首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
With the successful clinical trials, multifunctional glycoprotein bovine lactoferrin is gaining attention as a safe nutraceutical and biologic drug targeting cancer, chronic-inflammatory, viral and microbial diseases. Interestingly, recent findings that human lactoferrin oligomerizes under simulated physiological conditions signify the possible role of oligomerization in the multifunctional activities of lactoferrin molecule during infections and in disease targeting signaling pathways. Here we report the purification and physicochemical characterization of high molecular weight biomacromolecular complex containing bovine lactoferrin (≥250 kDa), from bovine colostrum, a naturally enriched source of lactoferrin. It showed structural similarities to native monomeric iron free (Apo) lactoferrin (∼78–80 kDa), retained anti-bovine lactoferrin antibody specific binding and displayed potential receptor binding properties when tested for cellular internalization. It further displayed higher thermal stability and better resistance to gut enzyme digestion than native bLf monomer. High molecular weight bovine lactoferrin was functionally bioactive and inhibited significantly the cell proliferation (p<0.01) of human breast and colon carcinoma derived cells. It induced significantly higher cancer cell death (apoptosis) and cytotoxicity in a dose-dependent manner in cancer cells than the normal intestinal cells. Upon cellular internalization, it led to the up-regulation of caspase-3 expression and degradation of actin. In order to identify the cutting edge future potential of this bio-macromolecule in medicine over the monomer, its in-depth structural and functional properties need to be investigated further.  相似文献   

2.
Human whole saliva induces aggregation of Streptococcus mutans cells via an interaction between a surface protein antigen (PAc) of the organism and salivary agglutinin. Bovine milk inhibits the saliva-induced aggregation of S. mutans. In this study, the milk component that possesses inhibitory activity against this aggregation was isolated and found to be lactoferrin. Surface plasmon resonance analysis indicated that bovine lactoferrin binds more strongly to salivary agglutinin, especially to high molecular mass glycoprotein, which is a component of the agglutinin, than to recombinant PAc. The binding of bovine lactoferrin to salivary agglutinin was thermostable, and the optimal pH for binding was 4.0. To identify the saliva-binding region of bovine lactoferrin, 11 truncated bovine lactoferrin fragments were constructed. A fragment corresponding to the C-terminal half of the lactoferrin molecule had a strong inhibitory effect on the saliva-induced aggregation of S. mutans, whereas a fragment corresponding to the N-terminal half had a weak inhibitory effect. Seven shorter fragments corresponding to lactoferrin residues 473-538 also showed a high ability to inhibit the aggregation of S. mutans. These results suggest that residues 473-538 of bovine lactoferrin are important in the inhibition of saliva-induced aggregation of S. mutans.  相似文献   

3.
Lactoferrin, a major whey protein of human milk, is considered as growth promoter for bifidobacteria, the predominant microorganisms of human intestine. In the present study, in vitro growth promotion and cell binding ability of bovine lactoferrin to several strains of Bifidobacterium longum have been demonstrated. A dose-dependent as well as strain-dependent growth promotion effect by lactoferrin was observed. Cell binding ability of lactoferrin was inspected under an inverted confocal laser scanning microscope by incubation bacterial cells with biotinylated bovine lactoferrin and FITC-conjugated avidin. Fluorescence staining showed bovine lactoferrin binding to all tested strains. A lactoferrin-binding protein with a molecular weight of approximately 67 kDa was also detected in the extracted membrane and cytosolic fraction of each B. longum strain by far-Western blot technique using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin. Based on these results, we suggest that existence of lactoferrin-binding protein could be a common characteristic in bifidobacteria. It can also be hypothesized that lactoferrin-binding protein in bifidobacteria is not only involved in growth stimulation mechanism but also could play different roles.  相似文献   

4.
Dong ZY  Zhang YZ 《Biotechnology letters》2006,28(16):1285-1292
cDNA encoding lactoferrin from yak was isolated by RT-PCR and then sequenced. The cloned cDNA (2127 bp) encodes a 709 amino acid precursor molecule of yak lactoferrin with a signal peptide of 19 amino acids. The yak lactoferrin cDNA was expressed in Pichia pastoris. The recombinant protein, purified by Ni-NTA affinity column, had a molecular weight of 76 kDa and reacted with an antibody raised against native bovine lactoferrin. The iron-binding behavior and antimicrobial activity of the purified protein indicated that it was correctly folded and functional.  相似文献   

5.
In the present study, lactoferrin binding to bifidobacteria and detection of lactoferrin-binding protein in membrane fractions of several bifidobacteria have been demonstrated. This is the first report showing the binding of bovine lactoferrin to four Bifidobacterium spp. (B. infantis, B. breve, B. bifidum, B. longum) incubated with biotinylated lactoferrin and fluorescein conjugated-avidin and observed under an inverted confocal laser scanning microscope. Fluorescence staining showed lactoferrin binding at the pole of the bacterial cells. A lactoferrin-binding protein with a molecular weight of approximately 67 kDa was also detected in the membrane fraction of Bifidobacterium spp. by far western blotting technique using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin. Based on the results of this and previously reported studies, we suggest that binding of lactoferrin to Bifidobacterium longum is strain-dependent.  相似文献   

6.
We have determined that the major iron-binding and DNA-binding protein in porcine colostral whey is lactoferrin. This lactoferrin was purified to homogeneity in one chromatographic step using immobilized single-stranded DNA-agarose. Although different in chromatographic behavior from human lactoferrin, the porcine lactoferrin purified in this manner was shown to be homogeneous by high-performance ion-exchange chromatography (Mono-S), immobilized metal ion (Cu2+) affinity chromatography, size-exclusion chromatography (TSK-4000SW), and reverse-phase (phenyl) chromatography. Electrophoresis on SDS-polyacrylamide gradient (10-20%) gels under reducing conditions showed the purified lactoferrin to be a single protein (silver-stained) of 78 kDa. Apolactoferrin purified in this manner bound iron and displayed a UV/VIS absorption spectrum indistinguishable from that of human lactoferrin. The molar absorption coefficient of hololactoferrin was 3.86 x 10(3) M-1 at 465 nm and 1.08 x 10(5) M-1 at 280 nm. Affinity elution analyses of the purified lactoferrin on immobilized DNA revealed that the affinity of this protein for DNA was independent of bound iron. Porcine lactoferrin was recognized by antibodies directed against human lactoferrin and bovine lactoferrin. The amino acid composition and N-terminal amino acid sequence analysis (30 residues) revealed a high degree of sequence homology with human, equine and bovine lactoferrin. These results demonstrate the effectiveness of immobilized DNA as a rapid and simple lactoferrin purification procedure and demonstrate the presence of a lactoferrin in porcine colostral whey with a high degree of sequence homology to human lactoferrin.  相似文献   

7.
Bovine lactoferrin catalyzes the hydrolysis of synthetic substrates (i.e., Z-aminoacyl-7-amido-4-methylcoumarin). Values of Km and kcat for the bovine lactoferrin catalyzed hydrolysis of Z-Phe-Arg-7-amido-4-methylcoumarin are 50 microM and 0.03 s(-1), respectively, the optimum pH value is 7.5 at 25 degrees C. The bovine lactoferrin substrate specificity is similar to that of trypsin, while the hydrolysis rate is several orders of magnitude lower than that of trypsin. The bovine lactoferrin catalytic activity is irreversibly inhibited by the serine-protease inhibitors PMSF and Pefabloc. Moreover, both iron-saturation of the protein and LPS addition strongly inhibit the bovine lactoferrin activity. Interestingly, bovine lactoferrin undergoes partial auto-proteolytic cleavage at positions Arg415-Lys416 and Lys440-Lys441. pKa shift calculations indicate that several Ser residues of bovine lactoferrin display the high nucleophilicity required to potentially catalyze substrate cleavage. However, a definitive identification of the active site awaits further studies.  相似文献   

8.
Lactoferrin, a non-heme iron-binding protein was isolated from pig neutrophils. The purification procedure included initial extraction of the protein in the presence of cetyltrimethylammonium bromide followed by chromatography on carboxymethyl-cellulose and Sephadex G-100. The thus obtained protein was found to be homogeneous on polyacrylamide gel (PAAG) electrophoresis at acidic values of pH. PAAG electrophoresis in the presence of sodium dodecyl sulfate revealed a single component with a molecular weight of 75 000-80 000. The resulting protein is capable of binding two atoms of iron molecule. The absorbance spectra for the pig neutrophil lactoferrin are identical to those for cow milk lactoferrin in the visible region and have a maximum at 465 nm. The amino acid composition of pig lactoferrin was determined. Isoelectric focusing of the protein obtained in a PAAG stabilized pH gradient revealed a component with pI of about 6.8. A single precipitin line was observed with rabbit antipig lactoferrin when examined by immunodiffusion. No immunological cross-reactions were observed between pig lactoferrin and bovine lactoferrin.  相似文献   

9.
Hwang SA  Kruzel ML  Actor JK 《Biochimie》2009,91(1):76-85
The current vaccine for tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is an attenuated strain of Mycobacterium bovis bacillus Calmette-Guerin (BCG). BCG has proven to be effective in children, however, efficacy wanes in adulthood. Lactoferrin, a natural protein with immunomodulatory properties, is a potential adjuvant candidate to enhance efficacy of BCG. These studies define bovine lactoferrin as an enhancer of the BCG vaccine, functioning in part by modulating macrophage ability to present antigen and stimulate T-cells. BCG-infected bone marrow derived macrophages (BMMs) cultured with bovine lactoferrin increased the number of MHC II(+) expressing cells. Addition of IFN-gamma and lactoferrin to BCG-infected BMMs enhanced MHC II expressiona dna increased the ratio of CD86/CD80. Lactoferrin treated BCG-infected BMMs were able to stimulate an increase in IFN-gamma production from presensitized CD3(+) splenocytes. Together, these results demonstrate that bovine lactoferrin is capable of modulating BCG-infected macrophages to enhance T-cell stimulation through increased surface expression of antigen presentation and co-stimulatory molecules, which potentially explains the observed in vivo bovine lactoferrin enhancement of BCG vaccine efficacy to protect against virulent MTB infection.  相似文献   

10.
Characterization of the infection-responsive bovine lactoferrin promoter   总被引:7,自引:0,他引:7  
Zheng J  Ather JL  Sonstegard TS  Kerr DE 《Gene》2005,353(1):107-117
  相似文献   

11.
Bovine lactoferrin is an iron-binding protein present in mammary gland secretions. The exposure of Streptococcus agalactiae to bovine lactoferrin resulted in the binding of this protein to all the 12 strains of bovine origin tested, and also, although to a lesser degree, to the five tested strains of human origin. The interaction of lactoferrin with one high-binding bovine strain (24/60, the prototype NT/X strain) was studied. Binding was time-dependent, dose-dependent, and saturable. The binding of lactoferrin was slightly affected by cultivation conditions, and appeared to be heat-stable. The binding of biotinylated lactoferrin was inhibited by unlabelled lactoferrin but not by bovine serum albumin.  相似文献   

12.
Blood and seminal plasma of brown trout Salmo trutta fario were analyzed for their iron binding potential adopting two different methods. Seminal plasma showed an iron binding capacity that was retained even if samples were exposed at acid pH, similarly to mammalian lactoferrin that binds ferric iron also at acid pH. This suggests that the iron binding capacity is determined by a factor having a lactoferrin-like activity. Moreover, trout seminal plasma proteins were also analyzed in their pattern by sodium dodecyl sulphate polyacrylamide gel elecrophoresis (SDS-PAGE) and electroblotted onto nitrocellulose membrane. When seminal plasma was subjected to immunoblotting using goat anti-bovine lactoferrin antibodies as a probe, only a single band having an apparent molecular weight of around 80 kDa was specifically detected, showing that this protein has homology with bovine lactoferrin.  相似文献   

13.
Herein we review commercial bovine lactoferrin quality issues by describing an example of industrial production, the current status of global quality standardization, and quality-activity concerns for further discussion. Morinaga Milk Industry has been industrially producing bovine lactoferrin in Milei GmbH, Germany, since 1989. We delineate its production and quality as an example of safe and high-quality manufacturing. Currently, global standardization in the quality of bovine lactoferrin is progressing through Novel Food and GRAS in the EU and USA, respectively. Novel Food was applied or notified to seven lactoferrin manufacturers and GRAS was notified to three manufacturers, two of which are for infant use and one is for adult use, by the end of 2017. The specifications of these regulations are relatively high, including more than 95% lactoferrin purity in protein, which means that such companies can supply relatively high-grade lactoferrin. There appear to be several concerns regarding lactoferrin quality affecting activities, including contamination of lipopolysaccharide (LPS) and angiogenin, purity, and degradation of lactoferrin sample. Although LPS is immunologically toxic when invading the body, it is distributed normally in foods and the gut. However, an industrial lactoferrin sample may contain LPS at a maximum LPS/lactoferrin molecule ratio?=?1/1724, which means 99.9% of the lactoferrin molecule is LPS-free. It is difficult to speculate that LPS contained in a lactoferrin sample affects its activities. Finally in order to achieve good and reproducible results, we make proposals to researchers a use of high-grade lactoferrin, careful storage, and indication the manufacturers’ names and specifications in the paper.  相似文献   

14.
AIMS: To characterize the effect of bovine lactoferrin and lactoferricin B against feline calicivirus (FCV), a norovirus surrogate and poliovirus (PV), as models for enteric viruses. METHODS AND RESULTS: Crandell-Reese feline kidney (CRFK) cells were used for the propagation of FCV and monkey embryo kidney (MEK) cells for PV. The assays included visual assessment of cell lines for cytopathic effects and determination of the percentage cell death using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium] dye reduction assay. Incubation of bovine lactoferrin with CRFK cells either prior to or together with FCV inoculation substantially reduced FCV infection. In contrast, the interference of lactoferrin with the infection of cells with PV was demonstrated only when lactoferrin was present with cell lines and virus for the entire assay period. Using indirect immunofluorescence, lactoferrin was detected on the surface of both CRFK and MEK cells, suggesting that the interference of viral infection may be attributed to lactoferrin binding to the surfaces of susceptible cells, thereby preventing the attachment of the virus particles. Lactoferricin B, a cationic antimicrobial peptide derived from the N-terminal domain of bovine lactoferrin, reduced FCV but not PV infection. CONCLUSION: Lactoferrin was shown to interfere with the infection of cells for both FCV and PV. However, lactoferricin B showed no interference of infection with PV and interference with infection for FCV required the presence of lactoferricin B together with the cell line and virus. SIGNIFICANCE AND IMPACT OF THE STUDY: An in vitro basis is provided for the effects of bovine lactoferrin and lactoferricin B in moderating food-borne infections of enteric viruses.  相似文献   

15.
Porphyromonas gingivalis possesses a hemoglobin receptor (HbR) protein on the cell surface as one of the major components of the hemoglobin utilization system in this periodontopathogenic bacterium. HbR is intragenically encoded by the genes of an arginine-specific cysteine proteinase (rgpA), lysine-specific cysteine proteinase (kgp), and a hemagglutinin (hagA). Here, we have demonstrated that human lactoferrin as well as hemoglobin have the abilities to bind purified HbR and the cell surface of P. gingivalis through HbR. The interaction of lactoferrin with HbR led to the release of HbR from the cell surface of P. gingivalis. This lactoferrin-mediated HbR release was inhibited by the cysteine proteinase inhibitors effective to the cysteine proteinases of P. gingivalis. P. gingivalis could not utilize lactoferrin for its growth as an iron source and, in contrast, lactoferrin inhibited the growth of the bacterium in a rich medium containing hemoglobin as the sole iron source. Lactoferricin B, a 25-amino acid-long peptide located at the N-lobe of bovine lactoferrin, caused the same effects on P. gingivalis cells as human lactoferrin, indicating that the effects of lactoferrin might be attributable to the lactoferricin region. These results suggest that lactoferrin has a bacteriostatic action on P. gingivalis by binding HbR, removing it from the cell surface, and consequently disrupting the iron uptake system from hemoglobin.  相似文献   

16.
Examination of bovine lactoferrin binding to bifidobacteria   总被引:1,自引:0,他引:1  
In the present study, lactoferrin binding to bifidobacteria and detection of lactoferrin-binding protein in membrane fractions of several bifidobacteria have been demonstrated. This is the first report showing the binding of bovine lactoferrin to four Bifidobacterium spp. (B. infantis, B. breve, B. bifidum, and B. longum) incubated with biotinylated lactoferrin and fluorescein-conjugated avidin and observed under an inverted confocal laser scanning microscope. Fluorescence staining showed lactoferrin binding at the pole of the bacterial cells. A lactoferrin-binding protein with a molecular weight of approximately 67 kDa was also detected in the membrane fraction of Bifidobacterium spp. by far-western blotting technique using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin. Based on the results of this and previously reported studies, we suggest that binding of lactoferrin to Bifidobacterium longum is strain dependent. Published in Russian Prikladnaya Biokhimiya i Mikrobiologiya, 2008, Vol. 44, No. 5, pp. 529–532.  相似文献   

17.
Lactoferrin is an iron-binding glycoprotein that belongs to the transferrin family. Recent studies in vitro and in vivo suggest that lactoferrin is a potential therapeutic agent for wound healing. We have shown that both bovine and human lactoferrin enhance the collagen gel contractile activity of WI-38 human fibroblasts. The collagen gel contraction is considered as an in vitro model for reorganization of the collagen matrix during the wound healing process. The elevation of collagen gel contractile activity induced by lactoferrin was accompanied by activation of extracellular-regulated kinase (ERK) 1/2 and myosin light chain kinase (MLCK), and subsequent elevation of myosin light chain (MLC) phosphorylation. The effects of lactoferrin on collagen gel contraction and the activation of the signaling pathway were dependent on the expression of low-density lipoprotein receptor - related protein (LRP) - 1 in the fibroblasts. LRP-1 is known as an endocytosis receptor and is involved in the cellular uptake of diverse ligands, including lactoferrin. In addition, LRP-1 acts as a signaling lactoferrin receptor in mammalian cells by converting the lactoferrin-binding signal into the activation of the intracellular signaling pathway. This property was found to be independent of the endocytic function of LRP-1, as seen in osteoblast-like cells.  相似文献   

18.
Comparative antimicrobial activity of lactoferrins from various sources (native lactoferrin from Laprot, human hololactoferrin, recombinant human lactoferrin isolated from the cultural medium of permissive cell culture transfected using pseudoadenovirus nanostructure with the human lactoferrin gene, and native bovine lactoferrin) was studied to prove the possibility of their use for development of antimicrobial drugs. It was shown that all the substances were active against the Bacillus standard strains. The antibacterial activity was almost independent of the degree of saturation the lactoferrin molecules with Fe3+. The native human lactoferrin was more active than hololactoferrin against Candida when evaluated by the minimum inhibitory concentration (MIC). Fe(3+)-Non aturated recombinant human lactoferrin demonstrated the antimicrobial activity (by MIC) similar to that of the native human lactoferrin. The results showed that native and recombinant human lactoferrins might be used for the development of intravenous and intracavitary dosage forms, while the native bovine lactoferrin could be useful in development of oral drugs.  相似文献   

19.
Lactoferrin is a member of the transferrin family of iron-binding proteins with a number of properties, including antibacterial activity against a broad spectrum of Gram-negative and Gram-positive bacteria. bovine lactoferrin cDNA was isolated, cloned and expressed as a fusion protein. The amino acid sequence of the fusion was analyzed and compared with other species. Crystallographic data were used to compare structural differences between bovine and human lactoferrin in 3-D models. A thioredoxin fusion protein was expressed and shown to have a different molecular weight compared with native bLf. After purification using Ni-NTA, the yield of recombinant bovine lactoferrin was 15.3 mg/l with a purity of 90.3 %. Recombinant bLf and pepsin-digested rbLf peptides demonstrated antibacterial activity of 79.8 and 86.9 %, respectively. The successful expression of functional, active and intact rbLf allows us to study the biochemical interactions of antimicrobial proteins and peptides and will facilitate their study as immunomodulators.  相似文献   

20.
Bovine lactoferrin promotes bifidobacterial growth. Its binding to bifidobacteria is thought to be responsible for such action. After separating the bovine lactoferrin half molecule and extraction of surface proteins from bifidobacteria, binding profiles were observed by immunoblotting. No binding appeared when lactoferrin C-lobe was reacted with the cell surface proteins on a polyvinylidene difluoride membrane. Conversely, a 50-kDa band appeared when the surface proteins were reacted with either intact or nicked bovine lactoferrin. This result strongly suggests that the binding region could be lactoferrin N-lobe. Interestingly, despite the absence of binding, C-lobe enhanced bifidobacterial growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号