首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The direct voltammetry and electrocatalytic properties of catalase, which was adsorbed on the surface of multiwall carbon nanotubes (MWCNTs), was investigated. A pair of well-defined and nearly reversible cyclic voltammetry peaks for Fe(III)/Fe(II) redox couple of catalase adsorbed on the surface of MWCNTs at approximately -0.05 V versus reference electrode in pH 6.5 buffer solution, indicating the direct electron transfer between catalase and electrode. The surface coverage of catalase immobilized on MWCNTs glassy carbon electrode was approximately 2.4x10(-10) molcm-2. The transfer coefficient (alpha) was calculated to be 0.4, and the heterogeneous electron transfer rate constant was 80 s-1 in pH 7, indicating great facilitation of the electron transfer between catalase and MWCNTs adsorbed on the electrode surface. The formal potential of catalase Fe(III)/Fe(II) couple in MWCNTs film had a linear relationship with pH values between 2 and 11 with a slope of 58 mV/pH, showing that the electron transfer is accompanied by single proton transportation. Catalase adsorbed on MWCNTs exhibits a remarkable electrocatalytic activity toward the reduction of oxygen and hydrogen peroxide. The value for calculated Michaelis-Menten constant (1.70 mM) was high, indicating the potential applicability of the films as a new type of reagentless biosensor based on the direct electrochemistry of the catalase enzyme.  相似文献   

2.
Direct electron transfer of hemoglobin modified with quantum dots (QDs) (CdS) has been performed at a normal graphite electrode. The response current is linearly dependent on the scan rate, indicating the direct electrochemistry of hemoglobin in that case is a surface-controlled electrode process. UV–vis spectra suggest that the conformation of hemoglobin modified with CdS is little different from that of hemoglobin alone, and the conformation changes reversibly in the pH range 3.0–10.0. The hemoglobin in a QD film can retain its bioactivity and the modified electrode can work as a hydrogen peroxide biosensor because of its peroxidase-like activity. This biosensor shows an excellent response to the reduction of H2O2 without the aid of an electron mediator. The catalytic current shows a linear dependence on the concentration of H2O2 in the range 5 × 10−7–3 × 10−4 M with a detection limit of 6 × 10−8 M. The response shows Michaelis–Menten behavior at higher H2O2 concentrations and the apparent Michaelis–Menten constant is estimated to be 112 μM.  相似文献   

3.
Three-dimensionally (3D) ordered macroporous active carbon has been fabricated and used as electrode substrate for the direct electrochemistry of horse heart cytochrome c (Cyt c). The Cyt c immobilized on the surface of the ordered macroporous active carbon shows a pair of well-defined and nearly reversible redox waves at the formal potential of −0.033 V in pH 6.8 phosphate buffer solution. The interaction between Cyt c and the 3D macroporous active carbon makes the formal potential shift negatively compared to that of Cyt c in solution. Spectrophotometric and electrochemical methods have been used to investigate the interaction between Cyt c and the porous active carbon. The immobilized Cyt c maintains its biological activity, and shows a surface controlled electrode process with the electron-transfer rate constant (ks) of 17.6 s−1 and the charge-transfer coefficient (a) of 0.52, and displays the features of a peroxidase in the electrocatalytic reduction of hydrogen peroxide (H2O2). A potential application of the Cyt c-immobilized porous carbon electrode as a biosensor to monitor H2O2 has been investigated. The steady-state current response increases linearly with H2O2 concentration from 2.0 × 10−5 to 2.4 × 10−4 mol l−1. The detection limit (3σ) for determination of H2O2 has been found to be 1.46 × 10−5 mol l−1.  相似文献   

4.
This work reports a novel strategy for the development of an O2-rich biosensor. The principle is based on an enzymatic reaction between catalase and H2O2 to release O2, thus to increase the O2 amount in the enzyme matrix. This method improves the determination reliability by alleviating the O2 dependence.  相似文献   

5.
A one-step method is described for the fluorometric determination of the activity of the enzyme catalase (EC 1.11.1.6.), based on the finding that H(2)O(2) in the europium (III)-tetracycline-hydrogen peroxide system is consumed by catalase. This is accompanied by a large decrease in both fluorescence intensity and decay time. The limit of detection (LOD; at S/N=3) for catalase at 30 degrees C for a 10-min kinetic assay is 1.0 unit/mL, with a linear range from 1.0 to 10 unit/mL. At an incubation time of 30 min at 37 degrees C for a one-point assay, the LOD is 0.046 unit/mL, with a linear range from 46 to 400 munit/mL. The assay was performed on microtiterplates and is fully compatible with existing plate readers. It is a one-step, simple, and sensitive method suitable for both continuous kinetic and one-point detections, does not require the addition of other substrates, and works best at neutral pH (with an optimum at pH 6.9). The reagent has the typical spectral features of a europium-ligand complex including a large Stokes shift (210 nm), a red line-like emission (centered at 616 nm), and a decay time in the microsecond domain. It is also the first europium-based probe that is compatible with the 405-nm diode laser. In summary, the new assay provides distinct advantages over direct ultraviolet detection and over the two-reagent (peroxidase) method.  相似文献   

6.
A stable suspension of carbon nanotube (CNT) can be obtained by dispersing the CNT in the solution of the surfactant cetyltrimethylammonium bromide. CNT has promotion effects on the direct electron transfer of hemoglobin (Hb), which was immobilized onto the surface of CNT. The direct electron transfer rate of Hb was greatly enhanced after it was immobilized onto the surface of CNT. Cyclic voltammetric results showed a pair of well-defined redox peaks, which corresponded to the direct electron transfer of Hb, with the formal potential (E0) at about −0.343 V (vs. saturated calomel electrode) in the phosphate buffer solution (pH 6.8). The electrochemical parameters such as apparent heterogeneous electron transfer rate constant (ks) and the value of formal potential (E0) were estimated. The dependence of E0 on solution pH indicated that the direct electron transfer reaction of Hb is a one-electron transfer coupled with a one-proton transfer reaction process. The experimental results also demonstrated that the immobilized Hb retained its bioelectrocatalytic activity to the reduction of H2O2. The electrocatalytic current was proportional to the concentration of H2O2 at least up to 20 mM.  相似文献   

7.
Possible role of catalase in post-dormancy bud break in grapevines   总被引:1,自引:0,他引:1  
Changes in the activity of catalase (Cat) and in the levels of H2O2 were followed throughout dormancy in buds of grapevines (Vitis vinifera L.). In grapevines grown in the Elqui valley in Chile, a region with warm-winters, the activity of Cat increased during the recess period of buds, reaching a maximum and thereafter decreased to less than one third of its maximal activity. Three isoforms of Cat were detected in extracts of buds by native PAGE analysis, and the extracted activity was inhibited competitively by hydrogen cyanamide (HC), a potent bud-break agent. Furthermore, HC applications to field-grown grapevines in addition to the expected effect on advancing bud break, reduced the Cat activity during bud dormancy. Similar reductions were observed during dormancy in buds of grapevines grown in the Central valley in Chile, a region with temperate winters, suggesting that HC and winter chilling inhibits the activity of the main H2O2 degrading enzyme in grape buds. A transient rise in H2O2 levels preceded the release of buds from endodormancy, moreover, the peak of H2O2 and the onset of bud break occurred earlier in HC treated than in control grapevines, suggesting the participation of H2O2 as a signal molecule in the release of endodormancy in grape buds. The relationship between Cat inhibition, rise in H2O2 levels and initiation of bud break are discussed.  相似文献   

8.
Regional Distribution of Catalase in the Adult Rat Brain   总被引:3,自引:3,他引:3  
Catalase activity was measured in 11 areas of perfused adult rat brain. The hypothalamus and substantia nigra contained the highest activities. The corpus callosum. a white-matter structure, contained intermediate activity. The caudate-putamen and frontal cortex contained the lowest activities. Regional catalase bears some relationship to the reported distribution of microperoxisomes, but considerable activity is present in areas with few microperoxisomes. Catalase may function as one of the systems detoxifying H2O2 formed in CNS amine metabolism.  相似文献   

9.
10.
A novel cadmium-substituted tungstoantimonate [Sb2W21Cd(OH)2O73]14− (1), has been synthesized in aqueous solution and characterized by IR, elemental analysis, TGA and cyclic voltammetry (CV). Single-crystal X-ray analysis was carried out on K4.5Na9.5[Sb2W21Cd(OH)2O73] · 31H2O (1a). Polyanion 1 consists of two Cd(W) ions linked to a [Sb2W20O70]14− fragment via Cd-O(W) bonds leading to a sandwich-type structure. Interestingly, the polyanion [Sb2W21Cd(OH)2O73]14− (1) as basic building unit is assembled into a one-dimensional (1D) chain-like structure by Cd and W atoms sharing the same site with the 50% occupations, respectively. The electrochemical behavior of 1 was investigated in buffer solution (pH 3.0) by CV. In the potential range between −0.75 and 0.2 V, the compound 1 exhibits the successive redox processes of the addenda atoms (W). The electrocatalytic experiments of the compound show that this compound has good electrocatalytic activity towards the reduction of H2O2.  相似文献   

11.
A heme protein hemoglobin (Hb) was reacted with preexfoliated layered alpha-zirconium phosphate (alpha-ZrP) platelets. An X-ray diffraction (XRD) pattern of small range showed that the exfoliated alpha-ZrP platelets reassembled after the addition of Hb molecules, with the protein intercalated between the layers. UV-Vis and Fourier transform infrared (FTIR) spectra analysis displayed that no significant denaturation occurred to the intercalated protein. The bioactivity of Hb was also investigated by testing the electrochemical properties of the Hb/alpha-ZrP composite. Results showed that the intercalation of Hb into the layered material not only improved the thermal stability of Hb but also enhanced the direct electron transfer ability between protein molecules and electrode. The protein still showed bioactivity after treatment at a temperature as high as 85 degrees C. A pair of well-defined redox peaks at approximately -0.37 and -0.32V was observed on the cyclic voltammograms (CVs) of the Hb/alpha-ZrP composite modified electrode, and the electrode reactions showed a surface-controlled process with a single proton transfer. The resultant biosensor constructed by the Hb/alpha-ZrP composite displayed an excellent response to the reduction of hydrogen peroxide (H(2)O(2)) with good reproducibility.  相似文献   

12.
A novel graphitized ordered macroporous carbon (GMC, pore size 380 nm) with hierarchical mesopores (2–30 nm) and high graphitization degree was prepared by nickel-catalyzed graphitization of polystyrene arrays. The obtained GMC possessed high specific surface area, large pore volume, and good electrical conductivity, which was explored for the enzyme entrapment and biosensor fabrication by a facile method. With advantages of novel nanostructure and good electrical conductivity, direct electrochemistry of hemoglobin (a model protein) was observed on the GMC-based biocomposite with a formal potential of −0.36 V (vs. Ag/AgCl) and an apparent heterogeneous electron transfer rate constant (ks) of 1.2 s−1 in pH 7.0 buffer. Comparative studies revealed that GMC offered significant advantages over carbon nanotubes (CNTs) in facilitating direct electron transfer of entrapped Hb. The fabricated biosensor exhibited good sensitivity (101.6 mA cm−2 M−1) and reproducibility, wide linear range (1–267 μM), low detection limit (0.1 μM), and good long-term stability for H2O2 detection. GMC proved to be a promising matrix for enzyme entrapment and biosensor fabrication, and may find wide potential applications in biomedical detection and environmental analyses.  相似文献   

13.
The present work analyzes the activity in decomposition of H2O2 using magnetite-immobilized catalase. The support of catalase is a glutaraldehyde-treated magnetite (Fe3O4). The data obtained in the H2O2 decomposition are analyzed. The fitting of the initial rate of the H2O2 decomposition versus hydrogen peroxide concentration data is discussed using a specific program for enzyme kinetics modeling (Leonora). The free catalase from Aspergillus niger (3.5 or 10 U/mL) does not show substrate inactivation up to 0.4 M H2O2. The immobilized catalase at low catalyst concentration shows substrate inhibition. Using 1 mg/mL of supported catalase the predicted maximum activity is higher than in the case of the free catalase at similar catalase concentration, although the optimum temperature is lower (40 °C versus 60 °C).  相似文献   

14.
15.
16.
The toxicity of activated oxygen species towards adult Haemonchus contortus nematodes was examined in in vitro assays using ingestion of [3H]inulin to assess nematode viability. Both glucose/glucose oxidase (generation of hydrogen peroxide) and xanthine/xanthine oxidase (generation of superoxide anion) systems showed concentration-dependant toxicity to the nematodes. Both adult and larval Haemonchus contortus enzyme preparations showed significant catalase activities. Adult nematodes exposed to aminotriazole for 24 h showed catalase activities reduced to less than 20% of controls. Aminotriazole-treated nematodes exposed to a glucose/glucose oxidase system were significantly more susceptible to the toxic effects of the oxidant-generating system than controls (no aminotriazole pre-treatment). The concentration of glucose oxidase required to inhibit feeding by 50% was decreased 33-fold in aminotriazole-treated nematodes compared with controls. The effect of aminotriazole pre-treatment implicates hydrogen peroxide as a significant toxic agent in the glucose/glucose oxidase system. It is apparent that inhibition of Haemonchus contortus catalase increases the susceptibility of the parasite to the toxic effects of hydrogen peroxide, demonstrating a protective role for this enzyme. This suggests that catalase has the potential to play a significant role in the defence of this parasite against hydrogen peroxide produced as part of the respiratory burst of activated phagocytes within the host during its response to nematode infection.  相似文献   

17.
We continue our investigation of the photophysics of 1,8-anilinonaphthalenesulfonate in protein and solvent systems. In this report, we concentrate on the nature of the excited states as observed in UV spectra. We develop a fairly general formalism for handling the coupled transitions we observe in the partial systems aniline and naphthalene. We assign one of the near-UV transitions, which is more clearly discernible in congeners of 1,8-ANS, but still present in 1,8-ANS as we postulate it, to a charge-transfer band. The other transition is from aniline itself. The expected energies of these now coupled bands in anilinonaphthalene and ANS are calculated, and the transition dipole moment for these transitions is derived.  相似文献   

18.
Hydrogen peroxide (H(2)O(2)) can interact with intracellular signaling pathways to regulate cell behavior. The c-Jun NH(2)-terminal kinase 1 (JNK1) signal, involved in diverse aspects of cellular functioning, is implicated as a cell sensor of redox stress. The growth-inhibitory effect of both high-level H(2)O(2) and H(2)O(2)-scavenging catalase treatments is accompanied by increased JNK1 activity. To investigate the role of this response in growth regulation, the JNK1 signal was increased by the introduction of ectopic HA-JNK1. HA-JNK1 expression correlated with increases in basal c-Jun phosphorylation in a dose-dependent manner. Transient expression of HA-JNK1 potentiated cell growth arrest by catalase; however, with stable expression a degree of resistance to this response was observed. Resistance was accompanied by a lowered endogenous production of H(2)O(2). Transient HA-JNK1 expression also reduced H(2)O(2) generation, and this effect was reversed by the JNK inhibitor SP600125. These results indicate that the JNK1 stress response contributes to growth inhibition by catalase treatment via inhibition of cellular H(2)O(2) production. Stable amplification of the JNK1 pathway leads to cellular adaptation to its signal, resulting in a diminished reliance upon H(2)O(2) for efficient growth.  相似文献   

19.
  总被引:1,自引:0,他引:1  
A catalase preparation from a newly isolated Bacillus sp. was covalently immobilized on silanized alumina using glutaraldehyde as crosslinking agent. The effect of the coupling time of the enzyme-support reaction was determined in terms of protein recovery and immobilization yield and a certain balance point was found after which the activity recovery decreased. The activity profile of the immobilized catalase at high pH and temperature was investigated. The immobilized enzyme showed higher stabilities (214 h at pH 11, 30°C) at alkaline pH than the free enzyme (10 h at pH 11, 30°C). The immobilized catalase was inhibited by anionic stabilizers or surfactants added to the hydrogen peroxide substrate solution.  相似文献   

20.
Abstract Schizosaccharomyces pombe becomes resistant to killing by high concentration of hydrogen peroxide and other severe stresses including oxidants, high temperature and high concentration of ethanol when pretreated with nonlethal levels of hydrogen peroxide. In the presence of the protein synthesis inhibitor, cycloheximide, during hydrogen peroxide pretreatment, the cell obtained partial resistance to a higher level of hydrogen peroxide. The partial resistance to hydrogen peroxide in the presence of cycloheximide was acquired within 30 min of pretreatment but complete resistance obtained with de novo protein synthesis was not attained before 45 min of pretreatment. During adaptation to hydrogen peroxide, at least 15 polypeptides are induced, as analyzed by two-dimensional gel electrophoresis. Catalase activity is induced eight-fold by treatment with a nonlethal level of hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号