首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The northern geographic limit for Halophila johnsonii and Halophila decipiens has been reported as Sebastian Inlet, within the Indian River Lagoon, Florida. Surveys conducted in August 2007 determined the new northern limit to be 21.5 km north of the previously known limit. This new northern limit is a 10% range extension for H. johnsonii, a federally threatened species. We conclude that these range extensions are recent, based on (1) the small size of patches; (2) unusually good water clarity conditions due to a recent drought; (3) recent mild/warmer winters; and (4) a recent mechanism for transporting propagules, the numerous hurricanes of 2004. Although this recent range extension is considered ephemeral, similar range extensions may have occurred in the past and may occur again in the future under favorable conditions given the high capacity of these two species for dispersal to favorable sites. The northern limits of these species should not be viewed as static locations; rather, they must be considered dynamic features.  相似文献   

2.
Eight temperate seagrass species (five in the genus Zostera, two in the genus Phyllospadix, and Ruppia maritima) have been previously reported in coastal waters off the Korean peninsula, which lies between 33°N and 43°N. Recently, a species of Halophila, a genus which occurs predominantly in tropical and subtropical areas, has been observed on the southern coast of Korea for the first time. The species was identified as Halophila nipponica. H. nipponica is distributed in warm temperate regions of Japan influenced by the warm Tsushima Current and was previously unknown outside the Japanese archipelago. Thus, we are able to report a range extension into Korea. The Korean Halophila meadow that we observed covered an area of about 2.1 ha, with average shoot density of about 1300 m−2. We measured morphological features of vegetative and reproductive organs between June and September 2007. Morphological and reproductive features of the Halophila species in Korea were similar to those of the species in Japan. Increased water temperature in the coastal waters of Korea may at least partially account for the persistence of this new population.  相似文献   

3.
Megagametogenesis, the development of a megaspore into an embryo sac, has been identified in the seagrass Halophila johnsonii, a threatened species with no known sexual reproduction or seeds. Megagametogenesis in H. johnsonii was compared with megagametophyte development in Halophila decipiens, a related species known to readily produce viable seeds. In both species, ovules were structurally similar, megaspore mother cells were seen in premeiotic ovules, and linear tetrads and megagametophytes with two to eight nuclei were present in postmeiotic ovules. However, H. decipiens postmeiotic ovules had a chalazal pouch that was absent in the postmeiotic ovules of H. johnsonii. Late-stage H. decipiens ovules also contained embryos, indicating that they had been fertilized, whereas all late-stage H. johnsonii ovules were degrading and showed no signs of fertilization. These observations suggest that meiosis does occur in H. johnsonii megasporocytes, leading to the formation of viable megagametophytes and egg cells that could be fertilized if pollination occurred. Thus, the lack of seed set is due to a lack of pollination rather than any loss of capacity to produce seeds in this species.  相似文献   

4.
5.
The endemic seagrass Halophila johnsonii grows intertidally to 3 m deep, in both marine and riverine influenced habitats of eastern Florida. Salinity and chromophoric dissolved organic matter (CDOM) levels widely fluctuate across this broad habitat range, changing tidally and with variable influx of freshwater from watershed runoff, river discharge and stochastic storm events. CDOM exponentially absorbs light in the UV to blue wavelengths, affecting optical water quality. H. johnsonii produces 15 flavonoid compounds that maximally absorb in the UV range. These flavonoids are thought to function as UV-protectants (UVP) in high-light and UV-intense environments. This mesocosm study examined the photosynthetic capacity, quantum efficiency and pigment content of H. johnsonii under experimental treatments of three salinities (10, 20 and 30) with and without CDOM. Main treatment effects and possible interactive effects at both short- (1 day to 1 week) and longer-term (1 month) time scales were examined. There were no significant CDOM or CDOM x salinity effects over any of the experimental treatment durations. There was 100% mortality of plants at salinity 10 after 10 days regardless of water color. UVP content of leaves was not affected by CDOM in this study, but there was significant variation in UVP in response to salinity. Our results do not support the primary role of UVP in this species as a sunscreen, but indicate that different salinity environments contribute to changes in the levels of these flavonoids. The UVP response to salinity stress response was not mitigated by a decrease in UV-radiation (increased CDOM) as H. johnsonii continued to put energy into the production of the carbon-rich flavonoids regardless of potential UV-stress. The experimental results indicate that prolonged hypo-salinity conditions are an important environmental factor to manage in the limited geographic range of H. johnsonii.  相似文献   

6.
The sterol and fatty acid compositions of fresh leaves of the seagrasses Cymodocea serrulata, Enhalus acoroides, Halodule uninervis, Halophila ovalis, H. ovata, H. spinulosa and Thalassia hemprichii are reported. The major fatty acids were palmitic acid, linoleic acid and linolenic acid as expected. H. ovalis and H. ovata were characterized by the relatively high abundance (ca 5%) of the acid hexadeca-7,10,13-trienoic acid (16:3<7 > ). The sterol compositions were typical of higher plants, with sitosterol and stigmasterol accounting for 60–90% of the observed sterols. 28-Isofucosterol was a major sterol (20–30%) only in the Halophila spp. Cluster analysis of the sterol composition data clearly separated the Halophila spp. from the other seagrasses and enabled the distinction of Enhalus sp. from Cymodocea, Halodule and Thalassia spp. The seagrass species were clearly separated into five chemical groups using the combined fatty acid and sterol composition data and the need for a reappraisal of the taxonomic position of Halophila was indicated.  相似文献   

7.
The effects of opening the Suez Canal as a connection between the Red Sea and the Mediterranean Sea were reported for a number of marine species. However, the evolutionary origin of the seagrasses in the Red Sea and the linking population genetics of seagrasses between the Arabian Sea, the Gulf of Aden, the Red Sea and the Mediterranean Sea have not yet been investigated in detail. The invasion of Halophila stipulacea Asch. from the Red Sea into the Mediterranean Sea after the opening of the Suez Canal was already recorded. We hypothesize that Halophila ovalis populations in the Red Sea developed through long-term historical processes such as vicariant evolutionary diversification. Seagrass samples were collected along the Egyptian coastline of the Red Sea and analysed by the molecular marker ITS. The sequences were compared with published ITS sequences from seagrasses collected in the whole area of interest. In this study, we reveal the linking population genetics, phylogeography and phylogenetics of two dominant seagrass species, Halophila stipulacea and Halophila ovalis, among species collected in the Red Sea and worldwide. The results indicate that the Red Sea Halophila ovalis populations do not group to Halophila ovalis worldwide, and Halophila major, Halophila ovalis collected worldwide and Halophila ovalis collected at the Red Sea are sister clades. Hence, vicariant evolutionary diversification for Halophila ovalis may occur in the Red Sea.  相似文献   

8.
Some ecophysiological adaptation strategies of the tropical seagrass Halophila ovalis were investigated with respect to this plant's ability to grow in the upper intertidal in either monospecific pools (but not together with other intertidal species) or emergent and exposed to high temperatures and irradiances during several hours every day. It was found that Halophila ovalis could raise the pH in simulated pools to 8.6, while the two other major (biomass wise) intertidal seagrasses raised the pH to 8.8 (Cymodocea rotundata) and 9.2 (Thalassia hemprichii). In situ, midday pH values of 8.5, 8.7 and 9.0 were recorded in pools inhabiting the three species, respectively. It was further found that photosynthetic electron transport rates (ETR) measured continuously in situ for one leaf during a diurnal cycle followed the irradiance up to a daily maximal value of 2200 μmol photons m−2 s−1, but dropped by ca. 50% when the leaf became air exposed just before noon. This drop in ETR upon emergence was verified by “point measurements”, while ETRs of leaves that grew in small pools formed as the tide receded followed the irradiance more closely. Similarly, Fv/Fm measured after 15 min of dark adaptation decreased by ca. 50% in emergent leaves during midday, but maintained higher daily values in the submerged leaves.  相似文献   

9.
Seasonality of nutrient dynamics in three morphologically different seagrass species and their sediments was examined for 1 year between November 2006 and November 2007 at four sites in the Andaman Sea, Thailand. The smaller species, Cymodocea serrulata and Halophila ovalis, showed major seasonal variation in shoot density, above- and belowground biomass, much more than expected from seasonal changes in water temperature and light conditions. All parameters showed minimum values in the dry season due to desiccation during neap tides. In contrast Enhalus acoroides showed less seasonal variation. Only limited seasonality was found in tissue N content of all species, whereas tissue P content responded to the low P concentration in the water column during the wet season. There were no differences in sediment conditions among species, and nutrient pools were generally low. Furthermore there were no significant spatial differences in seagrass and sediment nutrient dynamics, despite varying anthropogenic activity at the study sites, reflecting the oligotrophic conditions in this region.  相似文献   

10.
K.M. McMahon  M. Waycott   《Aquatic Botany》2009,91(4):318-320
The seagrass Halophila decipiens Ostenfeld was recorded for the first time in Kenya in 2003. It was growing in subtidal mixed meadows with H. ovalis in protected bays at a depth of 3 m. DNA sequence analysis and morphological characteristics confirmed the identification. It is possible that this species is more widely distributed in the east African region. There was very little sequence differentiation between the Kenyan H. decipiens and the other samples in the Indo-West Pacific, and between this region and the Atlantic Ocean, further validating from an evolutionary perspective recent dispersal of this species.  相似文献   

11.
Taxonomists find some plant genera challenging because of the few morphological differences or unclear characters among closely related species, which leads to the misidentification of taxa. DNA barcoding is an approach to identify species by using short orthologous DNA sequences, known as ‘DNA barcodes’. Concatenated rbcL and matK sequences are considered DNA barcodes for seagrasses. However, these markers are not applicable to all members of seagrasses at the species level, especially within the genus Halophila. Our previous studies indicated that the internal transcribed spacer (ITS) showed higher species resolution than the concatenated rbcL and matK sequences in the case of Halophila ovalis and closely related species. In this study, 26 ITS, two rbcL and two matK consensus sequences from 18 seagrass taxa belonging to four families collected in India, Vietnam, Germany, Croatia and Egypt were processed. Molecular ITS analysis resolved five clades. The results also indicate that the Cymodoceaceae family might be a non-monophyletic group. In conclusion, ITS could be applied as a DNA barcode for seagrasses instead of the rbcL/matK system previously proposed.  相似文献   

12.
Cell walls from rhizomes of Halophila ovalis (R. Br.) Hook.f., Halophila stipulacea (Forsk.) Aschers. and Halodule univervis (Forsk.) Aschers. were analysed. The non-cellulosic polysaccharides contained glucose as the most abundant sugar and arabinose as the next most abundant sugar in all cases. Only small amounts of pectin were found. Halodule uninervis differed from the two Halophila species in its large amount of cell wall material per gram fresh weight and in its high proportion of non-cellulosic polysaccharides. The lignin from all three plants contained non-conjugated phenols, with relatively few conjugated phenols.  相似文献   

13.
In this study, flavonoid localization, content and total antioxidant capacity in leaves of subtidal Halophila decipiens were compared to intertidal and subtidal Halophila johnsonii. H. johnsonii leaves had significantly higher flavonoid content (3.5 and 3.8 nmol quercetin equivalent mm−2 leaf for intertidal and subtidal H. johnsonii, respectively) and antioxidant capacity (101.7 and 224.2 nmol Trolox equivalent mm−2 leaf for intertidal and subtidal H. johnsonii, respectively) than H. decipiens leaves (1.4 nmol quercetin equivalent mm−2 leaf and 21.0 nmol Trolox equivalent mm−2 leaf). Flavonoid content did not significantly differ between intertidal and subtidal H. johnsonii, however, antioxidant capacity was significantly higher in subtidal plants. Confocal laser scanning microscopy of fresh leaf cross sections indicated that both species contained flavonoids in the cuticle, but only H. johnsonii contained intracellular flavonoids. Intracellular flavonoids are better situated to perform antioxidant functions in planta. These results suggest that flavonoid compounds in H. johnsonii are capable of sunscreen and antioxidant functions while an antioxidant role for flavonoids within H. decipiens is not supported.  相似文献   

14.
《Aquatic Botany》2007,86(1):83-85
Posidonia australis seed predation experiments conducted in three seagrass habitats (P. australis, Posidonia sinuosa, Halophila ovalis) and bare sand in Two Peoples Bay, Western Australia, showed higher predation rates in seagrass than bare sand, supporting general conclusions from two previous predation studies in Western Australia. However, much higher rates were noted in H. ovalis, compared to previous observations of very low rates in H. ovalis on Rottnest Island, Western Australia. We attribute these differences to gammaridean amphipods (family Lysianassidae) that were present in a detrital layer within the H. ovalis in Two Peoples Bay. Our data from Two Peoples Bay continues to add to the growing body of information showing high seed predation rates in most seagrass habitats by a diverse group of crustacean species.  相似文献   

15.
Flavones and flavone glycosides from Halophila johnsonii   总被引:1,自引:0,他引:1  
Halophila johnsonii Eiseman is a shallow-water marine angiosperm which contains UV-absorbing metabolites. Studies on methanol extracts of H. johnsonii by means of HPLC-UV, NMR, HPLC-MS resulted in isolation and identification of seven previously unknown flavone glycosides: 5,6,7,3′,4′,5′-hexahydroxyflavone-7-O-β-glucopyranoside (1), 5,6,7,3′,4′,5′-hexahydroxyflavone-7-O-(6″-O-acetyl)-β-glucopyranoside (2), 6-hydroxyluteolin-7-O-(6″-O-acetyl)-β-glucopyranoside (3), 6-hydroxyapigenin-7-O-(6″-O-acetyl)-β-glucopyranoside (4), 6-hydroxyapigenin-7-O-(6″-O-[E]-coumaroyl)-β-glucopyranoside (5), 6-hydroxyapigenin-7-O-(6″-O-[E]-caffeoyl)-β-glucopyranoside (6) and 6-hydroxyluteolin-7-O-(6″-O-[E]-coumaroyl)-β-glucopyranoside (7). Also isolated were three known flavone glycosides, 6-hydroxyluteolin 7-O-β-glucopyranoside (8), scutellarein-7-O-β-glucopyranoside (9), and spicoside (10), and five known flavones, pedalitin (11), ladanetin (12), luteolin (13), apegenin (14) and myricetin (15). Qualitative comparison of the flavonoid distribution in the leaf and rhizome-root portions of the plant was also investigated, with the aim of establishing the UV-protecting roles that flavonoids played in the sea grass.  相似文献   

16.
Halophila baillonii Ascherson was found in Belize, Central America in 2003 and 2005. The observation extends the known range of this seagrass species to the western Caribbean. H. baillonii was previously recorded only in the eastern Caribbean and at one Pacific site in Panama. Both fruits and flowers of H. baillonii were observed at two locations in Belize in 2005. H. baillonii in Belize is an important food for manatee, forms a productive seagrass-based ecosystem, and is adversely affected by shoreline development and watershed run-off.  相似文献   

17.
18.
The wide range of leaf types that occurs within the populations of Halophila and Halodule in Shark Bay, Western Australia, was studied for plants under laboratory conditions. In the Halophila ovalis-H. minor complex, two types of plants appeared in the cultures, a large-leaved variant that is similar to typical H. ovalis (R.Br.) Hook. f. and a small-leaved variant that is more similar to H. minor (Zoll.) den Hartog. In Shark Bay, the two variants were not clearly separated because both produced leaves that varied in size, degree of waviness of leaf margins and intensity of anthocyanin pigmentation. In the Halodule uninervis (Forsk.) Aschers. complex, two types of plants, wide- and narrow-leaved variants, appeared in the cultures. In Shark Bay, the narrow-leaved plants differed in leaf width in muddy and silty microsites, but were always narrower than the wide-leaved variants. Only the narrow-leaved Halodule plants produced anthocyanin pigmentation both under field and laboratory conditions. The studies under controlled conditions indicate that the highly diverse leaves in Shark Bay result primarily from environmental influences on two types of Halophila and two types of Halodule.  相似文献   

19.
《Aquatic Botany》2010,92(4):318-320
The seagrass Halophila decipiens Ostenfeld was recorded for the first time in Kenya in 2003. It was growing in subtidal mixed meadows with H. ovalis in protected bays at a depth of 3 m. DNA sequence analysis and morphological characteristics confirmed the identification. It is possible that this species is more widely distributed in the east African region. There was very little sequence differentiation between the Kenyan H. decipiens and the other samples in the Indo-West Pacific, and between this region and the Atlantic Ocean, further validating from an evolutionary perspective recent dispersal of this species.  相似文献   

20.
Seagrasses provide a wide range of ecosystem services in coastal marine environments. Despite their ecological and economic importance, these species are declining because of human impact. This decline has driven the need for monitoring and mapping to estimate the overall health and dynamics of seagrasses in coastal environments, often based on underwater images. However, seagrass detection from underwater digital images is not a trivial task; it requires taxonomic expertise and is time-consuming and expensive. Recently automatic approaches based on deep learning have revolutionised object detection performance in many computer vision applications, and there has been interest in applying this to automated seagrass detection from imagery. Deep learning–based techniques reduce the need for hardcore feature extraction by domain experts which is required in machine learning-based techniques. This study presents a YOLOv5-based one-stage detector and an EfficientDetD7–based two-stage detector for detecting seagrass, in this case, Halophila ovalis, one of the most widely distributed seagrass species. The EfficientDet-D7–based seagrass detector achieves the highest mAP of 0.484 on the ECUHO-2 dataset and mAP of 0.354 on the ECUHO-1 dataset, which are about 7% and 5% better than the state-of-the-art Halophila ovalis detection performance on those datasets, respectively. The proposed YOLOv5-based detector achieves an average inference time of 0.077 s and 0.043 s respectively which are much lower than the state-of-the-art approach on the same datasets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号