首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary visual cortex (V1) is probably the best characterized area of primate cortex, but whether this region contributes directly to conscious visual experience is controversial. Early neurophysiological and neuroimaging studies found that visual awareness was best correlated with neural activity in extrastriate visual areas, but recent studies have found similarly powerful effects in V1. Lesion and inactivation studies have provided further evidence that V1 might be necessary for conscious perception. Whereas hierarchical models propose that damage to V1 simply disrupts the flow of information to extrastriate areas that are crucial for awareness, interactive models propose that recurrent connections between V1 and higher areas form functional circuits that support awareness. Further investigation into V1 and its interactions with higher areas might uncover fundamental aspects of the neural basis of visual awareness.  相似文献   

2.
Visual perception is based on both incoming sensory signals and information about ongoing actions. Recordings from single neurons have shown that corollary discharge signals can influence visual representations in parietal, frontal and extrastriate visual cortex, as well as the superior colliculus (SC). In each of these areas, visual representations are remapped in conjunction with eye movements. Remapping provides a mechanism for creating a stable, eye-centred map of salient locations. Temporal and spatial aspects of remapping are highly variable from cell to cell and area to area. Most neurons in the lateral intraparietal area remap stimulus traces, as do many neurons in closely allied areas such as the frontal eye fields the SC and extrastriate area V3A. Remapping is not purely a cortical phenomenon. Stimulus traces are remapped from one hemifield to the other even when direct cortico-cortical connections are removed. The neural circuitry that produces remapping is distinguished by significant plasticity, suggesting that updating of salient stimuli is fundamental for spatial stability and visuospatial behaviour. These findings provide new evidence that a unified and stable representation of visual space is constructed by redundant circuitry, comprising cortical and subcortical pathways, with a remarkable capacity for reorganization.  相似文献   

3.
Representation of three-dimensional visual space in the cerebral cortex   总被引:1,自引:0,他引:1  
This article reviews two issues relevant to the topic of how three-dimensional space is represented in the cerebral cortex. The first is the question of how individual neurons encode information that might contribute to stereoscopic estimation of visual depth. Particular attention is given to the current understanding of the neural representation of motion through three-dimensional space and to the complexities that arise in interpreting neuronal responses to this complex stimulus parameter. The second issue considered is the disorderlines that exists in the retinotopic mapping of the visual field in some cortical visual areas. Several extrastriate areas have been found to contain maps of the contralateral visual hemifield that are disorderly in the sense that the representation of various parts of the visual field are often misplaced or grossly over-or under-represented. It is suggested that this disorderlines may in some cases represent adaptations to facilitate certain types of visual functions.  相似文献   

4.
A novel molecular hypothesis about visual perception and imagery has recently been proposed (Bókkon, 2009; BioSystems). Namely, external electromagnetic visible photons are converted into electrical signals in the retina and are then conveyed to V1. Next, these retinotopic electrical signals (spike-related electrical signals along classical axonal-dendritic pathways) can be converted into synchronized bioluminescent biophoton signals (inside the neurons) by neurocellular radical reactions (redox processes) in retinotopically organized V1 mitochondrial cytochrome oxidase-rich visual areas. The bioluminescent photonic signals (inside the neurons) generated by neurocellular redox/radical reactions in synchronized V1 neurons make it possible to produce computational biophysical pictures during visual perception and imagery. Our hypothesis is in line with the functional roles of reactive oxygen and nitrogen species in living cells and states that this is not a random process, but rather a strict mechanism used in signaling pathways. Here, we suggest that intrinsic biophysical pictures can also emerge during REM dreams.  相似文献   

5.
Marshel JH  Garrett ME  Nauhaus I  Callaway EM 《Neuron》2011,72(6):1040-1054
To establish the mouse as a genetically tractable model for high-order visual processing, we characterized fine-scale retinotopic organization of visual cortex and determined functional specialization of layer 2/3 neuronal populations in seven retinotopically identified areas. Each area contains a distinct visuotopic representation and encodes a unique combination of spatiotemporal features. Areas LM, AL, RL, and AM prefer up to three times faster temporal frequencies and significantly lower spatial frequencies than V1, while V1 and PM prefer high spatial and low temporal frequencies. LI prefers both high spatial and temporal frequencies. All extrastriate areas except LI increase orientation selectivity compared to V1, and three areas are significantly more direction selective (AL, RL, and AM). Specific combinations of spatiotemporal representations further distinguish areas. These results reveal that mouse higher visual areas are functionally distinct, and separate groups of areas may be specialized for motion-related versus pattern-related computations, perhaps forming pathways analogous to dorsal and ventral streams in other species.  相似文献   

6.
The illusion of apparent motion can be induced when visual stimuli are successively presented at different locations. It has been shown in previous studies that motion-sensitive regions in extrastriate cortex are relevant for the processing of apparent motion, but it is unclear whether primary visual cortex (V1) is also involved in the representation of the illusory motion path. We investigated, in human subjects, apparent-motion-related activity in patches of V1 representing locations along the path of illusory stimulus motion using functional magnetic resonance imaging. Here we show that apparent motion caused a blood-oxygenation-level-dependent response along the V1 representations of the apparent-motion path, including regions that were not directly activated by the apparent-motion-inducing stimuli. This response was unaltered when participants had to perform an attention-demanding task that diverted their attention away from the stimulus. With a bistable motion quartet, we confirmed that the activity was related to the conscious perception of movement. Our data suggest that V1 is part of the network that represents the illusory path of apparent motion. The activation in V1 can be explained either by lateral interactions within V1 or by feedback mechanisms from higher visual areas, especially the motion-sensitive human MT/V5 complex.  相似文献   

7.
Neurons in the primary visual cortex, V1, are specialized for the processing of elemental features of the visual stimulus, such as orientation and spatial frequency. Recent fMRI evidence suggest that V1 neurons are also recruited in visual perceptual memory; a number of studies using multi-voxel pattern analysis have successfully decoded stimulus-specific information from V1 activity patterns during the delay phase in memory tasks. However, consistent fMRI signal modulations reflecting the memory process have not yet been demonstrated. Here, we report evidence, from three subjects, that the low V1 BOLD activity during retention of low-level visual features is caused by competing interactions between neural populations coding for different values along the spectrum of the dimension remembered. We applied a memory masking paradigm in which the memory representation of a masker stimulus interferes with a delayed spatial frequency discrimination task when its frequency differs from the discriminanda with ±1 octave and found that impaired behavioral performance due to masking is reflected in weaker V1 BOLD signals. This cross-channel inhibition in V1 only occurs with retinotopic overlap between the masker and the sample stimulus of the discrimination task. The results suggest that memory for spatial frequency is a local process in the retinotopically organized visual cortex.  相似文献   

8.

Background

The perception of global form requires integration of local visual cues across space and is the foundation for object recognition. Here we used magnetoencephalography (MEG) to study the location and time course of neuronal activity associated with the perception of global structure from local image features. To minimize neuronal activity to low-level stimulus properties, such as luminance and contrast, the local image features were held constant during all phases of the MEG recording. This allowed us to assess the relative importance of striate (V1) versus extrastriate cortex in global form perception.

Methodology/Principal Findings

Stimuli were horizontal, rotational and radial Glass patterns. Glass patterns without coherent structure were viewed during the baseline period to ensure neuronal responses reflected perception of structure and not changes in local image features. The spatial distribution of task-related changes in source power was mapped using Synthetic Aperture Magnetometry (SAM), and the time course of activity within areas of maximal power change was determined by calculating time-frequency plots using a Hilbert transform. For six out of eight observers, passive viewing of global structure was associated with a reduction in 10–20 Hz cortical oscillatory power within extrastriate occipital cortex. The location of greatest power change was the same for each pattern type, being close to or within visual area V3a. No peaks of activity were observed in area V1. Time-frequency analyses indicated that neural activity was least for horizontal patterns.

Conclusions

We conclude: (i) visual area V3a is involved in the analysis of global form; (ii) the neural signature for perception of structure, as assessed using MEG, is a reduction in 10–20 Hz oscillatory power; (iii) different neural processes may underlie the perception of horizontal as opposed to radial or rotational structure; and (iv) area V1 is not strongly activated by global form in Glass patterns.  相似文献   

9.
Mazer JA  Gallant JL 《Neuron》2003,40(6):1241-1250
Natural exploration of complex visual scenes depends on saccadic eye movements toward important locations. Saccade targeting is thought to be mediated by a retinotopic map that represents the locations of salient features. In this report, we demonstrate that extrastriate ventral area V4 contains a retinotopic salience map that guides exploratory eye movements during a naturalistic free viewing visual search task. In more than half of recorded cells, visually driven activity is enhanced prior to saccades that move the fovea toward the location previously occupied by a neuron's spatial receptive field. This correlation suggests that bottom-up processing in V4 influences the oculomotor planning process. Half of the neurons also exhibit top-down modulation of visual responses that depends on search target identity but not visual stimulation. Convergence of bottom-up and top-down processing streams in area V4 results in an adaptive, dynamic map of salience that guides oculomotor planning during natural vision.  相似文献   

10.
Figures that can be seen in more than one way are invaluable tools for the study of the neural basis of visual awareness, because such stimuli permit the dissociation of the neural responses that underlie what we perceive at any given time from those forming the sensory representation of a visual pattern. To study the former type of responses, monkeys were subjected to binocular rivalry, and the response of neurons in a number of different visual areas was studied while the animals reported their alternating percepts by pulling levers. Perception-related modulations of neural activity were found to occur to different extents in different cortical visual areas. The cells that were affected by suppression were almost exclusively binocular, and their proportion was found to increase in the higher processing stages of the visual system. The strongest correlations between neural activity and perception were observed in the visual areas of the temporal lobe. A strikingly large number of neurons in the early visual areas remained active during the perceptual suppression of the stimulus, a finding suggesting that conscious visual perception might be mediated by only a subset of the cells exhibiting stimulus selective responses. These physiological findings, together with a number of recent psychophysical studies, offer a new explanation of the phenomenon of binocular rivalry. Indeed, rivalry has long been considered to be closely linked with binocular fusion and stereopsis, and the sequences of dominance and suppression have been viewed as the result of competition between the two monocular channels. The physiological data presented here are incompatible with this interpretation. Rather than reflecting interocular competition, the rivalry is most probably between the two different central neural representations generated by the dichoptically presented stimuli. The mechanisms of rivalry are probably the same as, or very similar to, those underlying multistable perception in general, and further physiological studies might reveal much about the neural mechanisms of our perceptual organization.  相似文献   

11.
Several domains of neuroscience offer map-like models that link location on the cortical surface to properties of sensory representation. Within cortical visual areas V1, V2, and V3, algebraic transformations can relate position in the visual field to the retinotopic representation on the flattened cortical sheet. A limit to the practical application of this structure-function model is that the cortex, while topologically a two-dimensional surface, is curved. Flattening of the curved surface to a plane unavoidably introduces local geometric distortions that are not accounted for in idealized models. Here, we show that this limitation is overcome by correcting the geometric distortion induced by cortical flattening. We use a mass-spring-damper simulation to create a registration between functional MRI retinotopic mapping data of visual areas V1, V2, and V3 and an algebraic model of retinotopy. This registration is then applied to the flattened cortical surface anatomy to create an anatomical template that is linked to the algebraic retinotopic model. This registered cortical template can be used to accurately predict the location and retinotopic organization of these early visual areas from cortical anatomy alone. Moreover, we show that prediction accuracy remains when extrapolating beyond the range of data used to inform the model, indicating that the registration reflects the retinotopic organization of visual cortex. We provide code for the mass-spring-damper technique, which has general utility for the registration of cortical structure and function beyond the visual cortex.  相似文献   

12.
BACKGROUND: Regions in human frontal cortex may have modulatory top-down influences on retinotopic visual cortex, but to date neuroimaging methods have only been able to provide indirect evidence for such functional interactions between remote but interconnected brain regions. Here we combined transcranial magnetic stimulation (TMS) with concurrent functional magnetic resonance imaging (fMRI), plus psychophysics, to show that stimulation of the right human frontal eye-field (FEF) produced a characteristic topographic pattern of activity changes in retinotopic visual areas V1-V4, with functional consequences for visual perception. RESULTS: FEF TMS led to activity increases for retinotopic representations of the peripheral visual field, but to activity decreases for the central field, in areas V1-V4. These frontal influences on visual cortex occurred in a top-down manner, independently of visual input. TMS of a control site (vertex) did not elicit such visual modulations, and saccades, blinks, or pupil dilation could not account for our results. Finally, the effects of FEF TMS on activity in retinotopic visual cortex led to a behavioral prediction that we confirmed psychophysically by showing that TMS of the frontal site (again compared with vertex) enhanced perceived contrast for peripheral relative to central visual stimuli. CONCLUSIONS: Our results provide causal evidence that circuits originating in the human FEF can modulate activity in retinotopic visual cortex, in a manner that differentiates the central and peripheral visual field, with functional consequences for perception. More generally, our study illustrates how the new approach of concurrent TMS-fMRI can now reveal causal interactions between remote but interconnected areas of the human brain.  相似文献   

13.
The right and left visual hemifields are represented in different cerebral hemispheres and are bound together by connections through the corpus callosum. Much has been learned on the functions of these connections from split-brain patients [1-4], but little is known about their contribution to conscious visual perception in healthy humans. We used diffusion tensor imaging and functional magnetic resonance imaging to investigate which callosal connections contribute to the subjective experience of a visual motion stimulus that requires interhemispheric integration. The "motion quartet" is an ambiguous version of apparent motion that leads to perceptions of either horizontal or vertical motion [5]. Interestingly, observers are more likely to perceive vertical than horizontal motion when the stimulus is presented centrally in the visual field [6]. This asymmetry has been attributed to the fact that, with central fixation, perception of horizontal motion requires integration across hemispheres whereas perception of vertical motion requires only intrahemispheric processing [7]. We are able to show that the microstructure of individually tracked callosal segments connecting motion-sensitive areas of the human MT/V5 complex (hMT/V5+; [8]) can predict the conscious perception of observers. Neither connections between primary visual cortex (V1) nor other surrounding callosal regions exhibit a similar relationship.  相似文献   

14.
Neuronal discharges in the primate temporal lobe, but not in the striate and extrastriate cortex, reliably reflect stimulus awareness. However, it is not clear whether visual consciousness should be uniquely localized in the temporal association cortex. Here we used binocular flash suppression to investigate whether visual awareness is also explicitly reflected in feature-selective neural activity of the macaque lateral prefrontal cortex (LPFC), a cortical area reciprocally connected to the temporal lobe. We show that neuronal discharges in the majority of single units and recording sites in the LPFC follow the phenomenal perception of a preferred stimulus. Furthermore, visual awareness is reliably reflected in the power modulation of high-frequency (>50?Hz) local field potentials in sites where spiking activity is found to be perceptually modulated. Our results suggest that the activity of neuronal populations in at least two association cortical areas represents the content of conscious visual perception.  相似文献   

15.
It has been hypothesized that neural activities in the primary visual cortex (V1) represent a saliency map of the visual field to exogenously guide attention. This hypothesis has so far provided only qualitative predictions and their confirmations. We report this hypothesis’ first quantitative prediction, derived without free parameters, and its confirmation by human behavioral data. The hypothesis provides a direct link between V1 neural responses to a visual location and the saliency of that location to guide attention exogenously. In a visual input containing many bars, one of them saliently different from all the other bars which are identical to each other, saliency at the singleton’s location can be measured by the shortness of the reaction time in a visual search for singletons. The hypothesis predicts quantitatively the whole distribution of the reaction times to find a singleton unique in color, orientation, and motion direction from the reaction times to find other types of singletons. The prediction matches human reaction time data. A requirement for this successful prediction is a data-motivated assumption that V1 lacks neurons tuned simultaneously to color, orientation, and motion direction of visual inputs. Since evidence suggests that extrastriate cortices do have such neurons, we discuss the possibility that the extrastriate cortices play no role in guiding exogenous attention so that they can be devoted to other functions like visual decoding and endogenous attention.  相似文献   

16.
Visual saliency is a fundamental yet hard to define property of objects or locations in the visual world. In a context where objects and their representations compete to dominate our perception, saliency can be thought of as the "juice" that makes objects win the race. It is often assumed that saliency is extracted and represented in an explicit saliency map, which serves to determine the location of spatial attention at any given time. It is then by drawing attention to a salient object that it can be recognized or categorized. I argue against this classical view that visual "bottom-up" saliency automatically recruits the attentional system prior to object recognition. A number of visual processing tasks are clearly performed too fast for such a costly strategy to be employed. Rather, visual attention could simply act by biasing a saliency-based object recognition system. Under natural conditions of stimulation, saliency can be represented implicitly throughout the ventral visual pathway, independent of any explicit saliency map. At any given level, the most activated cells of the neural population simply represent the most salient locations. The notion of saliency itself grows increasingly complex throughout the system, mostly based on luminance contrast until information reaches visual cortex, gradually incorporating information about features such as orientation or color in primary visual cortex and early extrastriate areas, and finally the identity and behavioral relevance of objects in temporal cortex and beyond. Under these conditions the object that dominates perception, i.e. the object yielding the strongest (or the first) selective neural response, is by definition the one whose features are most "salient"--without the need for any external saliency map. In addition, I suggest that such an implicit representation of saliency can be best encoded in the relative times of the first spikes fired in a given neuronal population. In accordance with our subjective experience that saliency and attention do not modify the appearance of objects, the feed-forward propagation of this first spike wave could serve to trigger saliency-based object recognition outside the realm of awareness, while conscious perceptions could be mediated by the remaining discharges of longer neuronal spike trains.  相似文献   

17.

Background

The primary visual cortex of mammals is characterised by a retinotopic representation of the visual field. It has therefore been speculated that the visual wulst, the avian homologue of the visual cortex, also contains such a retinotopic map. We examined this for the first time by optical imaging of intrinsic signals in zebra finches, a small songbird with laterally placed eyes. In addition to the visual wulst, we visualised the retinotopic map of the optic tectum which is homologue to the superior colliculus in mammals.

Methodology/Principal Findings

For the optic tectum, our results confirmed previous accounts of topography based on anatomical studies and conventional electrophysiology. Within the visual wulst, the retinotopy revealed by our experiments has not been illustrated convincingly before. The frontal part of the visual field (0°±30° azimuth) was not represented in the retinotopic map. The visual field from 30°–60° azimuth showed stronger magnification compared with more lateral regions. Only stimuli within elevations between about 20° and 40° above the horizon elicited neuronal activation. Activation from other elevations was masked by activation of the preferred region. Most interestingly, we observed more than one retinotopic representation of visual space within the visual wulst, which indicates that the avian wulst, like the visual cortex in mammals, may show some compartmentation parallel to the surface in addition to its layered structure.

Conclusion/Significance

Our results show the applicability of the optical imaging method also for small songbirds. We obtained a more detailed picture of retinotopic maps in birds, especially on the functional neuronal organisation of the visual wulst. Our findings support the notion of homology of visual wulst and visual cortex by showing that there is a functional correspondence between the two areas but also raise questions based on considerable differences between avian and mammalian retinotopic representations.  相似文献   

18.
19.
Sasaki Y  Murakami I  Cavanagh P  Tootell RH 《Neuron》2002,35(6):1147-1156
One central problem in vision is how to compensate for retinal slip. A novel illusion (visual jitter) suggests the compensation mechanism is based solely on retinal motion. Adaptation to visual noise attenuates the motion signals used by the compensation stage, producing illusory jitter due to the undercompensation of retinal slip. Here, we investigated the neural substrate of retinal slip compensation during this illusion using high-field fMRI and retinotopic mapping in flattened cortical format. When jitter perception occurred, MR signal decreased in lower stages of the visual system but increased prominently in area MT+. In conclusion, visual areas as early as V1 are responsible for the adaptation stage, and MT+ is involved in the compensation stage. The present finding suggests the pathway from V1 to MT+ has an important role in stabilizing the visual world.  相似文献   

20.
Visual neuroscience has long sought to determine the extent to which stimulus-evoked activity in visual cortex depends on attention and awareness. Some influential theories of consciousness maintain that the allocation of attention is restricted to conscious representations [1, 2]. However, in the load theory of attention [3], competition between task-relevant and task-irrelevant stimuli for limited-capacity attention does not depend on conscious perception of the irrelevant stimuli. The critical test is whether the level of attentional load in a relevant task would determine unconscious neural processing of invisible stimuli. Human participants were scanned with high-field fMRI while they performed a foveal task of low or high attentional load. Irrelevant, invisible monocular stimuli were simultaneously presented peripherally and were continuously suppressed by a flashing mask in the other eye [4]. Attentional load in the foveal task strongly modulated retinotopic activity evoked in primary visual cortex (V1) by the invisible stimuli. Contrary to traditional views [1, 2, 5, 6], we found that availability of attentional capacity determines neural representations related to unconscious processing of continuously suppressed stimuli in human primary visual cortex. Spillover of attention to cortical representations of invisible stimuli (under low load) cannot be a sufficient condition for their awareness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号