首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to cope with NH4+-N was studied in the littoral helophytes Phragmites australis and Glyceria maxima, species commonly occupying fertile habitats rich in NH4+ and often used in artificial wetlands. In the present study, Glyceria growth rate was reduced by 16% at 179 μM NH4+-N, and the biomass production was reduced by 47% at 3700 μM NH4+-N compared to NO3-N. Similar responses were not found in Phragmites. The amounts (mg g−1 dry wt) of starch and total non-structural carbohydrates (TNC) in rhizomes were significantly lower in NH4+ (8.9; 12.2 starch; 20.1; 41.9 TNC) compared to NO3 treated plants (28.0; 15.6 starch; 58.5; 56.3 TNC) in Phragmites and Glyceria, respectively. In addition, Glyceria showed lower amounts (mg g−1 dry wt) of soluble sugars, TNC, K+, and Mg2+ in roots under NH4+ (5.6; 14.3; 20.6; 1.9) compared to NO3 nutrition (11.6; 19.9; 37.9; 2.9, for soluble sugars, TNC, K+, and Mg2+, respectively), while root internal levels of NH4+ and Ca2+ (0.29; 4.6 mg g−1 dry wt, mean of both treatments) were only slightly affected. In Phragmites, no changes in soluble sugars, TNC, Ca2+, K+, and Mg2+ contents of roots (7.3; 14.9; 5.1; 17.3; 2.6 mg g−1 dry wt, means of both treatments) were found in response to treatments. The results, therefore, indicate a more pronounced tolerance towards high NH4+ supply in Phragmites compared to Glyceria, although the former may be susceptible to starch exhaustion in NH4+-N nutrition. In contrast, Glyceria's ability to colonize fertile habitats rich in NH4+ is probably related to the avoidance strategy due to shallow rooting or to the previously described ability to cope with high NH4+ levels when P availability is high and NO3 is also provided.  相似文献   

2.
The effects of inorganic nitrogen (N) source (NH4+, NO3 or both) on growth, biomass allocation, photosynthesis, N uptake rate, nitrate reductase activity and mineral composition of Canna indica were studied in hydroponic culture. The relative growth rates (0.05-0.06 g g−1 d−1), biomass allocation and plant morphology of C. indica were indifferent to N nutrition. However, NH4+ fed plants had higher concentrations of N in the tissues, lower concentrations of mineral cations and higher contents of chlorophylls in the leaves compared to NO3 fed plants suggesting a slight advantage of NH4+ nutrition. The NO3 fed plants had lower light-saturated rates of photosynthesis (22.5 μmol m−2 s−1) than NH4+ and NH4+/NO3 fed plants (24.4-25.6 μmol m−2 s−1) when expressed per unit leaf area, but similar rates when expressed on a chlorophyll basis. Maximum uptake rates (Vmax) of NO3 did not differ between treatments (24-35 μmol N g−1 root DW h−1), but Vmax for NH4+ was highest in NH4+ fed plants (81 μmol N g−1 root DW h−1), intermediate in the NH4NO3 fed plants (52 μmol N g−1 root DW h−1), and lowest in the NO3 fed plants (28 μmol N g−1 root DW h−1). Nitrate reductase activity (NRA) was highest in leaves and was induced by NO3 in the culture solutions corresponding to the pattern seen in fast growing terrestrial species. Plants fed with only NO3 had high NRA (22 and 8 μmol NO2 g−1 DW h−1 in leaves and roots, respectively) whereas NRA in NH4+ fed plants was close to zero. Plants supplied with both forms of N had intermediate NRA suggesting that C. indica takes up and assimilate NO3 in the presence of NH4+. Our results show that C. indica is relatively indifferent to inorganic N source, which together with its high growth rate contributes to explain the occurrence of this species in flooded wetland soils as well as on terrestrial soils. Furthermore, it is concluded that C. indica is suitable for use in different types of constructed wetlands.  相似文献   

3.
We investigated the ability of Enteromorpha intestinalis (L.) Link to take up pulses of different species of nitrogen simultaneously, as this would be an important mechanism to enhance bloom ability in estuaries. Uptake rates and preference for NH4+ or NO3 following 1, 3, 6, 9, 12 or 24 h of exposure to either 15NH4NO3 or NH415NO3 were determined by disappearance of N from the medium. Differences in assimilation rates for NH4+ or NO3 were quantified by the accumulation of NH4+, NO3, and atom % 15N in the algal tissue. NH4+ concentration was reduced more quickly than water NO3 concentration. Water column NH4+ concentration after the longest time interval was reduced from 300 to 50 μM. Water NO3 was reduced from 300 to 150 μM. The presence of 15N or 14N had no effect on uptake of either NH4+ or NO3. 15N was removed from the water at an almost identical rate and magnitude as 14N. Differences in accumulation of 15NH4+ and 15NO3 in the tissue reflected disappearance from the water; 15N from NH4+ accumulated faster and reached an atom % twice that of 15N from NO3. This outcome suggested that when NH4+ and NO3 were supplied in equal concentrations, more NH4+ was taken up and assimilated. The ability to take up high concentrations of NH4+, and NO3 simultaneously is important for bloom-forming species of estuarine macroalgae subject to multiple nutrient species from various sources.  相似文献   

4.
The ammonium (NH4+) and nitrate (NO3) uptake responses of tetrasporophyte cultures from a Portuguese population of Gracilaria vermiculophylla were studied. Thalli were incubated at 5 nitrogen (N) levels, including single (50 μM of NH4+ or NO3) and combined addition of each of the N sources. For the combined additions, the experimental conditions attempted to simulate 2 environments with high N availability (450 μM NO3 + 150 μM NH4+; 250 μM NO3 + 50 μM NH4+) and the mean N concentrations occurring at the estuarine environment of this population (30 μM NO3 + 5 μM NH4+). The uptake kinetics of NH4+ and NO3 were determined during a 4 h time-course experiment with N deprived algae. The experiment was continued up to 48 h, with media exchanges every 4 h. The uptake rates and efficiency of the two N sources were calculated for each time interval. For the first 4 h, G. vermiculophylla exhibited non-saturated uptake for both N sources even for the highest concentrations used. The uptake rates and efficiency calculated for that period (V0-4 h), respectively, increased and decreased with increasing substrate concentration. NO3 uptake rates were superior, ranging from 1.06 ± 0.1 to 9.65 ± 1.2 μM g(dw)−1 h−1, with efficiencies of 19% to 53%. NH4+ uptake rates were lower (0.32 ± 0.0 to 5.75 ± 0.08 μM g(dw)−1 h−1) but G. vermiculophylla removed 63% of the initial 150 μM and 100% at all other conditions. Uptake performance of both N sources decreased throughout the duration of the experiment and with N tissue accumulation. Both N sources were taken up during dark periods though with better results for NH4+. Gracilaria vermiculophylla was unable to take up NO3 at the highest concentration but compensated with a constant 27% NH4+ uptake through light and dark periods. N tissue accumulation was maximal at the highest N concentration (3.9 ± 0.25% dw) and superior under NH4+ (3.57 ± 0.2% dw) vs NO3 (3.06 ± 0.1% dw) enrichment. The successful proliferation of G. vermiculophylla in estuarine environments and its potential utilization as the biofilter component of Integrated Multi-Trophic Aquaculture (IMTA) are discussed.  相似文献   

5.
In this study we assessed the growth, morphological responses, and N uptake kinetics of Salvinia natans when supplied with nitrogen as NO3, NH4+, or both at equimolar concentrations (500 μM). Plants supplied with only NO3 had lower growth rates (0.17 ± 0.01 g g−1 d−1), shorter roots, smaller leaves with less chlorophyll than plants supplied with NH4+ alone or in combination with NO3 (RGR = 0.28 ± 0.01 g g−1 d−1). Ammonium was the preferred form of N taken up. The maximal rate of NH4+ uptake (Vmax) was 6–14 times higher than the maximal uptake rate of NO3 and the minimum concentration for uptake (Cmin) was lower for NH4+ than for NO3. Plants supplied with NO3 had elevated nitrate reductase activity (NRA) particularly in the roots showing that NO3 was primarily reduced in the roots, but NRA levels were generally low (<4 μmol NO2 g−1 DW h−1). Under natural growth conditions NH4+ is probably the main N source for S. natans, but plants probably also exploit NO3 when NH4+ concentrations are low. This is suggested based on the observation that the plants maintain high NRA in the roots at relatively high NH4+ levels in the water, even though the uptake capacity for NO3 is reduced under these conditions.  相似文献   

6.
This study assesses the growth and morphological responses, nitrogen uptake and nutrient allocation in four aquatic macrophytes when supplied with different inorganic nitrogen treatments (1) NH4+, (2) NO3, or (3) both NH4+ and NO3. Two free-floating species (Salvinia cucullata Roxb. ex Bory and Ipomoea aquatica Forssk.) and two emergent species (Cyperus involucratus Rottb. and Vetiveria zizanioides (L.) Nash ex Small) were grown with these N treatments at equimolar concentrations (500 μM). Overall, the plants responded well to NH4+. Growth as RGR was highest in S. cucullata (0.12 ± 0.003 d−1) followed by I. aquatica (0.035 ± 0.002 d−1), C. involucratus (0.03 ± 0.002 d−1) and V. zizanioides (0.02 ± 0.003 d−1). The NH4+ uptake rate was significantly higher than the NO3 uptake rate. The free-floating species had higher nitrogen uptake rates than the emergent species. The N-uptake rate differed between plant species and seemed to be correlated to growth rate. All species had a high NO3 uptake rate when supplied with only NO3. It seems that the NO3 transporters in the plasma membrane of the root cells and nitrate reductase activity were induced by external NO3. Tissue mineral contents varied with species and tissue, but differences between treatments were generally small. We conclude, that the free-floating S. cucullata and I. aquatica are good candidate species for use in constructed wetland systems to remove N from polluted water. The rooted emergent plants can be used in subsurface flow constructed wetland systems as they grow well on any form of nitrogen and as they can develop a deep and dense root system.  相似文献   

7.
In the present study, we investigated whether growth and main nutrient ion concentrations of cabbage (Brassica campestris L.) could be increased when plants were subjected to different NH4^+/NO3- ratios. Cabbage seedlings were grown in a greenhouse in nutrient solutions with five NH4^+/NO3- ratios (1:0; 0.75:0.25; 0.5:0.5; 0.25:0.75; and 0:1). The results showed that cabbage growth was reduced by 87% when the proportion of NH4^+-N in the nutrient solution was more than 75% compared with a ratio NH4^+/NO3- of 0.5:0.5 35 d after transplanting, suggesting a possible toxicity due to the accumulation of a large amount of free ammonia in the leaves. When the NH4+/NO3- ratio was 0.5:0.5, fresh seedling weight, root length, and H2PO4- (P), K^+, Ca^2+, and Mg^2+ concentrations were all higher than those in plants grown under other NH4^+/NO3- ratios. The nitrate concentration in the leaves was the lowest in plants grown at 0.5: 0.5 NH4^+/NO3-. The present results indicate that an appropriate NH4^+/NO3- ratio improves the absorption of other nutrients and maintains a suitable proportion of N assimilation and storage that should benefit plant growth and the quality of cabbage as a vegetable.  相似文献   

8.
To introduce endangered plants to urban green space for ex situ conservation successfully, it is important to better understand the optimal NO3 ?/NH4 + ratios for profitable plant. Increasing nitrogen deposition altered the nitrate to ammonium ratio (NO3 ?/NH4 +) in soil. This change may strongly affect the fate of endangered plants, which often have little ability to adapt to environmental changes. In this study, we carried out a microcosm hydroponic experiment by growing Mosla hangchowensis (an endangered species) to test its preference to NO3 ?/NH4 + ratios and used congeneric M. dianthera (a widespread species) for comparison. Results showed that M. hangchowensis preferred an equal NO3 ?/NH4 + ratio to NO3 ? as an N source, with a higher biomass observed under NO3 ?/NH4 + ratios of 50/50 and 75/25 than other treatments. However, M. dianthera preferred NO3 ? as N source, with a higher biomass under NO3 ?/NH4 + ratios of 100/0 and 75/25 than other treatments. NH4 + is the dominant form of N in atmospheric deposition in China and continued increasing in nitrogen deposition may be detrimental to M. hangchowensis, while only have minimal effects on M. dianthera. Urban regions are expanding, and the high environmental heterogeneity in urban areas can provide potential habitats for M. hangchowensis. Based on this study, we advise that the ex suit conservation of M. hangchowensis in urban green spaces needs to adjust the fertilization strategy according to the situation of nitrogen deposition to achieve the optimal NO3 ?/NH4 + ratio.  相似文献   

9.
This study focused on effects from Monoporeia affinis reworking and ventilation activities on benthic fluxes and mineralization processes during a simulated bloom event. The importance of M. affinis density for benthic solute (O2, ΣNO2 + NO3, NH4+ and HPO42−) fluxes and sediment reactivity (mobilization of NH4+ and HPO42−) following additions of organic material to the sediment surface was experimentally investigated using sediment-water and closed sediment (jar) incubations. Three different densities of M. affinis were used to resemble a low, medium and high density situation (1300, 2500 and 6400 ind. m− 2, respectively) of a natural amphipod community. The degradation of phytodetritus (Tetraselmis sp., 5 g C m− 2) added to the sediment surface was followed over a period of 20 days. Benthic solute fluxes of O2, ΣNO2 + NO3 and NH4+ were generally progressively stimulated with increasing number of M. affinis, while no such correlation was found for HPO42−. Solute fluxes were initially enhanced 1 to 2 days after the addition of phytodetritius, caused by mineralization of the most labile organic material and a food-stimulated irrigation by the amphipods. There was no effect from the activity of M. affinis on total denitrification (Dtot = Dn + Dw) or denitrification utilizing nitrate from coupled nitrification/denitrification (Dn) for any of the densities examined. Denitrification utilizing overlying water nitrate (Dw) was only about 10% of Dtot. Dw was significantly enhanced for the highest M. affinis density investigated. The reactivity of the sediment decreased progressively with increasing density of M. affinis and with time of the experiment. However, enhanced ammonium production at least 6 days after the organic addition indicated excretion of N-containing organic compounds by M. affinis. In conclusion, large spatial and temporal variations in density of M. affinis may be of significant importance for benthic solute fluxes and overall mineralization of organic material in Baltic Sea sediments.  相似文献   

10.
In short-term water culture experiments with different 15N labeled ammonium or nitrate concentrations, citrus seedlings absorbed NH4 + at a higher rate than NO3 . Maximum NO3 uptake by the whole plant occurred at 120 mg L–1 NO3 -N, whereas NH4 + absorption was saturated at 240 mg L–1 NH4 +-N. 15NH4 + accumulated in roots and to a lesser degree in both leaves and stems. However, 15NO3 was mostly partitioned between leaves and roots.Adding increasing amounts of unlabeled NH4 + (15–60 mg L–1 N) to nutrient solutions containing 120 mg L–1 N as 15N labeled nitrate reduced 15NO3 uptake. Maximum inhibition of 15NO3 uptake was about 55% at 2.14 mM NH4 + (30 mg L–1 NH4 +-N) and it did not increase any further at higher NH4 + proportions.In a long-term experiment, the effects of concentration and source of added N (NO3 or NH4 +) on nutrient concentrations in leaves from plants grown in sand were evaluated. Leaf concentration of N, P, Mg, Fe and Cu were increased by NH4 + versus NO3 nutrition, whereas the reverse was true for Ca, K, Zn and Mn.The effects of different NO3 -N:NH4 +-N ratios (100:0, 75:25, 50:50, 25:75 and 0:100) at 120 mg L–1 total N on leaf nutrient concentrations, fruit yield and fruit characteristics were investigated in another long-term experiment with plants grown in sand cultures. Nitrogen concentrations in leaves were highest when plants were provided with either NO3 or NH4 + as a sole source of N. Lowest N concentration in leaves was found with a 75:25 NO3 -N/NH4 +-N ratio. With increasing proportions of NH4 + in the N supply, leaf nutrients such as P, Mg, Fe and Cu increased, whereas Ca, K, Mn and Zn decreased. Yield in number of fruits per tree was increased significantly by supplying all N as NH4 +, although fruit weight was reduced. The number of fruits per tree was lowest with the 75:25 NO3 -N:NH4 +-N ratio, but in this treatment fruits reached their highest weight. Rind thickness, juice acidity, and colour index of fruits decreased with increasing NH4 + in the N supply, whereas the % pulp and maturity index increased. Percent of juice in fruits and total soluble solids were only slightly affected by NO3 :NH4 + ratio.  相似文献   

11.
Preference for NH4+ or NO3 nutrition by the perennial legume Sesbania sesban (L.) Merr. was assessed by supplying plants with NH4+ and NO3 alone or mixed at equal concentrations (0.5 mM) in hydroponic culture. In addition, growth responses of S. sesban to NH4+ and NO3 nutrition and the effects on root nodulation and nutrient and mineral composition of the plant tissues were evaluated in a hydroponic setup at a range of external concentration of NH4+ and NO3 (0, 0.1, 0.2, 0.5, 2 and 5 mM). Seedlings of S. sesban grew equally well when supplied with either NH4+ or NO3 alone or mixed and had high relative growth rates (RGRs) ranging between 0.19 and 0.21 d−1. When larger plants of S. sesban were supplied with NH4+ or NO3 alone, the RGRs and shoot elongation rates were not affected by the external concentration of inorganic N. At external N concentrations up to 0.5 mM nodulation occurred and contributed to the N nutrition through fixation of gaseous N2 from the atmosphere. For both NH4+ and NO3-fed plants the N concentration in the plant tissues, particularly water-extractable NO3, increased at high supply concentrations, and concentrations of mineral cations generally decreased. It is concluded that S. sesban can grow without an external inorganic N supply by fixing atmospheric N2 gas via root nodules. Also, S. sesban grows well on both NH4+ and NO3 as the external N source and the plant can tolerate relatively high concentrations of NH4+. This wide ecological amplitude concerning N nutrition makes S. sesban very useful as a N2-fixing fallow crop in N deficient areas and also a candidate species for use in constructed wetland systems for the treatment of NH4+ rich waters.  相似文献   

12.
Tomato growth was examined in solution culture under constant pH and low levels of NH4+ or NO3?. There were five nitrogen treatments: 20 mmoles m?3 NH4+, 50 mmoles m?3 NO3?, 100 mmoles m?3 NH4+ 200 mmoles m?3 NO3?, and 20 mmoles m?3 NH4++ 50 mmoles m?3 NO3?. The lower concentrations (20 mmoles m?3 NH4+ and 50 mmoles m?3 NO3?) were near the apparent Km for net NH4+ and NO3? uptake; the higher concentrations (100 mmoles m?3 NH4+ and 200 mmoles m?3 NO3?) were near levels at which the net uptake of NH4+ or NO3? saturate. Although organic nitrogen contents for the higher NO3? and the NH4++ NO3? treatments were 22.2–30.3% greater than those for the lower NO3? treatment, relative growth rates were initially only 10–15% faster. After 24 d, relative growth rates were similar among those treatments. These results indicate that growth may be only slightly nitrogen limited when NH4+ or NO3? concentrations are held constant over the root surface at near the apparent Km concentration. Relative growth rates for the two NH4+ treatments were much higher than have been previously reported for tomatoes growing with NH4+ as the sole nitrogen source. Initial growth rates under NH4+ nutrition did not differ significantly (P≥ 0.05) from those under NO3? or under combined NH4++ NO3?. Growth rates slowed after 10–15 d for the NH4+ treatments, whereas they remained more constant for the NO3? and mixed NH4++ NO3? treatments over the entire observation period of 24–33 d. The decline in growth rate under NH4+ nutrition may have resulted from a reduction in Ca2+, K+, and/or Mg2+ absorption.  相似文献   

13.
Subsurface horizontal flow constructed wetlands are being evaluated for nitrogen (N) and phosphorus (P) removal from wastewater in this study through different gravel sizes, plant densities (Iris pseudacorus), effects of retention times (1 to 10 days) on N and P removal in continuously fed gravel wetland. The inlet and outlet samples were analyzed for TKN, NH4-N, and NO3-N, as standard methods. The planted wetland reactor with fine (SG) and coarse (BG) gravels removed 49.4% and 31.4% TKN, respectively, while unplanted reactors removed 43.4% and 26.8% TKN. Also, the efficiencies for NH4-N were 36.7–43% and 21.6–25.4% for SG and BG planted reactors, respectively. The efficiencies for NO3-N were 53.5–62.5% and 21.6–25.4% for SG and BG planted reactors, respectively. Roles of plants in SG reactors for O-PO4 were 5–12% and 3–8% in BG. Also, the roles of plants in the reactors for TP were 9% and 7.4%. The minimum effective detention time for the removal of NO3-N was 4–5 days. The subsurface constructed wetlands planted with I. pseudacorus can be an appropriate alternative in wastewater treatment natural system in small communities.  相似文献   

14.
In order to investigate the effects of homogeneous and localized supply of different nitrogen forms (nitrate, NO3 ? vs ammonium, NH4 +) on the growth of tomato seedlings, root morphology and six cytokinin (CTK) fractions in xylem sap were analyzed. Whole roots were supplied with different ratios of NO3 ? to NH4 + (100:0, as 100-0NA; 75:25, as 75-25NA; 50:50, as 50-50NA) under homogeneous supply. In split-root experiments, three treatments were compared: a sole NO3 ? supply (N|N), a spatially separated supply of NO3 ? and NH4 + (N|A), and a spatially separated supply of NO3 ? and a mixture of NO3 ? and NH4 + nutrition at a ratio of 75:25 (N|AN). All concentrations of total N were set at 5 mM. The results showed that (1) homogeneous 75% NO3 ? plus 25% NH4 + supply to the whole root zone led to maximum shoot and root dry matter (DM), root surface area (RS) and root volume (RV). The spatially separated supply of NO3 ? and NH4 + (N|A) resulted in a contrasting effect on root morphology: in comparison to N|N, root DM in the NO3 ?-containing pot was increased by 50% whereas it was depressed by 50% in the NH4 +-containing pot. The 75% NO3 ? plus 25% NH4 + supply in the split-root experiment led to no significant effects either on shoot DM and root DM, or on RS and RV when compared to N|N. (2) The presence of NH4 + in the external medium led to a significantly reduced total xylem-CTK concentration, and a close negative correlation was found between xylem NH4 + and total CTK concentration irrespective of culture mode. A relatively high level of zeatin riboside (ZR) was maintained both in 75-25NA and N|A treatments. It was concluded that, in addition to the percentage of NH4 + to NO3 ? in the nutrient solution, whether NH4 + was supplied to the whole root system or to only part of the root system was also an important factor affecting plant growth. The fact that the 75-25NA and N|A treatments resulted in optimal growth of tomato seedlings might be attributed to the higher ZR concentration in xylem.  相似文献   

15.
Abstract A 16-channel fully automated microcomputer-based system was designed to measure the disappearance of NO?3 NO?2 and NH+4 simultaneously from uptake solutions. The analyses were done using high-performance liquid chromatography. Statistical procedures were used to generate transport kinetics and interactions amongst NO?3, NO?2 and NH+4 by intact wheat seedlings. The simultaneous analysis of NO?3, NO?2 and NH+4 at real-time; the accommodation of varying sampling intervals; the capability to study up to 16 experimental units in synchrony; and the analysis of the data with a microcomputer, make this a powerful system for studying transport kinetics and interactions.  相似文献   

16.
The green-tide macroalga, Ulva prolifera, was tested in the laboratory to determine its nutrient uptake and photosynthesis under different conditions. In the nutrient concentration experiments U. prolifera showed a saturated uptake for nitrate but an escalating uptake in the tested range for phosphorus. Both N/P and NO3 ?/NH4 + ratios influenced nutrient uptake significantly (p?<?0.05) while the PSII quantum yield [Y(II)] (p?>?0.05) remained unaffected. The maximum N uptake rate (33.9?±?0.8 μmol g?1 DW h?1) and P uptake rate (11.1?±?4.7) was detected at N/P ratios of 7.5 and 2.2, respectively. U. prolifera preferred NH4 +-N to NO3 ?-N when the NO3 ?-N/NH4 +-N ratio was less than 2.2 (p?<?0.05). But between ratios of 2.2 and 12.9, the uptake of NO3 ?-N surpassed that of NH4 +-N. In the temperature experiments, the highest N uptake rate and [Y(II)] were observed at 20 °C, while the lowest rates were detected at 5 °C. P uptake rates were correlated with increasing temperature.  相似文献   

17.
The degradation of an Ulva lactuca mat (0.2 kg dw m−2) was studied in a controlled flow-through mesocosm for 31 d. Sediment chambers without U. lactuca served as controls. Fluxes of ∑CO2, O2, inorganic nitrogen, and urea were determined during the incubation period in addition to sulfate reduction rates, POC and PON content, enumeration of specific bacterial populations and evaluation of the physiological state of the added U. lactuca thalli. After U. lactuca addition to the chambers, there was an immediate increase in the efflux of ∑CO2 from 11 to 27 mmol-C m−2 d−1 and a concomitant increase in O2 uptake from 11 to 23 mmol m−2 d−1. These effluxes remained elevated throughout the incubation period. In contrast, the NH4+ efflux increased from 0.1 to 1.8 mmol NH4+ m−2 d−1 during the first 3 d of incubation, followed by 6 d with a constant efflux rate, after which time it decreased gradually to 0.3 mmol NH4+ m−2 d−1 by the end of the experiment. In total, NH4+accounted for 83% of the total nitrogen efflux after addition of U. lactuca. During the 31 d incubation period there was a continuous colonization of the thalli by bacteria. Sulfate reducers associated with the thalli accounted for 3% of the carbon oxidation on day 31. The molar C:N ratio in mineralization products (the ratio between the efflux of ∑CO2 and NH4+ + NO2 + NO3) increased from 15 mol mol−1 at day 11 after U. lactuca addition to >80 mol mol−1 by the end of the incubation. Since the C:N ratio in the mineralization products was much higher than the original thallus material (8.9 mol mol−1) it is probable that a preferential incorporation of NH4+ into the increasing bacterial biomass occurred. The nitrogen for bacterial growth was most likely obtained from degradation of U. lactuca thalli as there was no stimulation of urea-N turnover in the sediment during incubation. The net increase in bacteria cell number in the 18-mm thick thallus layer was estimated to be 7.6 × 109 to 2.4 × 1010 bacterial cells cm−3. In contrast, the bacterial cell number remained constant in the −Ulva incubations.  相似文献   

18.
Growth, chemical composition, and nitrate reductase activity (NRA) of hydroponically cultured Rumex crispus, R. palustris, R. acetosa, and R. maritimus were studied in relation to form (NH4 +, NO3 -, or both) and level of N supply (4 mM N, and zero-N following a period of 4mM N). A distinct preference for either NH4 + or NO3 - could not be established. All species were characterized by a very efficient uptake and utilization of N, irrespective of N source, as evident from high concentrations of organic N in the tissues and concurrent excessive accumulations of free NO3 - and free NH4 +. Especially the accumulation of free NH4 + was unusually large. Generally, relative growth rate (RGR) was highest with a combination of NH4 + and NO3 -. Compared to mixed N supply, RGR of NO3 -- and NH4 +-grown plants declined on average 3% and 9%, respectively. Lowest RGR with NH4 + supply probably resulted from direct or indirect toxicity effects associated with high NH4 + and/or low Ca2+ contents of tissues. NRA in NO3 - and NH4NO3 plants was very similar with maxima in the leaves of ca 40 μmol NO2 - g-1 DW h-1. ‘Basal’ NRA levels in shoot tissues of NH4 + plants appeared relatively high with maxima in the leaves of ca 20 μmol NO2 - g-1 DW h-1. Carboxylate to organic N ratios, (C-A)/Norg, on a whole plant basis varied from 0.2 in NH4 + plants to 0.9 in NO3 - plants. After withdrawal of N, all accumulated NO3 - and NH4 + was assimilated into organic N and the organic N redistributed on a large scale. NRA rapidly declined to similar low levels, irrespective of previous N source. Shoot/root ratios of -N plants were 50–80% lower than those from +N plants. In comparison with +N, RGR of -N plants did not decline to a large extent, decreasing by only 15% in -NH4 + plants due to very high initial organic-N contents. N-deprived plants all exhibited an excess cation over anion uptake (net proton efflux), and whole-plant (C-A)/Norg ratios increased to values around unity. Possible difficulties in interpreting the (C-A)/Norg ratio and NRA of plants in their natural habitats are briefly discussed.  相似文献   

19.
N.M. Weare 《BBA》1978,502(3):486-494
A mutant of Rhodospirillum rubrum has been isolated, after mutagenesis with nitrosoguanidine, which is characterized by its inability to grow in the light on malate-minimal media with exogenous ammonia or alanine, poor growth on glutamine and vigorous growth on glutamate. This mutant produces low levels of a key NH+4 assimilation enzyme, glutamate synthase (NADPH-dependent). It also exhibits significant derepression of nitrogenase biosynthesis in the presence of ammonia or alanine, being 15% derepressed for the former and about 70% derepressed for the latter.Some of this mutant's fixed N2 is excreted into the medium as NH+4 (1 μmol NH+4 per mg cell protein in 50 h). Nitrogenase-mediated H2 production by this strain is considerable (42 μmol H2 per mg cell protein in 50 h), approximately twice that of the wild type assayed under similar conditions.These results demonstrate that genetic alteration of the photosynthetic N2-fixer's NH+4 assimilation system disrupts the tight coupling of N2 fixation and NH+4 assimilation normally observed in these organisms, enabling photochemical conversion steps to be utilized for the photoproduction of NH+4 and H2.  相似文献   

20.
The nitrogen requirement of plants is predominantly supplied by NH4+ and/or NO3? from the soil solution, but the energetic cost of uptake and assimilation is generally higher for NO3? than for NH4+. We found that CO2 enrichment of the atmosphere enhanced the root uptake capacity for NO3?, but not for NH4+, in field-grown loblolly pine saplings. Increased preference for NO3? at the elevated CO2 concentration was accompanied by increased carbohydrate levels in roots. The results have important implications for the potential consequences of global climate change on plant-and ecosystem-level processes in many temperate forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号