首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Aquatic Botany》2011,94(4):244-249
We explored the reproductive modes of Ulva intestinalis in the inner part of the Baltic Sea during three consecutive years by using five microsatellite loci to estimate the relative abundance of diploid sporophytes and haploid gametophytes. Our results suggest that both diploid sporophytes and haploid gametophytes occur regularly in the Baltic Sea. The ratio of haploid to diploid individuals changes with seasons. Sporophytes are more abundant than gametophytes throughout the year, but the proportion of haploids increases from 10% in early summer to 35% in September. The over-wintering takes primarily place as diploid spores released by sporophytes. The sporophytes appear to reproduce both sexually and asexually in the Baltic Sea, since clones were found for this life phase. The fraction of individuals which belonged to an apparent diploid clone was higher in spring (62%) than in autumn (33%). We also found evidence for asexual clones in haploid gametophytes. The presence of both diploid and haploid individuals and the pattern of genetic and genotypic diversity provide evidence of sexual reproduction in the Baltic Sea. Thus the sporophytes and gametophytes do not function as two reproductively separate units. Compared with many other algal species with a reduced reproductive cycle in low salinity, U. intestinalis differs by having a multitude of reproductive modes also in the brackish water Baltic Sea, which can in part explain the dynamic propagation and high adaptability of the species.  相似文献   

2.
The fouling green algae Enteromorpha intestinalis is a cosmopolitan benthic species, which causes green tides in many coastal areas and is used as an indicator species for eutrophication in the Baltic Sea area. The life cycle of E. intestinalis alternates between two morphologically identical reproductive stages, a haploid gametophyte phase and a diploid sporophyte phase. However, it also reproduces through asexual propagation. The reproductive cycles of E. intestinalis in the Baltic Sea and elsewhere are largely unknown. Here we report five polymorphic microsatellite markers developed from enriched genomic libraries. The number of alleles per locus ranged from 7 to 25.  相似文献   

3.
Jiang P  Qin S  Tseng CK 《Plant cell reports》2003,21(12):1211-1216
The seaweed Laminaria japonica (Phaeophyceae) has a two-generation life cycle consisting of haploid gametophytes and diploid sporophytes. Female and/or male gametophytes were transformed using particle bombardment and the histological LacZ assay was performed on sporophytes generated by either parthenogenesis or inbreeding. Female gametophyte-targeted transformation resulted in similar lower efficiencies in both parthenogenetic and zygotic sporophytes, and only a chimeric expression pattern was observed. Male gametophyte-targeted transformation led to a higher efficiency, with 3.5% of the zygotic sporophytes stained completely blue (all-blue), implying the integration of lacZ at the one-cell stage. Polymerase chain reaction analysis using primers specific for a lacZ-vector juncture fragment and subsequent blotting indicated the presence of the introduced gene in the sporophytes. The method reported here has a potential for seaweed transformation using spore-based bombardment followed by the developmental process.Abbreviations DPR Detected positive rate - ER Expression rateCommunicated by F. Sato  相似文献   

4.
Parthenogenetic sporophytes were obtained from three strains of Laminaria japonica Areschoug. These sporophytes grew to maturity in the sea, producine spores that all grew into female gametophytes. These female gametophytes gave rise to another generation of parthenogenetic sporophytes during the next year, so that by the year 1990 parthenogenetic sporophytes had been cultivated for 12, 9, and 7 generations, respectively, for the three strains. When female gametophytes from parthenogenetic sporophytes were combined with normal male gametophytes, normal sporophytes that reproduced and gave rise to both female and male gametophytes were obtained. The parthenogenetic sporophytes were shorter and narrower than the normal sporophytes of the same strain. Chromosome counts on mature sporophytes showed that normal sporophytes (from fertilized eggs) were diploid (2n = approximately 40) and that the spores they produced were haploid (n = approximately 20), while nuclei from both somatic and sporangial cells in parthenogenetic sporophytes were haploid. All gametophytes were haploid. Young sporophytes derived from cultures with both female and male gametophytes were diploid, while young, sporophytes obtained from female gametophytes from parthenogenetic sporophytes had haploid, diploid, or polyploidy chromosome numbers. Polyploidy was associated with abnormal cell shapes. The presence of haploid parthenogenetic sporophytes should be use in breeding kelp strains with useful characteristics, since the sporophyte phenotype is expressed from a haploid genotype which can be more readily selected.  相似文献   

5.
Polyploidization is thought to result in instant sympatric speciation, but several cases of hybrid zones between one of the parental species and its polyploid derivative have been documented. Previous work showed that diploid Sphagnum lescurii is an allopolyploid derived from the haploids S. lescurii (maternal progenitor) and S. subsecundum (paternal progenitor). Here, we report the results from analyses of a population where allodiploid and haploid S. lescurii co-occur and produce sporophytes. We tested (i) whether haploids and diploids form hybrid triploid sporophytes; (ii) how hybrid and nonhybrid sporophytes compare in fitness; (iii) whether hybrid sporophytes form viable spores; (iv) the ploidy of any viable gametophyte offspring from hybrid sporophytes; (v) the relative viability of sporelings derived from hybrid and nonhybrid sporophytes; and (vi) if interploidal hybridization results in introgression between the allopolyploid and its haploid progenitor. We found that triploid hybrid sporophytes do occur and are larger than nonhybrid sporophytes, but exhibit very low germination percentages and produce sporelings that develop more slowly than those from nonhybrid sporophytes. All sporophytes attached to haploid gametophytes were triploid and were sired by diploid males, but all sporophytes attached to diploid gametophytes were tetraploid. This asymmetric pattern of interploidal hybridization is related to an absence of haploid male gametophytes in the population. Surprisingly, all sporelings from triploid sporophytes were triploid, yet were genetically variable, suggesting some form of aberrant meiosis that warrants further study. There was limited (but some) evidence of introgression between allodiploid and haploid S. lescurii.  相似文献   

6.
We aimed to study the importance of hybridization between two cryptic species of the genus Ectocarpus, a group of filamentous algae with haploid–diploid life cycles that include the principal genetic model organism for the brown algae. In haploid–diploid species, the genetic structure of the two phases of the life cycle can be analysed separately in natural populations. Such life cycles provide a unique opportunity to estimate the frequency of hybrid genotypes in diploid sporophytes and meiotic recombinant genotypes in haploid gametophytes allowing the effects of reproductive barriers preventing fertilization or preventing meiosis to be untangle. The level of hybridization between E. siliculosus and E. crouaniorum was quantified along the European coast. Clonal cultures (568 diploid, 336 haploid) isolated from field samples were genotyped using cytoplasmic and nuclear markers to estimate the frequency of hybrid genotypes in diploids and recombinant haploids. We identified admixed individuals using microsatellite loci, classical assignment methods and a newly developed Bayesian method (XPloidAssignment), which allows the analysis of populations that exhibit variations in ploidy level. Over all populations, the level of hybridization was estimated at 8.7%. Hybrids were exclusively observed in sympatric populations. More than 98% of hybrids were diploids (40% of which showed signs of aneuploidy) with a high frequency of rare alleles. The near absence of haploid recombinant hybrids demonstrates that the reproductive barriers are mostly postzygotic and suggests that abnormal chromosome segregation during meiosis following hybridization of species with different genome sizes could be a major cause of interspecific incompatibility in this system.  相似文献   

7.
Jones VA  Dolan L 《Annals of botany》2012,110(2):205-212

Background

Almost all land plants develop tip-growing filamentous cells at the interface between the plant and substrate (the soil). Root hairs form on the surface of roots of sporophytes (the multicellular diploid phase of the life cycle) in vascular plants. Rhizoids develop on the free-living gametophytes of vascular and non-vascular plants and on both gametophytes and sporophytes of the extinct rhyniophytes. Extant lycophytes (clubmosses and quillworts) and monilophytes (ferns and horsetails) develop both free-living gametophytes and free-living sporophytes. These gametophytes and sporophytes grow in close contact with the soil and develop rhizoids and root hairs, respectively.

Scope

Here we review the development and function of rhizoids and root hairs in extant groups of land plants. Root hairs are important for the uptake of nutrients with limited mobility in the soil such as phosphate. Rhizoids have a variety of functions including water transport and adhesion to surfaces in some mosses and liverworts.

Conclusions

A similar gene regulatory network controls the development of rhizoids in moss gametophytes and root hairs on the roots of vascular plant sporophytes. It is likely that this gene regulatory network first operated in the gametophyte of the earliest land plants. We propose that later it functioned in sporophytes as the diploid phase evolved a free-living habit and developed an interface with the soil. This transference of gene function from gametophyte to sporophyte could provide a mechanism that, at least in part, explains the increase in morphological diversity of sporophytes that occurred during the radiation of land plants in the Devonian Period.  相似文献   

8.
Macroalgal blooms occur worldwide and have the potential to cause severe ecological and economic damage. Narragansett Bay, RI is a eutrophic system that experiences summer macroalgal blooms composed mostly of Ulva compressa and Ulva rigida, which have biphasic life cycles with separate haploid and diploid phases. In this study, we used flow cytometry to assess ploidy levels of U. compressa and U. rigida populations from five sites in Narragansett Bay, RI, USA, to assess the relative contribution of both phases to bloom formation. Both haploid gametophytes and diploid sporophytes were present for both species. Sites ranged from a relative overabundance of gametophytes to a relative overabundance of sporophytes, compared to the null model prediction of √2 gametophytes: 1 sporophyte. We found significant differences in cell area between ploidy levels for each species, with sporophyte cells significantly larger than gametophyte cells in U. compressa and U. rigida. We found no differences in relative growth rate between ploidy levels for each species. Our results indicate the presence of both phases of each of the two dominant bloom forming species throughout the bloom season, and represent one of the first studies of in situ Ulva life cycle dynamics.  相似文献   

9.
This paper addresses the phenology of a Dictyota dichotoma population from the North Patagonian coasts of Argentina. The morphology of the individuals was characterized, and analyses of the temporal variations of vegetative features, diploid and haploid life cycle generations and sex ratios are provided. Individuals, represented by growing sporophytes and gametophytes, occurred simultaneously throughout the year. Morphological variables showed temporal variation, except the width and height of medullary cells, which did not vary between seasons. All vegetative variables were significantly correlated with daylength. Besides, frond length, frond dry mass and apical and basal branching angles were significantly correlated with seawater temperatures. Vegetative thalli were less abundant than haploid and diploid thalli. Sporophytes were less abundant than male and female gametophytes. Male gametophytes dominated in May, August, October and January, and female gametophytes were more abundant in September, November, December, February and March. The formation of female gametangia showed a significant correlation with daylength, and the highest number of gametangia was registered in spring. In general, the male/female sex ratio varied between 1:2 and 1:1. Apical regions were more fertile than basal regions. Our data about frequency in the formation of reproductive structures and male/female ratios are the first recorded in the Dictyota genus and thus could not be compared with populations from other regions of the world. Significant morphological variation was observed in thalli of both life cycle generations, regarding length and dry mass, number of primary branches and branching basal angle. In general, all variables analyzed varied seasonally except cortical cell width.  相似文献   

10.
Martínez  Enrique A. 《Hydrobiologia》1996,326(1):205-211
Micropopulation differences in phenol content between intertidal and subtidal individuals of the kelp Lessonia nigrescens were found. Subtidal plants showed: (1) significantly higher phenol content than intertidal individuals, in vegetative and reproductive tissues, (2) intra-plant differences, with higher content in apical frond tissues, (3) higher resistance to consumption by herbivorous fishes. The microscopic progeny of subtidal plants showed the same trend as adult plants: (1) haploid spores from subtidal plants had higher phenol content than spores from intertidal individuals, and (2) the microscopic sporophytes derived from subtidal spores and gametophytes were less consumed by herbivorous snails (Tegula tridentata) than those derived from intertidal plant propagules. No increase in phenol content was detected after mechanical injury to experimental fronds, or after transplantation to the subtidal environment.In addition to the absence of inducible responses, the different phenol content between intertidal and subtidal individuals, in adult diploid plants and also in the haploid progeny, suggests that both environments differ someway enough to fix the mentioned features on the plants of Lessonia nigrescens. It is likely that the differences in herbivory between the two distributional extremes contributed to the observed pattern.  相似文献   

11.
An in vitro method is described for producing ostrich fern (Matteuccia struthiopteris (L.) Todaro) polyploids from mature sporophytes as a possible means of plant improvement in this economically important fern species. The procedure is based on rejuvenating adult sporophytes (2n) to enable the aposporous production of diploid (2n) gametophytes, and then mating the gametophytes to produce tetraploid (4n) sporophytes. The adult sporophytes were rejuvenated by culturing excised shoot tips for a minimum of three months in a liquid medium (Murashige and Skoog salts) under conditions of extreme carbohydrate deprivation (0.01% sucrose). Apospory was induced by culturing leaves excised from the rejuvenated shoots for two months on a semi-solid medium lacking sucrose, resulting in the production of diploid gametophytes. The gametophytes were transferred to fresh medium and grown to sexual maturity for one or two months, then floated on the surface of a liquid medium containing 0.01% sucrose for up to two months to promote opening of the sex organs. Subsequent self-fertilization resulted in the successful production of tetraploid sporophytes in 11 of the 14 diploid clones in which polyploidization was attempted. Tetraploids (4n=156) were confirmed by cytological examination. This method permits polyploidization of mature, fully characterized plants.  相似文献   

12.
The evolutionary stability of haploid–diploid life cycles is still controversial. Mathematical models indicate that niche differences between ploidy phases may be a necessary condition for the evolution and maintenance of these life cycles. Nevertheless, experimental support for this prediction remains elusive. In the present work, we explored this hypothesis in natural populations of the brown alga Ectocarpus. Consistent with the life cycle described in culture, Ectocarpus crouaniorum in NW France and E. siliculosus in SW Italy exhibited an alternation between haploid gametophytes and diploid sporophytes. Our field data invalidated, however, the long‐standing view of an isomorphic alternation of generations. Gametophytes and sporophytes displayed marked differences in size and, conforming to theoretical predictions, occupied different spatiotemporal niches. Gametophytes were found almost exclusively on the alga Scytosiphon lomentaria during spring whereas sporophytes were present year‐round on abiotic substrata. Paradoxically, E. siliculosus in NW France exhibited similar habitat usage despite the absence of alternation of ploidy phases. Diploid sporophytes grew both epilithically and epiphytically, and this mainly asexual population gained the same ecological advantage postulated for haploid–diploid populations. Consequently, an ecological interpretation of the niche differences between haploid and diploid individuals does not seem to satisfactorily explain the evolution of the Ectocarpus life cycle.  相似文献   

13.
A mutant stock of the fern Ceratopteris has been derived from an inbreeding study following an interspecific hybridization between two diploid species. The mutant is characterized by gametophytes that produce non-functional spermatozoids and are incapable of selfing. Sporophytes develop apogamously from the mutant gametophytes and, although they are initially haploid and sterile, portions of the fronds later become doubled somatically and behave like tissues of sexually derived homozygous sporophytes. The mutant segregates from sporophytes in a 1:1 ratio when crosses are made with wild type gametophytes. Certain aspects of the behavior are similar to those seen in some naturally occurring apomictic ferns.  相似文献   

14.
This study aimed to (1) assess the present depth distribution of Fucus vesiculosus in the Baltic Sea and evaluate differences between districts and (2) assess long-term and recent changes in depth distribution and evaluate reasons for such changes. This was done through compilation and analysis of existing data (3356 obs.). Depth limits were shallowest in the Kattegat, the Danish Belts and the Øresund (∼1.5 m on average), located at the entrance of the Baltic Sea and markedly deeper in the central and inner parts of the Baltic (up to ∼4.5 m on average). This increase in depth limits to some extent matched the decline in salinity and may in part be explained by reduced competition when species diversity decreases successively along the Baltic salinity gradient. In the central and inner Baltic Sea, Secchi depths explained part of the variation (16%) in depth limits and the majority (85%) of the variation in maximum attainable depth limits whereas at the entrance of the Baltic Secchi depths explained a negligible part of the variation (∼1%). In most districts, depth limits moved upwards during the 20th century. In many cases this happened during or shortly after the 1960s/1970s, and was most likely due to eutrophication.  相似文献   

15.
The variation in eye spectral sensitivities of the closely related mysid species Mysis relicta Lovén, 1862 and Mysis salemaai Audzijonyt? and Väinölä, 2005 was studied in sympatric and allopatric populations from the brackish Baltic Sea and from two lakes representing different light environments. In the Baltic Sea the maximum spectral sensitivity of M. relicta, measured by the electroretinogram (ERG) technique, was shifted by ca 20 nm to longer wavelengths than in M. salemaai (564 and 545 nm, respectively). The spectral sensitivity of M. salemaai was closer to that of marine mysid species, which is consistent with its broader euryhalinity and the presumed longer brackish-water history. The species-specific sensitivities in the Baltic Sea were not affected by regional differences in light environments. In two lake populations of M. relicta, the spectral sensitivity was further shifted by ca 28 nm towards the longer wavelengths compared with the conspecific Baltic Sea populations. The spectral sensitivities in the four M. relicta populations were not correlated to the current light conditions, but rather to the phylogeographic histories and fresh- vs. brackish-water environments. A framework to further explore factors affecting spectral sensitivities in Mysis is suggested.  相似文献   

16.
Four diploid plants and four tetraploid plants ofPhegopteris decursive-pinnata were investigated for determination of the reproductive characteristics of their gametophytes and two major features were recognized. First, gametophytes of the diploids showed an ontogenetic sequence of gametangium formation which is unfavorable for intragametophytic selfing, whereas those of the tetraploids showed that favorable for intragametophytic selfing. Second, 41 to 72% of the isolated gametophytes of the diploids produced sporophytes in the intragmetophytic selfing tests, whereas all of the isolated gametrophytes of the tetraploids produced sporophytes in the tests. Based on these developmental and genetic features of gametophytes, the dissimilar mating systems of the diploids and the tetraploids of this species are discussed.  相似文献   

17.
Plerocercoids of the tapeworm Ligula intestinalis (Cestoda: Bothriocephalidea) have been reported to inhibit gametogenesis of their intermediate fish hosts. However, mechanistic studies are rare and the proximate cues leading to impaired reproduction still remain unknown. In the present study we investigated the effects of infection by L. intestinalis on reproductive parameters of roach (Rutilus rutilus, Cyprinidae), a common fish host of this parasite. Field studies on roach demonstrated that in both genders infection prevented gonad development. As revealed by quantitative PCR, infection was accompanied by essentially lower pituitary expression of follicle-stimulating hormone β-subunit (FSHβ) and luteinizing hormone β-subunit (LHβ) mRNA compared with uninfected roach, providing clear evidence for gonadotropin-insufficiency as the cause of arrested gametogenesis. Under controlled laboratory conditions infected roach showed lower mRNA levels of FSHβ but not of LHβ, despite histology revealing similar gonad stages as in uninfected conspecifics. These findings indicate the involvement of FSH rather than LH in mediating effects of infection early during gonad development in roach. Moreover, the impact of L. intestinalis on reproductive parameters of roach appeared to be independent of the parasite burden. Together, these data provide valuable information on the role of FSH and LH as mediators of parasite-induced sterilization in a vertebrate and implicate the selective inhibition of host reproduction by L. intestinalis as a natural source of endocrine disruption in fish.  相似文献   

18.
Gametophyte strains originating from indigenous sporophytes of Undaria pinnatifida (Harvey) Suringar in Iwate Prefecture, Northeast Japan, were maintained for 9–10 months at 45 μmol photons m−2 s−1. Before cryopreservation in liquid nitrogen for more than 12 h (1–14 days) using a two-step cooling method with a mixture of cryoprotectants (10% l-proline and 10% glycerol), these were pre-incubated for 2, 4 and 8 months at 15 μmol photons m−2 s−1. After 1 week of thawing, no surviving gametophytes were detected in the strains without pre-incubation, but both the female and male gametophytes, pre-incubated for more than 4 months, showed high survival rates (43–60% for females and 64–100% for males). This revealed the induction of freezing tolerance by incubation at low irradiance. Thereafter, sporophytes derived from cryopreserved gametophytes and subcultured gametophytes, stored under pre-incubation conditions, were formed from the strain, and a morphological comparison was conducted with 10 characters (stipe length, stipe wet weight, blade length, blade wet weight, blade width, incision depth, blade thickness, sporophyll length, sporophyll wet weight, and sporophyll width). The morphology of the sporophytes formed from the cryopreserved gametophytes corresponded well with that of the subcultured gametophytes from the same strain. The results suggest that the cryopreservation method is applicable for preserving culture stocks of U. pinnatifida to be used in mariculture.  相似文献   

19.
The link between life history traits and mating systems in diploid organisms has been extensively addressed in the literature, whereas the degree of selfing and/or inbreeding in natural populations of haploid–diploid organisms, in which haploid gametophytes alternate with diploid sporophytes, has been rarely measured. Dioecy has often been used as a proxy for the mating system in these organisms. Yet, dioecy does not prevent the fusion of gametes from male and female gametophytes originating from the same sporophyte. This is likely a common occurrence when spores from the same parent are dispersed in clumps and recruit together. This pattern of clumped spore dispersal has been hypothesized to explain significant heterozygote deficiency in the dioecious haploid–diploid seaweed Chondrus crispus. Fronds and cystocarps (structures in which zygotes are mitotically amplified) were sampled in two 25 m2 plots located within a high and a low intertidal zone and genotyped at 5 polymorphic microsatellite loci in order to explore the mating system directly using paternity analyses. Multiple males sired cystocarps on each female, but only one of the 423 paternal genotypes corresponded to a field-sampled gametophyte. Nevertheless, larger kinship coefficients were detected between males siring cystocarps on the same female in comparison with males in the entire population, confirming restricted spermatial and clumped spore dispersal. Such dispersal mechanisms may be a mode of reproductive assurance due to nonmotile gametes associated with putatively reduced effects of inbreeding depression because of the free-living haploid stage in C. crispus.  相似文献   

20.
Why mating types exist at all is subject to much debate. Among hypotheses, mating types evolved to control organelle transmission during sexual reproduction, or to prevent inbreeding or same-clone mating. Here I review data from a diversity of taxa (including ciliates, algae, slime molds, ascomycetes, and basidiomycetes) to show that the structure and function of mating types run counter the above hypotheses. I argue instead for a key role in triggering developmental switches. Genomes must fulfill a diversity of alternative programs along the sexual cycle. As a haploid gametophyte, an individual may grow vegetatively (through haploid mitoses), or initiate gametogenesis and mating. As a diploid sporophyte, similarly, it may grow vegetatively (through diploid mitoses) or initiate meiosis and sporulation. Only diploid sporophytes (and not haploid gametophytes) should switch on the meiotic program. Similarly, only haploid gametophytes (not sporophytes) should switch on gametogenesis and mating. And they should only do so when other gametophytes are ready to do the same in the neighborhood. As argued here, mating types have evolved primarily to switch on the right program at the right moment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号