首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Even though the suitability of macrophytes to act as a carbon source to food webs has been questioned by some studies, some others indicate that macrophyte-derived carbon may play an important role in the trophic transfer of organic matter in the food web of shallow lakes. To evaluate the importance of macrophytes to food webs, we collected primary producers—macrophytes and periphyton—and consumers from 19 South American shallow lakes and analyzed their carbon stable isotopes composition (δ13C). Despite the diversity of inorganic carbon sources available in our study lakes, the macrophytes’ δ13C signatures showed a clear bimodal distribution: 13C-depleted and 13C-enriched, averaging at ?27.2 and ?13.5‰, respectively. We argue that the use of either CO2 or HCO3 ? by the macrophytes largely caused the bimodal pattern in δ13C signals. The contribution of carbon from macrophytes to the lake’s food webs was not straightforward in most of the lakes because the macrophytes’ isotopic composition was quite similar to the isotopic composition of periphyton, phytoplankton, and terrestrial carbon. However, in some lakes where the macrophytes had a distinct isotopic signature, our data suggest that macrophytes can represent an important carbon source to shallow lake food webs.  相似文献   

2.
3.

Non-indigenous freshwater bivalves negatively affect invaded ecosystems through different mechanisms, including inter-specific competition for trophic resources. Here, we investigated in Lake Trasimeno (Central Italy) the diet of the invasive Dreissena polymorpha and the native Anodonta anatina. δ15N and δ13C stable isotopes were measured in winter and summer in bivalves, phytoplankton, and sedimentary organic matter (SOM); the relative dietary contributions of the two resources were determined using Bayesian mixing models. To elucidate the different carbon and nitrogen pools characterizing the study site, isotopic analyses were extended to zooplankton and to representatives of the benthic flora and macroinvertebrate fauna. Independently from the season, the two bivalves showed a limited trophic overlap, as mixing models indicated for D. polymorpha a diet based primarily on phytoplankton, while A. anatina relied mainly on SOM. Dietary differences were less marked in summer, when comparable isotopic values characterized phytoplankton and SOM. In winter, conversely, the trophic differentiation between the two species was more evident, and corresponded with a significant enrichment in SOM δ13C values, likely due to a substantial contribution of carbon deriving from decaying macrophytes. Whether differences in ecological and behavioral traits alone can explain the observed trophic segregation between the two species, or if they have actively shifted their diet to reduce competition for food is discussed. We conclude emphasizing the need of an advanced resolution of the influence of non-indigenous species on the flux of energy and matter in invaded lentic systems, including Lake Trasimeno.

  相似文献   

4.
5.
In the context of global change, eroded soil carbon fate and its impact on aquatic ecosystems CO2 emissions are subject to intense debates. In particular, soil carbon mineralization could be enhanced by its interaction with autochthonous carbon, a process called priming effect, but experimental evidences of this process are scarce. We measured in a microcosm experiment simulating oligo-mesotrophic and eutrophic aquatic conditions how quickly soil organic matter (SOM) sampled in diverse ecosystems was mineralized as compared to mineralization within soil horizons. For both nutrient loads, 13C-glucose was added to half of the microcosms to simulate exudation of labile organic matter (LOM) by phytoplankton. Effects of LOM on soil mineralization were estimated using the difference in δ13C between the SOM and the glucose. After 45 days of incubation, the mean SOM mineralization was 63% greater in the aquatic context, the most important CO2 fluxes arising during the first days of incubation. Nutrients had no significant effect on SOM mineralization and glucose addition increased by 12% the mean SOM mineralization, evidencing the occurrence of a priming effect.  相似文献   

6.
The transport of organic matter from the water column to the sediment and the relationship between the dynamics of the settleable fraction and that of the total suspended particulate matter were studied in shallow eutrophic Lake Wingra, Wisconsin. Tripton sedimentation was closely related to the dynamics of seston with a lag of 2 to 4 weeks. Sedimentation rate of tripton ranged from 0 to 8 g m–2 day–1 (in May and August respectively). Relative t0 the standing crop 0f seston the maximum sedimentation rate was 8% seston per day (in September). The annual tripton sedimentation was estimated at 632 g dry weight or 215 g C per m2 which was equivalent t0 55% of the annual phytoplankton production and 42% of the phytoplankton and macrophytes annual production. It was estimated that 70% of the settling organic matter is decomposed annually, consequently only a small fraction 0f tripton is involved in the long term accumulation of bottom deposits. Factors influencing tripton sedimentation are discussed.Research supported by the Eastern Deciduous Forest Biome US-IBP, funded by the National Science Foundation under Interagency Agreement AG-199 BMS69-01147 A09 with the Energy Research and Development Administration-Oak Ridge National Laboratory. Contribution N0. 233 from the Eastern Deciduous Forest Biome US-IBP.Research supported by the Eastern Deciduous Forest Biome US-IBP, funded by the National Science Foundation under Interagency Agreement AG-199 BMS69-01147 A09 with the Energy Research and Development Administration-Oak Ridge National Laboratory. Contribution N0. 233 from the Eastern Deciduous Forest Biome US-IBP.  相似文献   

7.
The distribution of summer phytoplankton across the Straits of Magellan (SOM) was studied with the aims of tracing differences among the distinct subregions of the area and contributing to the knowledge of its biodiversity. Samples collected at 25 stations were observed and counted in light microscopy. Selected samples were observed with transmission electron microscopy. The main unifying feature of the phytoplankton in the SOM was the high abundance and numerical dominance of small-sized (<10 μm) eukaryotic species, among which coccoid cells of <3 μm size were predominant (56.2 ± 30.6 of the total phytoplankton abundance). They mostly belonged to the prasinophyte Pycnococcus provasolii, which was abundant (0.8–6,834 cells × 103 ml−1) at all stations with the exception of those in proximity to the Atlantic entrances, where it was not recorded. Small-sized (<3 and 3–5 μm) diatoms (Minidiscus trioculatus, Lennoxia faveolata and other undetermined centric species) attained high densities (<3,757 cells 103 ml−1) especially at stations of the Patagonian sectors, whereas microplanktonic diatoms were only found at the two entrances of the Straits. Dinoflagellates were constituted mainly by >10 μm forms in the Andean subregion and <10 μm naked species in the Patagonian subregion, contributing up to 75.9 and 41.8% of the total carbon in these two areas, respectively. In the Patagonian subregion, flagellates mainly constituted by <5 μm forms and by cryptomonads <10 μm comprised up to 53.9% of the total biomass. Several species identified in this study have never been reported in other investigations in the SOM, while others, including Pycnococcus provasolii and Lennoxia faveolata, have rarely been recorded elsewhere. Overall, the summer phytoplankton of the Straits does not resemble that of any other region of the world’s seas. Although some of the predominant species might have been overlooked elsewhere, their abundance and relative importance apparently constitute a distinctive feature of the SOM.  相似文献   

8.
The effect of glucose on microbial mineralization of soil organic matter (SOM) was studied in arable soil specimens. The fluxes of carbon dioxide generated during this degradation were deduced from differences in the carbon isotope abundance ratios of glucose δ13C = –11.4 per mil) and SOM δ13C = –27.01 per mil). The priming effect of glucose and respiratory quotient (RQ) were taken as indices of activation of SOM-consuming microbiota. The data on microbial mineralization of organic matter in soil obtained in this study show that the addition of a readily consumable substance (glucose) to soil favors SOM degradation and increases the release of carbon dioxide from soil to atmosphere.  相似文献   

9.
In situ technologies were employed to monitor suspended particle flocculation and floc settlement and utilization by a cohort of sea scallops (Placopecten magellanicus) during the 2000 spring phytoplankton bloom in Bedford Basin, Nova Scotia, Canada. The objectives were to determine the effect of bloom flocculation and settling on food acquisition and utilization by scallops, and to assess the potential role of flocculation in enhancing the bioavailability of trophic resources and particle-reactive contaminants to bivalve filter feeders. The development and flocculation of the phytoplankton bloom were monitored within the surface layer (10 m depth) by in vivo chlorophyll fluorescence and silhouette camera observations. Sedimentation rate, seston abundance and composition, and sea scallop functional responses were monitored at 20 m depth (below the bloom) to provide insight into the potential forcing of feeding and digestion processes by changes in the abundance, composition and properties of the ambient food supply. The bloom began in mid-March and median floc diameter at 10 m depth increased rapidly from 200 μm to greater than 400 μm between 21 and 28 March. Flocs were observed to be abundant in the surface layer up to 4 April. Daily vertical particle flux was high during the last week of March and declined to near zero by 1 April. Clearance rates of scallops held at 20 m depth were relatively high (average ± S.D.; 11.7 ± 4.0 L h− 1) during the period of bloom settlement and declined rapidly to low levels (0.4 ± 0.9 L h− 1) after 31 March. Average absorption efficiency also declined (0.88 ± 0.01 to 0.78 ± 0.05) after bloom settlement. Daily biodeposition rates by scallops were poorly correlated with temporal variations in the quantity (total particulate matter and chlorophyll a concentration) or quality (organic content) of seston available to the scallops, but were significantly correlated with sedimentation rate. Comparison of disaggregated inorganic particle size distributions for suspended particulate matter, settled particles, and scallop feces indicated that fine-grained particles (1 to 4 μm) were effectively ingested by sea scallops—an indication of whole floc ingestion. The settlement of flocs produced during the spring bloom appears to be important in regulating this species physiological energetics and for enhancing the bioavailablility of fine particles (including picoplankton) and particle-reactive contaminants.  相似文献   

10.
A common assumption in paleoenvironmental reconstructions using soils is that the carbon isotope composition of soil-respired CO2 is equivalent to the carbon isotope composition of bulk soil organic matter (SOM). However, the occurrence of a non-zero per mil carbon isotope enrichment factor between CO2 and SOM (\(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\)) during soil respiration is the most widely accepted explanation for the down-profile increase in SOM δ13C values commonly observed in well-drained soils. In order to shed light on this apparent discrepancy, we incubated soil samples collected from the top 2 cm of soils with pure C3 vegetation and compared the δ13C values of soil-respired CO2 to the δ13C values of bulk SOM. Our results show near-zero \(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\) values (?0.3 to 0.4 ‰), supporting the use of paleosol organic matter as a proxy for paleo soil-respired CO2. Significantly more negative \(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\) values are required to explain the typical δ13C profiles of SOM in well-drained soils. Therefore our results also suggest that typical SOM δ13C profiles result from either (1) a process other than carbon isotope fractionation between CO2 and SOM during soil respiration or (2) \(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\) values that become increasingly negative as SOM matures.  相似文献   

11.
Summary

Mesozooplankton, submergent and fringing macrophytes and particles suspended in the water column in the Sundays River estuary South Africa were analyzed for δ13C isotope ratios. Highly negative values (?28.3‰ to ?32.0‰) for the mesozooplankton species suggest the possibility of phytoplankton rather than detritus derived from macrophytes as carbon source.  相似文献   

12.
We quantified the role of a main food resource, sedimenting organic matter (SOM), relative to oxygen (DO) and temperature (TEMP) in structuring profundal macroinvertebrate assemblages in boreal lakes. SOM from 26 basins of 11 Finnish lakes was analysed for quantity (sedimentation rates), quality (C:N:P stoichiometry) and origin (carbon stable isotopes, δ13C). Hypolimnetic oxygen and temperature were measured from each site during summer stratification. Partial canonical correspondence analysis (CCA) and partial regression analyses were used to quantify contributions of SOM, DO and TEMP to community composition and three macroinvertebrate metrics. The results suggested a major contribution of SOM in regulating the community composition and total biomass. Oxygen best explained the Shannon diversity, whereas TEMP had largest contribution to the variation of Benthic Quality Index. Community composition was most strongly related to δ13C of SOM. Based on additional δ13C and stoichiometric analyses of chironomid taxa, marked differences were apparent in their utilization of SOM and body stoichiometry; taxa characteristic of oligotrophic conditions exhibited higher C:N ratios and lower C:P and N:P ratios compared to the species typical of eutrophic lakes. The results highlight the role of SOM in regulating benthic communities and the distributions of individual species, particularly in oligotrophic systems.  相似文献   

13.
Carbon isotope composition of suspended organic matter (CICSOM) and of organic carbon of the bottom sediments (CICBS) was studied in a series of expeditions (starting in 1993) to the White, Kara, Chukchi, and Barents seas in the Russian Arctic. For each sea, CICSOM and CICBS was found to depend primarily on the ratio of OM produced in the water and OM of terrigenous origin. While in the White Sea, where the primary production (PP) is 5.3 times higher than the yearly inflow of terrigenous OM, δ13C of SOM carbon is ?29.1‰, in the Chukchi Sea, where PP is more than 300 times higher than the inflow of terrigenous OM, δ13C of SOM carbon is ?21.8‰. In the Barents and Chukchi seas, a considerable effect of suspended material arriving with the currents from the neighboring seas on formation of the CICSOM was demonstrated. The difference between CIC OM of the bottom sediments form CICSOM, the main component of organic matter in the sediments of all shelf seas, was demonstrated for the first time for all the seas studied. This results from production of additional microbial OM due to CO2 assimilation at the water-sediment redox boundary or in near-bottom water.  相似文献   

14.
A fully factorial pond experiment was designed using two irradiance levels and two phosphorus concentrations to investigate irradiance and phosphorus effects on the growth of three submerged macrophytes: common waterweed (Elodea canadensis), Eurasian water milfoil (Myriophyllum spicatum), and water stargrass (Zosterella dubia). Results revealed that higher irradiance (230 μmol s−1 m−2 vs. 113 μmol s−1 m−2 at 2 m depth) had significant positive effects on submerged macrophyte growth: increasing the number of individuals (seven-fold), the number of species surviving (two-fold), aboveground biomass (11-fold), belowground biomass (10-fold), and total biomass (11-fold), whereas elevated sediment phosphorus (2.1–3.3 mg g−1 vs. 0.7 mg g−1 dry sediment) did not have any significant impact. However, responses to irradiance differ among macrophyte species due to their morphology and physiology. Waterweed increased in numbers of individuals and total biomass under high irradiance while biomass per individual remained the same (∼0.02 g). The other species increased both in numbers and biomass per individual. These results suggest that increased irradiance rather than decreased phosphorus loading is the main driver of changes in submerged macrophytes in North American temperate lake ecosystems.  相似文献   

15.
Suspended particulate organic matter (POM) is a primary food source for benthic and pelagic consumers in aquatic and marine ecosystems. POM is potentially composed of many sources including phytoplankton, bacteria, zooplankton and macrophyte (seaweed and seagrass) and terrestrial detritus. The relative importance of these sources to POM consumers is debated, in large part due to differing interpretations of stable isotope and fatty acid biomarkers. We investigated POM composition in a nearshore marine ecosystem using multiple methods including visual quantification of living and detrital components, multiple stable isotope (MSI) and fatty acid (FA) analyses. Sampling was conducted at multiple temporal and spatial scales to 1) determine the range of variability in POM biomarkers, 2) quantitatively evaluate δ13C, δ15N, δ34S and FA biomarkers with proportional abundance of putative sources and 3) determine the availability of phytoplankton, macrophytes and terrestrial carbon in nearshore POM. Variation of total FA concentration and proportions, and δ13C and δ34S were strongly correlated to phytoplankton abundance, at tidal and seasonal timescales. Using multivariate multiple regressions, MSI and FA explained 59.6% and 89.7% of the variation in POM composition, respectively. As phytoplankton abundance increased, total FA concentration increased concurrent to δ13C and δ34S enrichment. In high detritus samples, bacterial FA and saturated FA were proportionally higher, corresponding to depletion of δ13C and δ34S and enrichment of δ15N. We identify MSI and FA biomarkers that are good predictors of diatom, dinoflagellate and detrital contributions to the POM. The results of this multi‐scale study show that POM composition is highly dynamic and largely driven by phytoplankton abundance, with minor contributions from terrestrial or macrophyte subsidies. This quantitative approach provides novel and critical empirical information linking POM compositional dynamics to specific biomarkers that are commonly used for tracking energy subsidies and biogeochemical cycling in aquatic ecosystems.  相似文献   

16.
1. Human activities affect fish assemblages in a variety of ways. Large‐scale and long‐term disturbances such as in‐stream dredging and mining alter habitat and hydrodynamic characteristics within rivers which can, in turn, alter fish distribution. Habitat heterogeneity is decreased as the natural riffle–pool–run sequences are lost to continuous pools and, as a consequence, lotic species are displaced by lentic species, while generalist and invasive species displace native habitat specialists. Sediment and organic detritus accumulate in deep, dredged reaches and behind dams, disrupting nutrient flow and destroying critical habitat for habitat specialist species. 2. We used standard ecological metrics such as species richness and diversity, as well as stable isotope analysis of δ13C and δ15N, to quantify the differences in fish assemblages sampled by benthic trawls among dredged and undredged sites in the Allegheny River, Pennsylvania, U.S.A. 3. Using mixed‐effects models, we found that total catch, species richness and diversity were negatively correlated with depth (P < 0.05), while species richness, diversity and proportion of species in lithophilic (‘rock‐loving’) reproductive guilds were lower at dredged than at undredged sites (P < 0.05). 4. Principal components analysis and manova revealed that taxa such as darters in brood hider and substratum chooser reproductive guilds were predominantly associated with undredged sites along principal component axis 1 (PC1 and manova P < 0.05), while nest spawners such as catfish and open substratum spawners including suckers were more associated with dredged sites along PC2 (P < 0.05). 5. Stable isotope analysis of δ13C and δ15N revealed shifts from reliance on shallow water and benthic‐derived nutrients at undredged sites to reliance on phytoplankton and terrestrial detritus at deep‐water dredged sites. Relative trophic positions were also lower at dredged sites for many species; loss of benthic nutrient pathways associated with depth and dredging history is hypothesised. 6. The combination of ecological metrics and stable isotope analysis thus shows how anthropogenic habitat loss caused by gravel dredging can decrease benthic fish abundance and diversity, and that species in substratum‐specific reproductive guilds are at particular risk. The effects of dredging also manifest by altering resource use and nutrient pathways within food webs. Management and conservation decisions should therefore consider the protection of relatively shallow areas with suitable substratum for spawning for the protection of native fishes.  相似文献   

17.
Mytilus galloprovincialis is a common species in the Mediterranean. It is a sedentary filter-feeding organism that assimilates carbon and nitrogen isotopic ratios in tissues from its food sources. The δ13C and δ15N values have been used to demonstrate differences in isotopic composition between digestive gland, muscle and gills of this mussel. For δ13C, mean values were - 21.99 ± 0.50‰, - 19.70 ± 0.44‰, and - 19.96 ± 0.44‰, respectively; and for δ15N, they were 5.16 ± 0.90‰, 7.67 ± 0.79‰ and 7.77 ± 0.85‰, respectively. The fractionation or enrichment factor for 13C values between digestive gland and muscle, between digestive gland and gills, and between muscle and gills were - 2.29 ± 0.16‰, - 2.04 ± 0.14‰ and 0.27 ± 0.07‰, respectively, within the expected range of 13C fractionation at filter feeders reported elsewhere. In contrast, low fractionation values were found for 15N with - 2.45 ± 0.24‰, - 2.51 ± 0.16‰ and - 0.11 ± 0.16‰, between digestive gland and muscle, between digestive gland and gills, and between muscle and gills, respectively. Through isotopic fractionation of M. galloprovincialis, the depleted values were found in the digestive gland, followed by gills and then by muscle tissue. Statistical analysis (PERMANOVA) was performed to check for significant differences in δ13C and δ15N isotopic signatures between tissues and localities. The current study demonstrates significant differences in the δ13C and δ15N isotopic composition between digestive gland, muscle and gills tissues in M. galloprovincialis living in the oligotrophic environment of the Balearic Islands.  相似文献   

18.
Cell viabilities of phytoplankton in the Oyashio and Kuroshio-Oyashio transition regions of the northwest Pacific Ocean were examined in September 2003 (late summer) and May 2005 (spring) using a membrane permeability test. Specific lysis rates of the phytoplankton during late summer were also assessed by an esterase activity assay. In late summer, cyanobacteria Synechococcus spp. were > 2 × 104 cells ml− 1 and numerically dominated the phytoplankton communities. The cell viabilities of Synechococcus spp. and eukaryotic ultraphytoplankton (< 10 μm in size) were 60-79% and 26-41% in surface waters, respectively. The specific lysis rates of the phytoplankton were 0.12-0.67 d− 1 in late summer. By contrast, in spring, eukaryotic cells were predominant in the phytoplankton communities. The cell viabilities of surface eukaryotic ultraphytoplankton in spring were > 70% and significantly higher than those in late summer. During spring, Synechococcus spp. only occurred with < 1 × 104 cells ml− 1 in the Kuroshio-Oyashio transition region, and their viabilities were 80%. In the Oyashio region where a spring diatom bloom developed, the viability of fucoxanthin-containing algae (mainly diatoms and prymnesiophytes) was ca. 90%. These results suggested that the cell viability of phytoplankton could vary seasonally with their community structure in the study area. The phytoplankton cell death in late summer was particularly significant for their loss process and could support the microbial food webs by supplying dissolved organic carbon (DOC) derived from the dead cells.  相似文献   

19.
The primary production of bottom ice algae is an important food source for sympagic, pelagic and benthic organisms in the Arctic Ocean as well as Antarctic Ocean. Using 13C-15N isotope tracers, the recent ice algal production at Barrow during the spring season was lower in 2003 than three decades ago, although the maximum chlorophyll-a concentration for the bottom ice algae was similar to the values from previous studies. Estimated recent new and total production rates of the ice algae were 0.8 g C m- 2 yr- 1 and 2.0 g C m- 2 yr- 1 respectively, while the rates of water column phytoplankton were 0.2 g C m- 2 yr- 1 and 0.7 g C m- 2 yr- 1 for the spring sampling period in 2003. The ice algae contributed 74% of the pelagic primary production under the landfast sea ice at Barrow before the phytoplankton spring bloom. At the end of the season in 2003, a high carbon allocation of lipids in the ice algae was found. Three possible explanations- nutrient depletion, increasing light, and/or changes in species composition- were suggested for the high carbon incorporation into lipids. This high lipid synthesis of the bottom ice algae might be significant to zooplankton and benthic fauna grazers because lipids are the most energy dense biomolecules.  相似文献   

20.
The nature of the particulate organic matter (POM) as well as its temporal and spatial distribution and dynamics in the Curonian Lagoon (south-eastern part of the Baltic Sea) were investigated. The organic matter was characterized by the organic carbon and nitrogen content, δ13C and δ15N signatures as well as POC/Chl-a and C/N ratios. Additionally, data on hydrological, chemical and biological parameters were used for better understanding the POM distribution and dynamics. The sampling was performed at 13 stations in the Curonian Lagoon and its outflow in the Baltic Sea during the 2012–2013 period. Samples were also collected at the Nemunas River mouth in order to test the riverine impact. Obtained results showed that isotopic values of carbon and nitrogen ranged from −36.1‰ to −25.2‰ and from −0.9‰ to 15.5‰, respectively. The isotopic composition, together with the low C/N molar (∼7) and POC/Chl-a ratios (<100) of the POM, suggested the dominance of living phytoplankton in POM throughout the year with the higher input of detrital material (C/N >10, POC/Chl-a ratios >100) in late autumn − winter.The results of multivariate analysis evidenced a spatial distinction of POM distribution in the northern-transitional and central confined areas and allowed us to distinguish the main driving factors. The seasonal variation of the δ13C and δ15N values in POM (towards higher δ13C and lower δ15N values in the summer − early autumn period and lower δ13C and higher δ15N values in the late autumn − spring period) was determined by combination of factors such as availability of inorganic carbon and nitrogen, the riverine discharge, seasonal phytoplankton succession and by the short-term saline water intrusion to the northern-transitional part of the lagoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号