首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Restoration of Zostera japonica is needed. Laboratory culture experiments to know the germination characteristics might be helpful for implementation of actual restoration. As a part of germination experiments, we explored suitable water temperature for long-term storage of Z. japonica seeds. This work was based on earlier reports of Zostera marina, which presumably has similar physiological properties to Z. japonica. This study consisted of two experiments: (1) preservation experiments to investigate the fate of stored Z. japonica seeds and (2) germination experiments to investigate the germination potential of the stored seeds. The results of the preservation experiments suggested that seed condition, that is, germinated, degraded, unstable, stable, etc., showed variations between the seeds stored at 4 and 23 °C. The majority of the seeds stored at 4 °C were germinated, while those at 23 °C seemed to be degraded, presumably by bacteria and mold. The germination experiments suggested high germination potential of seeds stored at 4 °C even after 302 days had elapsed. In conclusion, including previously reported results on Z. marina, low temperature was suitable for the preservation of seeds to maintain germination potential.  相似文献   

2.
Medicago marina (L.) is a Mediterranean species whose seeds show strong dormancy that prevents germination. We used an integrated approach of physiological analyses and proteomics to investigate the mechanisms that control M. marina dormancy/germination and that underlie stress tolerance. First, we evaluated the effects on dormancy breaking of the following treatments: mechanical scarification, freezing at −20 °C, storage for 4 months and heating at 100 °C for 1 h. Mechanical scarification and freezing were the most effective treatments in overcoming dormancy. The role of abscisic acid (ABA) in M. marina dormancy was studied by ELISA immuno-enzymatic assay. The ABA content of germinated and non-germinated mature (control) and treated seeds was determined. The level of ABA was higher in treated seeds than in control seeds; the most significant increase occurred in the heated seeds. A comparison of the ABA level in the germinated, control and treated seeds suggests that different mechanisms modulate ABA content in response to different stresses, and that a specific ABA-signalling pathway regulates germination. Proteomic analysis revealed 46 proteins differentially expressed between treated and untreated seeds; 14 of these proteins were subsequently identified by mass spectrometry. Several of the proteins identified are important factors in the stress response, and are involved in such diverse functions as lipid metabolism, protein folding and chromatin protection. Lastly, an analysis of the phosphoproteome maps showed that the function of many proteins in seeds subjected to temperature treatment is modulated through post-translational modifications.  相似文献   

3.
Seed germination and seedling growth of Zostera marina L. were monitored in the Chesapeake Bay in 1979 and 1980. Harvested seeds were placed in small acrylic tubes at several sites representing the salinity range of Z. marina distribution. Seed germination was observed first in late September and continued through May, with peaks in the fall and spring. The majority of seeds that germinated (66%) did so between December and March when water temperatures ranged from 0–10°C. There was no correlation between sites (different salinity regimes) and frequency of germination rates, indicating that salinity was not a major factor in the germination process in this study. Additional information on seed germination was available for seeds collected in 1977 and 1980 and subsequently monitored for germination at only one site. These data were similar to germination frequency recorded in 1979–1980.Seedling growth was measured from individuals collected from an existing Zostera marina bed. Seedlings were collected from November through May, at which time we could no longer distinguish seedlings from existing vegetative stock. Growth was characterized by the increased length of the primary shoot, number of leaves per shoot and numbers of shoots per plant. Seedling growth was slow during the winter months (water temperature ? 10°C) but rapidly increased in the spring (temperatures > 10°C). The size range of the harvested seedlings indicated that seed germination in the field probably occurred from October through April, corroborating evidence from the seed germination experiments.  相似文献   

4.
Three species of the Iridaceae with ornamental potential were micropropagated with the intention of producing propagules more rapidly for possible commercialization. Shoot induction from in vitro germinated seedlings of Romulea minutiflora was obtained with 5.4 μM α-naphthaleneacetic acid (NAA) and 23.2 μM kinetin. Shoot explants formed corms best with 3.4 or 17 μM paclobutrazol, and one incidence of in vitro flowering was observed. Sisyrinchium laxum shoot explants produced more and healthier multiple shoots with meta-topolin (mT) than with 6-benzyladenine (BA). Rooting was best in control (no hormone) cultures, and addition of NAA and indole-3-acetic acid (IAA) inhibited root formation and growth of shoot explants, and formed short, stunted roots. Roots produced by indole-3-butyric acid (IBA) were morphologically most similar to those produced in control cultures. Liquid-shake culture of shoots did not lead to meristemoid formation, despite supplementation with various growth regulators (mT, GA3 or paclobutrazol). Low temperature (10-20 °C) induced corm formation in Tritonia gladiolaris shoot cultures, while corm formation was completely inhibited above 20 °C. Increasing temperature from 10 °C to 15 °C and from 15 °C to 20 °C increased corm mass significantly. Paclobutrazol (3.4 μM), GA3 (2.9 μM), NAA (5.4 μM ) or methyl jasmonate (4.5 μM ) could not induce corm formation at 25 °C, while at 15 °C, NAA and methyl jasmonate inhibited corm formation. These experiments successfully demonstrate the ease with which different genera of the Iridaceae can be multiplied in in vitro systems.  相似文献   

5.
The effects of temperature, water level and burial depth on seed germination of two submerged species, Myriophyllum spicatum and Potamogeton malaianus, were investigated under controlled laboratory conditions. There was no significant difference in final germination of M. spicatum among water level treatments, but P. malaianus germinations at 1 cm and 12 cm water levels were better than at 0 cm water level at temperatures of 20 °C and 30 °C. Little to no germination was observed for either species at the temperature of 10 °C. At 15 °C, however, germination increased significantly to 66.3-70.6% for M. spicatum and to 29.4-48.1% for P. malaianus under all three water level treatments. Increased temperature from 15 °C to 30 °C had no significant effect on the final germination of M. spicatum except at the 1 cm water level, but enhanced significantly the germination of P. malaianus. Analysis of the mean time to germination revealed that M. spicatum was a faster germinator relative to P. malaianus. The two species’ germination differed markedly in response to burial depth. Germination percentage of M. spicatum was 71.3% at 0 cm burial depth, but decreased to 5.0% and to 2.5% at depths of 1 cm and 2 cm, respectively; whereas germination percentages of P. malaianus were 40.0%, 23.8%, 12.5%, 7.5% and 1.3% at depths of 0 cm, 1 cm, 2 cm, 3 cm and 5 cm, respectively. We concluded that the two species respond differently to germination strategies. The findings provided further insight into how germination strategy contributes to the seed bank formation and species invasion.  相似文献   

6.
Lasia spinosa seeds were not dormant at maturity in early spring. The most favorable temperatures for germination were between 25 and 30 °C, and final percentage and rate of germination decreased with an increase or decrease in temperature. When L. spinosa seeds were transferred to 25 °C, after 60 days at 10 °C (where none of the seeds germinated), final germination increased from 0% to 78%. Seeds germinated to high percentage both in light and in dark, although dark germination took more than twice as long as in the light. During desiccation of seeds at 15 °C and 45% relatively humidity, moisture loss decreased exponentially from 2.02 to 0.13 g H2O g−1 dry wt within 16 days, and only a few seeds (12%) survived 0.13 g H2O g−1 dry wt moisture content. Seeds stored at 0.58 g H2O g−1 dry wt moisture content at four constant temperatures (4, 10, 15, and −18 °C) for up to 6 months exhibited a well-defined trend of decreasing viability with decreasing temperature. Thus, we concluded that freshly harvested L. spinosa seeds are non-dormant and recalcitrant. Also, the seeds with 0.58 g H2O g−1 dry wt moisture content could be effectively stored for a few months between 10 and 15 °C although the most appropriate temperature for wet storage appears to be 10 °C, as it is close to the minimum temperature for germination and so there will be less pre-sprouting compared to 15 °C.  相似文献   

7.
8.
Brackish-water and fresh-water bryozoans produce asexually derived dormant propagules that allow survival of unfavourable conditions and provide a potential means of dispersal. The propagules of brackish-water ctenostome bryozoans are called hibernacula. We monitored the life-cycle of the brackish-water ctenostome Victorella pavida Saville Kent, 1870 in its natural habitat and investigated, in laboratory cultures, the influence of temperature and salinity on the production and germination of hibernacula and on subsequent colony growth. V. pavida is a protected species in the UK, where its only locality is at Swanpool lagoon, Falmouth. Colonies were collected from Swanpool monthly from January 2004 to January 2005. Hibernaculum germination appeared to be triggered by increased water temperature (c. 13 °C) in the lagoon in March and April. In culture, germination was triggered by transfer from 5 °C to 19 °C in a range of salinities; subsequent colony growth was affected by salinity, with strongest growth at 13, 18 and 36 psu, and reduced growth at 5 and 9 psu. At 3.5 psu, hibernacula germinated, but there was no further development. At 36 psu there was an initial lag in growth, but after 30 d the colonies were comparable with those kept at 18 psu. Hibernaculum formation by colonies occurred from June to October, with production increasing towards October. Hibernacula appear not to have long-term viability but merely to permit survival from one year to the next. The results suggest that any changes in the hydrographic regime at Swanpool could have significant consequences for the survival of V. pavida.  相似文献   

9.
Over the course of a growing season (April–October) water quality (water temperature, light, salinity, dissolved oxygen) and reproductive phenology (biomass, production of flowering shoots and seed pods, seed bank densities) were quantified in three Vallisneria americana beds in Nanjemoy Creek, MD, a tributary to the Chesapeake Bay. Clonal production of V. americana biomass increased at all sites when water temperatures rose above 25 °C. Flowering occurred during peak biomass (August–September) and resulted in the production of up to 16,000 seeds m−2 at the end of the growing season. However, observed seed bank densities represented <1% of seed production. Laboratory experiments quantified the effects of dissolved oxygen (0.29–8.00 mg l−1), light (0–160 μmol m2 s−1), temperature (13–29 °C), salinity (0.1–17.4 psu), sediment composition (3–86% sand; 0.9–8.3% sediment organic content), and burial depth (0.2–10 cm) on V. americana seed germination. Germination of V. americana seeds was enhanced (greater overall germination and shorter time to germination) under oxygenated conditions (8.00 mg l−1), temperatures >22 °C, salinities of <1 psu, and in sediments composed of ≤3% organic content and >40% sand. Light (<160 μmol m−2 s−1) and burial depth (0.2–10 cm) had no significant effects on germination. Temperatures most favorable for seed germination (>22 °C) occurred in June, 2 months in the growing season just prior to development of peak vegetative standing stock. Seedlings were therefore at a distinct disadvantage to plants developed from over wintering buds. A lack of viable seed retention and inadequate environmental conditions at critical times in the growing season may be limiting seed germination success and subsequent seedling establishment within V. americana beds in the Chesapeake Bay. However, ungerminated seeds were found to maintain high viability, especially at salinities of 10 psu that can have significant negative effects of shoot growth survival. This suggests that seeds may serve as a source of reproductive material for bed recovery after periods of drought or other stressful conditions in estuarine systems.  相似文献   

10.
Marathrum schiedeanum and Marathrum rubrum are annual Podostemaceae, thus their seeds are important to their dispersal and persistence in their habitat. We assessed the effect on germination of (1) light (white, red and far red) and darkness, (2) temperature (15, 20, 25, 30 °C and alternating 20/30 °C), (3) osmotic potential (0 to −0.8 MPa), (4) proximity to moisture sources and (5) seed storage. Seeds of M. schiedeanum and M. rubrum were non-dormant and had a high germination capacity (96%). Seeds were positive photoblastic; at 15 °C germination drop to zero, and germination rate was slower at 20 °C and at 20/30 °C than at 25 °C. A small proportion of seeds of both species germinated even at osmotic potentials as low as −0.6 MPa (11%) for M. rubrum and −0.8 MPa (70%) for M. schiedeanum. Seeds germinated only when near to the source of moisture (91.3–87.1% and 53.3–35.6% for M. schiedeanum and M. rubrum, respectively) and 2 years in dry storage did not modify their capacity to germinate. At the beginning of the rainy season, light and temperature in the rivers may be high enough for germination. The ability to germinate at low osmotic potential may be related to early germination during the rainy season. This may be because the seed mucilage assists in diffusion of water from the substrate to the seed. Both species germinated faster at −0.06 MPa, than in distilled water, which may indicate appropriate conditions for germination of these short-lived species.  相似文献   

11.
The effects of N and P enrichment were investigated on growth and physiological responses of dwarf Avicennia marina mangroves in a hypersaline (58 ± 8 psu) field site in Richards Bay, South Africa. It was hypothesized that at high salinities mangroves allocate more resources to roots than shoots, and that nutrient enrichment with N and P will shift resource allocation to shoots and enhance growth and productivity. In unvegetated areas of the dwarf zone, 1-year-old A. marina seedlings were planted in pots and enriched bimonthly with N, P, N + P, or remained unfertilized (control-C), and growth and morphology of plants were monitored for 2 years. Enrichment with N and N + P shifted resource allocation to shoots from 38% to 55%, and increased dry biomass accumulation by over 500%, compared to the control treatment. In the N and N + P treatments, plant height, number of leaves, leaf chlorophyll content and photosynthesis increased by over 50%, 330%, 30% and 30%, respectively, compared to the C and P treatments. Enrichment with N and N + P increased N concentrations in roots by over 60% (from 1.0 ± 0.1% to 1.6 ± 0.2% of dry mass) and in shoots by over 100% (from 1.3 ± 0.1% to 2.7 ± 02% of dry mass). Plants enriched with P alone were similar to those of the control. This study has demonstrated that dwarf A. marina in Richards Bay is N limited, and that N enrichment shifts resource allocation from roots to shoots and increases growth and productivity.  相似文献   

12.
The changes in the levels of growth regulating substances using the wheat coleoptile straight growth test were determined in the leaves of vernalized (flowering) and non-vernalized (non-flowering) plants of sugar-beet, cv. Poly-AG-Poland at two stages; the end of vernalization treatment (210 days from planting) and full-flowering stage. IAA was detected only in the extracts of the leaves of non-vernalized plants after210 days from planting. No inhibitory activity was detected, except in the case of the concentrated extract of the leaves of non-vernalized plants. This growth promoting zone was found at Rf 0.5–0.8 in the leaves of flowering plants after cold treatment and at flowering time. This zone of growth promoting action was suggested to have a major role in the flowering of sugar-beet.  相似文献   

13.
Ziziphus lotus (L.) Lam. is a deciduous shrub with intricately branched stems in the Rhamnaceae family. It's a dominant and economically important species widely distributed in active sand dunes in the southern desert of Tunisia. To provide basic information for its conservation and reintroduction, we studied the influence of environmental factors on seed germination patterns. The germination responses of seeds were determined over a wide range of constant temperatures (10–50 °C), polyethylene glycol (PEG)-6000 solutions of different osmotic potentials (0 to − 1 MPa) and burial depths (1–10 cm). Temperatures between 15 and 45 °C seem to be favorable for the germination of this species. Germination was inhibited by either an increase or decrease in temperature from the most suitable temperature found (35 °C). The highest germination percentages (100%) were obtained under control conditions without PEG, and increasing moisture stress progressively inhibited seed germination, which was less than 5% at − 1 MPa. When tested for germination in distilled water, after PEG treatments, seeds germinated to the same extent as when fresh. When seeds buried deeply, there was a significant decrease in seedling emergence percentage and rate. Seedlings of Z. lotus emerged well at depths of 1–2 cm and could not emerge when sand burial depth was > 4 cm.  相似文献   

14.
We experimentally determined the effects of water depth on seed germination and seedling growth and morphology, and we documented the transition from submerged to emergent plants in the white water lily, Nymphaea odorata. Seeds of N. odorata were germinated at 30, 60, and 90 cm water depth in outdoor mesocosms and percent germination and morphology measured after a month. The presence of self-seeded seedlings in pots at the same 3 water levels was also recorded over two years. To examine juvenile growth, seeds planted in soil were placed at the same mesocosm depths; germination and growth were monitored for three months, when the plants were harvested for morphological and biomass measurements. N. odorata germinated equally well in 30, 60 and 90 cm water; seedlings grew as submerged aquatics. After one month, seedlings in 90 cm water had less biomass than those in 30 cm (1.1 vs. 3.3 mg and 1.0 vs. 1.8 mg for different seed sources, respectively) and allocated relatively more biomass to shoots (97.5 vs. 67.8% and 73.1 vs. 58.0%, respectively). Seedlings in 60 cm water were intermediate. After 3 months of submerged growth, plant biomass remained less in 90 vs. 60 and 30 cm water (22.5 vs. 36.4 and 33.3 mg, respectively). Plants in 90 and 60 cm water had greater biomass allocation to shoots than plants in 30 cm water (85.7 and 72.6% vs. 64.4%, respectively) and produced larger laminae on longer petioles (lamina length = 33.3 vs. 25.2 mm in 90 vs. 30 cm; petiole length = 99.0 vs. 36.0 mm, respectively). After about 3 months, submerged plants produced floating leaves that had 39% shorter laminae but 267% to 1988% longer petioles than submerged leaves on the same plant. Lamina length to width allometric relations of submerged leaves were >1 at all water levels, distinguishing them from the equal allometry of adult floating leaves. The switch from production of submerged to emergent leaves resembles submergence-escape growth in other aquatics, but because the seedlings have been submerged throughout their life, submergence itself cannot be the stimulus to produce emergent leaves in these totally immersed plants. Our data show that N. odorata plants can establish from seeds in up to 90 cm water and that seedlings grow as submerged aquatics until they switch abruptly to production of floating leaves.  相似文献   

15.
Halogeton glomeratus (M. Bieb.) C.A. Mey., Lepidium latifolium Linn. and Peganum harmala Linn. are distributed in temperate salt playa habitats of Upper Hunza, Pakistan. Seeds were germinated under various salinity (0–500 mM NaCl), light (12 h-light:12 h-dark and 24 h-dark) and temperature (5/15, 10/20, 15/25, 20/30, and 25/35 °C, dark/light) regimes for 20 days to determine the optimal conditions for germination and recovery of seeds from these factors when exposed to less than optimal conditions. Seeds that failed to germinate in dark were transferred successively to 12 h-photoperiod, salinity to distilled water and from various temperature regimes to 20/30 °C, to determine the effect of these stresses and the ability of these seeds to recover respectively. Highest seed germination (H. glomeratus and L. latifolium: 100%; P. harmala: 80%) was obtained in non-saline control at 20/30 °C in 12 h-photoperiod, however, increase in salinity progressively inhibited seed germination. Seed germination of H. glomeratus and P. harmala was substantially inhibited and that of L. latifolium was prevented in dark. Salinity and dark treatments have a synergistic effect in inhibiting seed germination of all species. No seed of any species germinated at 5/15 °C; germination was substantially inhibited at 25/35 °C both for H. glomeratus and P. harmala while L. latifolium failed to germinate at 25/35 °C. Rate of germination also decreased with an increase in salinity at all temperature regimes but this effect was minimal at optimal temperature regime of 20/30 °C. After successive elimination of light, salinity and temperature stresses, final seed germination was identical to respective controls. The results indicate that seeds of these temperate halophytes could endure environmental stresses without losing viability and germinate readily when these stresses are removed. Under the extremely variable conditions of the playa habitat these species are highly opportunistic exploiting the windows of opportunity available during spring or early summer.  相似文献   

16.
We investigated the germination requirements of the species Stachys germanica L. subsp. bithynica (Boiss.) Bhattacharjee (Lamiaceae). We studied the effects of scarification, short-time moist chilling (+4 °C) for 15 and 30 days, and various doses of gibberellic acid (GA3; 0, 100, 150 and 250 ppm), Kinetin (KIN; 50 ppm) and a combination of 250 ppm GA3 and 50 ppm KIN. The hormone and moist chilling treatments were carried out under both continuous darkness (20 °C) and photoperiodic (20/10 °C; 12/12 h, respectively) conditions. Seeds failed to germinate in response to short-time moist chilling treatments with distilled water under both continuous darkness and photoperiodic conditions. Seeds were found to have dormancy. Treatments with GA3 or a combination of GA3 and KIN were successful at breaking seed dormancy. A maximum of 37% of the seeds germinated after GA3 application in all series. When only KIN was applied at a 50 ppm concentration, germination (12%) was found only with moist chilling for 30 days under continuous darkness. The highest germination rates were found in seeds treated with combination of 250 ppm GA3 and 50 ppm KIN. In the combination treatments, while the moist chilling treatments for 15 days resulted in 68 and 73% germination, respectively, these rates were up to 95% in the moist chilling treatments for 30 days under continuous darkness and photoperiodic conditions. Mean germination time (MGT) in GA3 and KIN combinations was lower than in other treatments. Scarification with 80% sulphuric acid did not promote germination. The characteristics of physiological dormancy of S. germanica ssp. bithynica seeds are consistent with conditions of existence in the in alpine habitat of this species.  相似文献   

17.
Global warming will increase heat waves, but effects of abrupt heat stress on shoot–root interactions have rarely been studied in heat-tolerant species, and abrupt heat-stress effects on root N uptake and shoot C flux to roots and soil remains uncertain. We investigated effects of a high-temperature event on shoot vs. root growth and function, including transfer of shoot C to roots and soil and uptake and translocation of soil N by roots in the warm-season drought-tolerant C4 prairie grass, Andropogon gerardii. We heated plants in the lab and field (lab = 5.5 days at daytime of 30 + 5 or 10 °C; field = 5 days at ambient (up to 32 °C daytime) vs. ambient +10 °C). Heating had small or no effects on photosynthesis, stomatal conductance, leaf water potential, and shoot mass, but increased root mass and decreased root respiration and exudation per g. 13C-labeling indicated that heating increased transfer of recently-fixed C from shoot to roots and soil (the latter likely via increased fine-root turnover). Heating decreased efficiency of N uptake by roots (uptake/g root), but did not affect total N uptake or the transfer of labeled soil 15N to shoots. Though heating increased soil temperature in the lab, it did not do so in the field (10 cm depth); yet results were similar for lab and field. Hence, acute heating affected roots more than shoots in this stress-tolerant species, increasing root mass and C loss to soil, but decreasing function per g root, and some of these effects were likely independent of direct effects from soil heating.  相似文献   

18.
The use of aquaculture systems to grow the seagrass Zostera marina (eelgrass) from seeds for restoration projects was evaluated through laboratory and mesocosm studies. Along the mid‐Atlantic coast of North America Z. marina seeds are shed from late spring through early summer, but seeds typically do not begin to germinate until the late fall. Fall is the optimal season to plant both seeds and shoots in this region. We conducted studies to determine if Z. marina seeds can be induced to germinate in the summer and seedlings grown in mesocosms to a size sufficiently large enough for out‐planting in the fall. Seeds in soil‐less culture germinated in the summer when held at 14°C, with percent germination increasing with lower salinities. Cold storage (4°C) of seeds prior to planting in sediments enhanced germination and seedling survival. Growth rates of seedlings were significantly higher in nutrient enriched estuarine sediments. Results from preliminary studies were used in designing a large‐scale culture project in which 15,000 shoots were grown and out‐planted into the Potomac River estuary in the Chesapeake Bay and compared with an equal number of transplanted shoots. These studies demonstrate that growing Z. marina from seeds is an alternative approach to harvesting plants from donor beds when vegetative shoots are required for restoration projects.  相似文献   

19.
This paper describes attempts to localize the site of perception of low temperatures (0-10°C) during thermoinduction in Thlaspi arvense L. Reproductive development (stem elongation and flower formation) was observed when shoots were cooled to 4°C for 4 weeks and then returned to 21°C while maintaining the roots constant 21°C. However, chilling the roots was ineffective for initiating reproductive development. The apparent site of perception of thermoinductive temperatures was further localized to the shoot tip (apex and immature leaves) by controlling the temperature of the shoot tip independently of the rest of the plant. Furthermore, excised apices regenerated flowering plants in organ culture only if they were subjected to a 4 week cold treatment. Grafting experiments also support the notion that the shoot tip or the apex is the site of perception of thermoinductive temperatures: noninduced shoot tips grafted onto bolting donors remained as vegetative rosettes. Paradoxically, it was found that the cells of the shoot tip are not the only ones capable of being thermoinduced. Shoots regenerated from leaf cuttings excised from thermoinduced plants exhibited all signs of reproductive development, while regenerated shoots from control leaves developed into vegetative rosettes. It is suggested that many cell types are capable of being thermoinduced and that the shoot tip may appear to be the site of perception of thermoinductive temperatures because structures associated with reproductive development originate from this tissue.  相似文献   

20.
It is important to understand the effects of environmental conditions during plant growth on longevity and temperature response of pollen. Objectives of this study were to determine the influence of growth temperature and/or carbon dioxide (CO2) concentration on pollen longevity and temperature response of peanut and grain sorghum pollen. Plants were grown at daytime maximum/nighttime minimum temperatures of 32/22, 36/26, 40/30 and 44/34 °C at ambient (350 μmol mol−1) and at elevated (700 μmol mol−1) CO2 from emergence to maturity. At flowering, pollen longevity was estimated by measuring in vitro pollen germination at different time intervals after anther dehiscence. Temperature response of pollen was measured by germinating pollen on artificial growth medium at temperatures ranging from 12 to 48 °C in incubators at 4 °C intervals. Elevated growth temperature decreased pollen germination percentage in both crop species. Sorghum pollen had shorter longevity than peanut pollen. There was no influence of CO2 on pollen longevity. Pollen longevity of sorghum at 36/26 °C was about 2 h shorter than at 32/22 °C. There was no effect of growth temperature or CO2 on cardinal temperatures (Tmin, Topt, and Tmax) of pollen in both crop species. The Tmin, Topt, and Tmax identified at different growth temperatures and CO2 levels were similar at 14.9, 30.1, and 45.6 °C, respectively for peanut pollen. The corresponding values for sorghum pollen were 17.2, 29.4, and 41.7 °C. In conclusion, pollen longevity and pollen germination percentage was decreased by growth at elevated temperature, and pollen developed at elevated temperature and/or elevated CO2 did not have greater temperature tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号