We suggest that the salt-induced Pn reduction in the two mangrove species is correlated with the ability to exclude Na+ and Cl from the chloroplast, rather than with the bulk leaf salt concentration.  相似文献   

19.
Lasia spinosa seeds were not dormant at maturity in early spring. The most favorable temperatures for germination were between 25 and 30 °C, and final percentage and rate of germination decreased with an increase or decrease in temperature. When L. spinosa seeds were transferred to 25 °C, after 60 days at 10 °C (where none of the seeds germinated), final germination increased from 0% to 78%. Seeds germinated to high percentage both in light and in dark, although dark germination took more than twice as long as in the light. During desiccation of seeds at 15 °C and 45% relatively humidity, moisture loss decreased exponentially from 2.02 to 0.13 g H2O g−1 dry wt within 16 days, and only a few seeds (12%) survived 0.13 g H2O g−1 dry wt moisture content. Seeds stored at 0.58 g H2O g−1 dry wt moisture content at four constant temperatures (4, 10, 15, and −18 °C) for up to 6 months exhibited a well-defined trend of decreasing viability with decreasing temperature. Thus, we concluded that freshly harvested L. spinosa seeds are non-dormant and recalcitrant. Also, the seeds with 0.58 g H2O g−1 dry wt moisture content could be effectively stored for a few months between 10 and 15 °C although the most appropriate temperature for wet storage appears to be 10 °C, as it is close to the minimum temperature for germination and so there will be less pre-sprouting compared to 15 °C.  相似文献   

20.
The effects of temperature, salinity, and irradiance on the growth of the dinoflagellate Akashiwo sanguinea were examined in the laboratory. The irradiance at the light compensation point (I0) was 14.40 μmol m− 2 s− 1 and the irradiance at growth saturation (Is) was 114 μmol m− 2 s− 1. We exposed A. sanguinea to 48 combinations of temperature (5-30 °C) and salinity (5-40) under saturating irradiance; it exhibited its maximum growth rate of 1.13 divisions/day at a combination of 25 °C and salinity of 20. A. sanguinea was able to grow at temperatures from 10 to 30 °C and salinities from 10 to 40. This study revealed that A. sanguinea was a eurythermal and euryhaline organism; in Japan it should have formed blooms in early summer, when salinity was relatively low. In addition, it was noteworthy that A. sanguinea had markedly cold-durability, retaining the motile form of vegetative cells for more than 50 days at 5 °C and at salinities of 25-30.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号