首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allergen-specific CD4+ Th2 cells play an important role in the immunological processes of allergic asthma. Previously we have shown that, by using the immunodominant epitope OVA323-339, peptide immunotherapy in a murine model of OVA induced allergic asthma, stimulated OVA-specific Th2 cells, and deteriorated airway hyperresponsiveness and eosinophilia. In the present study, we defined four modulatory peptide analogues of OVA323-339 with comparable MHC class II binding affinity. These peptide analogues were used for immunotherapy by s.c. injection in OVA-sensitized mice before OVA challenge. Compared with vehicle-treated mice, treatment with the Th2-skewing wild-type peptide and a Th2-skewing partial agonistic peptide (335N-A) dramatically increased airway eosinophilia upon OVA challenge. In contrast, treatment with a Th1-skewing peptide analogue (336E-A) resulted in a significant decrease in airway eosinophilia and OVA-specific IL-4 and IL-5 production. Our data show for the first time that a Th1-skewing peptide analogue of a dominant allergen epitope can modulate allergen-specific Th2 effector cells in an allergic response in vivo. Furthermore, these data suggest that the use of Th1-skewing peptides instead of wild-type peptide may improve peptide immunotherapy and may contribute to the development of a successful and safe immunotherapy for allergic patients.  相似文献   

2.
Dendritic cells (DC) are the primary APC responsible for the capture of allergens in the airways and the shuttling of processed allergens to the draining lymph nodes where Ag presentation and T cell activation take place. The mechanism of this Ag handling and presentation in asthma is poorly understood. In addition, the feasibility of asthma induction by DC priming has not been directly tested. In this report an asthma model using intratracheally (i.t.) injected splenic DC was used to address these issues. DC pulsed with a model Ag OVA or the major MHC class II-restricted OVA T epitope peptide OVA(323-339) and instilled i.t. primed mice to exhibit asthma-like diseases. With OVA as the Ag, mice exhibit airway hyperresponsiveness (AHR), lung eosinophilia and inflammation, and pulmonary goblet cell hyperplasia. In OVA(323-339)-immunized mice, AHR and goblet cell hyperplasia were noted, with little eosinophilia and parenchymal inflammation. The latter finding provides evidence for dissociating AHR from eosinophilia. In both cases mediastinal node hypertrophy occurred, and high levels of Th2 cytokines were produced by the lung and mediastinal lymph node cells (LNC). Interestingly, mediastinal LNC also produced high levels of Th1 cytokines. Lung cells produced much less Th1 cytokines than these LNC. These results demonstrate that DC when introduced i.t. are potent in inducing asthma-like diseases by recruiting lymphocytes to the lung-draining lymph nodes and by stimulating Th2 responses and also suggest that the lung environment strongly biases T cell responses to Th2.  相似文献   

3.
Murine models of acute atopic asthma may be inadequate to study the effects of recurrent exposure to inhaled allergens, such as the epithelial changes seen in asthmatic patients. We developed a murine model in which chronic airway inflammation is maintained by repeated allergen [ovalbumin (OVA)] inhalation; using this model, we examined the response to mucosal administration of CpG DNA (oligonucleotides) and specific antigen immunotherapy. Mice repeatedly exposed to OVA developed significantly greater airway hyperresponsiveness and goblet cell hyperplasia, but not airway eosinophilia, compared with those exposed only twice. CpG-based immunotherapy significantly reversed both acute and chronic markers of inflammation as well as airway hyperresponsiveness. We further examined the effect of mucosal immunotherapy on the response to a second, unrelated antigen. Mice sensitized to both OVA and schistosome eggs, challenged with inhaled OVA, and then treated with OVA-directed immunotherapy demonstrated significant reduction of airway hyperresponsiveness and a moderate reduction in eosinophilia, after inhalation challenge with schistosome egg antigens. In this model, immunotherapy treatment reduced bronchoalveolar lavage (BAL) levels of Th2 cytokines (IL-4, IL-5, IL-13, and IL-10) without changing BAL IFN-gamma. Antigen recall responses of splenocytes from these mice demonstrated an antigen-specific (OVA) enhanced release of IL-10 from splenocytes of treated mice. These results suggest that CpG DNA may provide the basis for a novel form of immunotherapy of allergic asthma. Both antigen-specific and, to a lesser extent, antigen-nonspecific responses to mucosal administration of CpG DNA are seen.  相似文献   

4.
1alpha,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), a potent inhibitor of NF-kappaB expression, can prevent the maturation of dendritic cells in vitro leading to tolerogenic dendritic cells with increased potential to induce regulatory T cells. Herein, we investigated whether the combination of allergen immunotherapy with 1,25(OH)(2)D(3) potentiates the suppressive effects of immunotherapy and whether the immunoregulatory cytokines IL-10 and TGF-beta are involved in the effector phase. OVA-sensitized and challenged BALB/c mice displayed airway hyperresponsiveness (AHR) and increased serum OVA-specific IgE levels, bronchoalveolar lavage eosinophilia, and Th2 cytokine levels. In this model, the dose response of allergen immunotherapy 10 days before OVA inhalation challenge shows strong suppression of asthma manifestations at 1 mg of OVA, but partial suppression of bronchoalveolar lavage eosinophilia, IgE up-regulation, and no reduction of AHR at 100 microg. Interestingly, coadministration of 10 ng of 1,25(OH)(2)D(3) with 100 microg of OVA immunotherapy significantly inhibited AHR and potentiated the reduction of serum OVA-specific IgE levels, airway eosinophilia, and Th2-related cytokines concomitant with increased IL-10 levels in lung tissues and TGF-beta and OVA-specific IgA levels in serum. Similar effects on suboptimal immunotherapy were observed by inhibition of the NF-kappaB pathway using the selective IkappaB kinase 2 inhibitor PS-1145. The suppressive effects of this combined immunotherapy were partially reversed by treatment with mAb to either IL-10R or TGF-beta before OVA inhalation challenge but completely abrogated when both Abs were given. These data demonstrate that 1,25(OH)(2)D(3) potentiates the efficacy of immunotherapy and that the regulatory cytokines IL-10 and TGF-beta play a crucial role in the effector phase of this mouse model.  相似文献   

5.
The reason why particular inhaled Ags induce allergic sensitization while others lead to immune tolerance is unclear. Along with a genetic predisposition to atopy, intrinsic characteristics of these Ags must be important. A common characteristic of many allergens is that they either possess proteinase activity or are inhaled in particles rich in proteinases. Many allergens, such as house dust mite and cockroach allergens, have the potential to activate the proteinase-activated receptor (PAR)-2. In this study, we report that PAR-2 activation in the airways at the same time as exposure to inhaled Ags induces allergic sensitization, whereas exposure to Ag alone induces tolerance. BALB/c mice were administered OVA with a PAR-2 activating peptide intranasally. Upon allergen re-exposure mice developed airway inflammation and airway hyperresponsiveness, as well as OVA-specific T cells with a Th2 cytokine profile when restimulated with OVA in vitro. Conversely, mice given OVA alone or OVA with a PAR-2 control peptide developed tolerance. These tolerant mice did not develop airway inflammation or airway hyperresponsiveness, and developed OVA-specific T cells that secreted high levels of IL-10 when restimulated with OVA in vitro. Furthermore, pulmonary dendritic cell trafficking was altered in mice following intranasal PAR-2 activation. Finally, we showed that PAR-2-mediated allergic sensitization was TNF-dependent. Thus, PAR-2 activation in the airways could be a critical factor in the development of allergic sensitization following mucosal exposure to allergens with serine proteinase activity. Interfering with this pathway may prove to be useful for the prevention or treatment of allergic diseases.  相似文献   

6.
Allergen immunotherapy is an effective but underutilized treatment for atopic asthma. We have previously demonstrated that CpG oligodeoxynucleotides (CpG ODN) can prevent the development of a murine model of asthma. In the current study, we evaluated the role of CpG ODN in the treatment of established eosinophilic airway inflammation and bronchial hyperreactivity in a murine model of asthma. In this model, mice with established ovalbumin (OVA)-induced airway disease were given a course of immunotherapy (using low doses of OVA) in the presence or absence of CpG ODN. All mice then were rechallenged with experimental allergen. Untreated mice developed marked airway eosinophilia and bronchial hyperresponsiveness, which were significantly reduced by treatment with OVA and CpG. CpG ODN leads to induction of antigen-induced Th1 cytokine responses; successful therapy was associated with induction of the chemokines interferon-gamma-inducible protein-10 and RANTES and suppression of eotaxin. Unlike previous studies, these data demonstrate that the combination of CpG ODN and allergen can effectively reverse established atopic eosinophilic airway disease, at least partially through redirecting a Th2 to a Th1 response.  相似文献   

7.
The allergy is dependent on the balance between Th1 and Th2. The fungal immunodulatory protein (FIP-fve) was isolated from Flammulina velutipes. FIP-fve has been demonstrated to skew the response to Th1 cytokine production. We investigated whether oral administrations of FIP-fve inhibited allergen (OVA)-induced chronic airway inflammation in the mouse asthma model. After intranasal challenge with OVA, the airway inflammation and hyperresponsiveness were determined by bronchoalveolar lavage fluid (BALF) analysis and ELISA assay. Both pre-treated and post-treated with FIP-fve suppressed the airway hyperresponsiveness by methacholine challenge and significantly decreased the number of infiltrating inflammatory cells and Th2 cytokines in bronchoalveolar lavage fluid (BALF) and serum compared with the OVA sensitized mice. In addition, FIP-fve reduced OVA-specific IgE levels in serum. FIP-fve markedly alleviated the OVA-induced airway hyperresponsiveness (AHR) to inhaled methacholine. Based on lung histopathological studies using hematoxylin and Liu’s staining, FIP-fve inhibited inflammatory cell infiltration compared with the OVA-sensitized mice. Oral FIP-fve had an anti-inflammatory effect on OVA-induced airway inflammations and might posses the potential for alternative therapy for allergic airway diseases.  相似文献   

8.
Transfer of the alphabeta TCR genes into T lymphocytes will provide a means to enhance Ag-specific immunity by increasing the frequency of tumor- or pathogen-specific T lymphocytes. We generated an efficient alphabeta TCR gene transfer system using two independent monocistronic retrovirus vectors harboring either of the class II MHC-restricted alpha or beta TCR genes specific for chicken OVA. The system enabled us to express the clonotypic TCR in 44% of the CD4+ T cells. The transduced cells showed a remarkable response to OVA323-339 peptide in the in vitro culture system, and the response to the Ag was comparable with those of the T lymphocytes derived from transgenic mice harboring OVA-specific TCR. Adoptive transfer of the TCR-transduced cells in mice induced the Ag-specific delayed-type hypersensitivity in response to OVA323-339 challenge. These results indicate that alphabeta TCR gene transfer into peripheral T lymphocytes can reconstitute Ag-specific immunity. We here propose that this method provides a basis for a new approach to manipulation of immune reactions and immunotherapy.  相似文献   

9.
Ag-specific Th1 and Th2 cells have been demonstrated to play a critical role in the induction of allergic diseases. Here we have investigated the precise mechanisms of Th1-induced airway inflammation. Airway inflammation was induced in BALB/c mice by transfer of freshly induced OVA-specific Th1 or Th2 cells followed by OVA inhalation. In this model, both Th1 and Th2 cells induced airway inflammation. The former induced neutrophilia in airways, whereas the latter induced eosinophilia. Moreover, we found that Th1 cells induced more severe airway hyperresponsiveness (AHR) than Th2 cells. The eosinophilia induced by Th2 cell infusion was almost completely blocked by administration of anti-IL-5 mAb, but not anti-IL-4 mAb. In contrast, Th1-induced AHR and pulmonary neutrophilia were inhibited by the administration of anti-human IL-8R Ab, which blocks the function of mouse CXC chemokine(s). These findings reveal a critical role of mouse CXC chemokine(s) in Th1-dependent pulmonary neutrophilia and AHR.  相似文献   

10.
Microbial heat shock proteins (hsp) have been associated with the generation and induction of Th1-type immune responses. We tested the effects of treatment with five different microbial hsp (Mycobacterium leprae, Streptococcus pneumoniae, Helicobacter pylori, bacillus Calmette-Guérin, and Mycobacterium tuberculosis) in a murine model of allergic airway inflammation and airway hyperresponsiveness (AHR). Mice were sensitized to OVA by i.p. injection and then challenged by OVA inhalation. Hsp were administered to each group by i.p. injection before sensitization and challenge. Sensitized and challenged mice developed increased serum levels of OVA-specific IgE with significant airway eosinophilia and heightened responsiveness to methacholine when compared with nonsensitized animals. Administration of M. leprae hsp prevented both development of AHR as well as bronchoalveolar lavage fluid eosinophilia in a dose-dependent manner. Treatment with M. leprae hsp also resulted in suppression of IL-4 and IL-5 production in bronchoalveolar lavage fluid, while IL-10 and IFN-gamma production were increased. Furthermore, M. leprae hsp treatment significantly suppressed OVA-specific IgE production and goblet cell hyperplasia/mucin hyperproduction. In contrast, treatment with the other hsp failed to prevent changes in airway responsiveness, lung eosinophilia, or cytokine production. Depletion of gamma/delta T lymphocytes before sensitization and challenge abolished the effect of M. leprae hsp treatment on AHR. These results indicate selective and distinctive properties among the hsp, and that M. leprae hsp may have a potential therapeutic role in the treatment of allergic airway inflammation and altered airway function.  相似文献   

11.

Background

CD86-CD28 interaction has been suggested as the principal costimulatory pathway for the activation and differentiation of naïve T cells in allergic inflammation. However, it remains uncertain whether this pathway also has an essential role in the effector phase. We sought to determine the contribution of CD86 on dendritic cells in the reactivation of allergen-specific Th2 cells.

Methods

We investigated the effects of the downregulation of CD86 by short interfering RNAs (siRNAs) on Th2 cytokine production in the effector phase in vitro and on asthma phenotypes in ovalbumin (OVA)-sensitized and -challenged mice.

Results

Treatment of bone marrow-derived dendritic cells (BMDCs) with CD86 siRNA attenuated LPS-induced upregulation of CD86. CD86 siRNA treatment impaired BMDCs’ ability to activate OVA-specific Th2 cells. Intratracheal administration of CD86 siRNA during OVA challenge downregulated CD86 expression in the airway mucosa. CD86 siRNA treatment ameliorated OVA-induced airway eosinophilia, airway hyperresponsiveness, and the elevations of OVA-specific IgE in the sera and IL-5, IL-13, and CCL17 in the bronchoalveolar lavage fluid, but not the goblet cell hyperplasia.

Conclusion

These results suggest that local administration of CD86 siRNA during the effector phase ameliorates lines of asthma phenotypes. Targeting airway dendritic cells with siRNA suppresses airway inflammation and hyperresponsiveness in an experimental model of allergic asthma.  相似文献   

12.
13.
Th2 T cell immune-driven inflammation plays an important role in allergic asthma. We studied the effect of counterbalancing Th1 T cells in an asthma model in Brown Norway rats that favors Th2 responses. Rats received i.v. transfers of syngeneic allergen-specific Th1 or Th2 cells, 24 h before aerosol exposure to allergen, and were studied 18-24 h later. Adoptive transfer of OVA-specific Th2 cells, but not Th1 cells, and OVA, but not BSA exposure, induced bronchial hyperresponsiveness (BHR) to acetylcholine and eosinophilia in a cell number-dependent manner. Importantly, cotransfer of OVA-specific Th1 cells dose-dependently reversed BHR and bronchoalveolar lavage (BAL) eosinophilia, but not mucosal eosinophilia. OVA-specific Th1 cells transferred alone induced mucosal eosinophilia, but neither BHR nor BAL eosinophilia. Th1 suppression of BHR and BAL eosinophilia was allergen specific, since cotransfer of BSA-specific Th1 cells with the OVA-specific Th2 cells was not inhibitory when OVA aerosol alone was used, but was suppressive with OVA and BSA challenge. Furthermore, recipients of Th1 cells alone had increased gene expression for IFN-gamma in the lungs, while those receiving Th2 cells alone showed increased IL-4 mRNA. Importantly, induction of these Th2 cytokines was inhibited in recipients of combined Th1 and Th2 cells. Anti-IFN-gamma treatment attenuated the down-regulatory effect of Th1 cells. Allergen-specific Th1 cells down-regulate efferent Th2 cytokine-dependent BHR and BAL eosinophilia in an asthma model via mechanisms that depend on IFN-gamma. Therapy designed to control the efferent phase of established asthma by augmenting down-regulatory Th1 counterbalancing mechanisms should be effective.  相似文献   

14.
DO11.10 transgenic mice, expressing an OVA-specific TCR, were used to study pulmonary T cell responses to inhaled Ags. Before OVA inhalation, the activation of lung parenchymal T cells elicited both strong proliferative responses and IL-2 production. However, following Ag inhalation the proliferative responses of the lung T cells, when restimulated in vitro with OVA323-339 peptide or immobilized anti-CD3, were severely attenuated and associated with a decrease in the level of production of IL-2 but not IFN-gamma. Such immune regulation was tissue-specific, because T cell responses in the lymph nodes and spleens were normal. This dramatic aerosol-induced attenuation of parenchymal T cell proliferation was also observed in BALB/c mice immunized with OVA and in BALB/c mice following adoptive transfer of DO11.10 T cells bearing either a Th1 or Th2 phenotype. In mice that had received Th2 cells, the reduced proliferative responses were associated with a decrease in IL-2 expression but augmented IL-4 and IL-5 production. Invariably, the inhibition of proliferation was a consequence of the action of F4/80+ interstitial macrophages and did not involve alveolar macrophages or their products. These observations demonstrate that clonal expansion of T cells in the lung compartment is prevented following the onset of either Th1- or Th2-mediated inflammation. This form of immune regulation, which appears as a selective defect in IL-2-driven proliferation, may serve to prevent the development of chronic pulmonary lymphoproliferative responses.  相似文献   

15.
Corticosteroids (CS) remain the most efficacious pharmacotherapeutic option for the management of asthma. Although the acute anti-inflammatory effects of CS treatment have been amply documented both clinically and experimentally, recent human data intimate that exposure to CS may be associated with retrograde immune phenomena, including enhanced synthesis of IgE in vivo and elevated Th2 cytokine production in vitro. We have investigated the long-term immunologic effects of CS treatment in a murine model of allergic airway inflammation. CS treatment during initial exposure to OVA or upon long-term Ag rechallenge remarkably attenuated eosinophilic airway inflammation and airway hyperresponsiveness. Interestingly, however, Th2 cytokine production by cultured splenocytes from CS-treated mice was significantly elevated, while IFN-gamma synthesis was depressed. Moreover, mice rechallenged with OVA several weeks after CS intervention during allergic sensitization not only developed airway inflammation, but also exhibited enhanced Th2 cytokine production in lymphoid tissues and OVA-specific IgE in serum. This amplification of the systemic immune response was associated with an intact APC compartment during CS-conditioned sensitization to OVA. These data indicate that immune processes underlying the allergic phenotype remain impervious to CS treatment and raise the possibility that treatment with CS during sensitization may amplify elements of the allergen-specific immune response.  相似文献   

16.
One of several routes of achieving immunologic tolerance is through functional inactivation of Ag-specific T cells. Oral administration of Ag can allow survival of the Ag-specific T cells that are functionally anergic. The aim of this study was to investigate whether functional inactivation of Ag-specific T cells is directed through an activation process and to further define the differentiative pathways and functional characteristics of anergic T cells. Mice were transplanted with OVA-specific TCR-transgenic T cells and either fed OVA or immunized s.c. with the OVA peptide 323-339 in CFA. OVA-specific T cells from OVA-fed mice were unresponsive to restimulation in vitro within 48-72 h after treatment. In vivo, however, T cell proliferation was detected by 5, 6-carboxy-succinimidyl-fluoresceine-ester intensity changes in OVA-specific T cells. The mesenteric lymph nodes (LNs) from OVA-fed mice more frequently contained OVA-specific dividing cells in vivo than those in the peripheral LNs, and the reciprocal was observed following s.c. immunization of the OVA peptide in CFA. The induction of anergy in OVA-fed mice was accompanied by rapid up-regulation of CD69 and CTLA-4, later down-regulation of CD45RB on OVA-specific T cells, and a marked decrease in T cell secretion of IL-2, IL-10, and IFN-gamma after OVA restimulation in vitro. Results from this study indicate that the inductive phase of oral tolerance is preceded by Ag-specific T cell activation in vivo, proliferation in the regional draining LNs, and differentiation into a memory-like state. These results indicate that Ag-directed differentiation occurs as a part of T cell tolerance through anergy.  相似文献   

17.
Naive CD4(+) T cells differentiate into two types of helper T cells showing an interferon-gamma-predominant (Th1) or an interleukin-4-predominant (Th2) cytokine secretion profile after repeated antigenic stimulation. Their differentiation can be influenced by slight differences in the interaction between the T cell receptor (TCR) and its ligand at the time of primary activation. However, the primary response of freshly isolated naive CD4(+) T cells to altered TCR ligands is still unclear. Here, we investigated the primary response of splenic naive CD4(+) T cells derived from transgenic mice expressing TCR specific for residues 323-339 of ovalbumin (OVA323-339) bound to I-A(d) molecules. Naive CD4(+) T cells secreted either Th1- or Th2-type cytokines immediately after stimulation with OVA323-339 or its single amino acid-substituted analogs. Helper activity for antibody secretion by co-cultured resting B cells was also found in the primary response, accompanied by either low-level Th2-type cytokine secretion or no apparent cytokine secretion. Our results clearly indicate that dichotomy of the Th1/Th2 cytokine secretion profile can be elicited upon primary activation of naive CD4(+) T cells. We also demonstrate that the helper activity of naive CD4(+) T cells for antibody production does not correspond to the amounts of the relevant cytokines secreted.  相似文献   

18.
Knockout mice studies have revealed that NF-kappaB plays a critical role in Th2 cell differentiation and is therefore required for induction of allergic airway inflammation. However, the questions of whether NF-kappaB also plays a role in the effector phase of airway allergy and whether inhibiting NF-kappaB could have therapeutic value in the treatment of established asthma remain unanswered. To address these issues, we have assessed in OVA-sensitized wild-type mice the effects of selectively antagonizing NF-kappaB activity in the lungs during OVA challenge. Intratracheal administration of NF-kappaB decoy oligodeoxynucleotides to OVA-sensitized mice led to efficient nuclear transfection of airway immune cells, but not constitutive lung cells and draining lymph node cells, associated with abrogation of NF-kappaB activity in the airways upon OVA provocation. NF-kappaB inhibition was associated with strong attenuation of allergic lung inflammation, airway hyperresponsiveness, and local production of mucus, IL-5, IL-13, and eotaxin. IL-4 and OVA-specific IgE and IgG1 production was not reduced. This study demonstrates for the first time that activation of NF-kappaB in local immune cells is critically involved in the effector phase of allergic airway disease and that specific NF-kappaB inhibition in the lungs has therapeutic potential in the control of pulmonary allergy.  相似文献   

19.
The sphingosine 1-phosphate receptor agonist FTY720 is a novel immunomodulator that sequesters lymphocytes in secondary lymphoid organs and thereby prevents their migration to sites of inflammation. However, there is currently no information available on whether this drug affects Th1 or Th2 cell-mediated lung-inflammatory responses. The effect of FTY720 was therefore investigated in a murine airway inflammation model using OVA-specific, in vitro differentiated, and adoptively transferred Th1 and Th2 cells. Both Th1 and Th2 cells express a similar pattern of FTY720-targeted sphingosine 1-phosphate receptors. The OVA-induced Th1-mediated airway inflammation characterized by increased numbers of lymphocytes and neutrophils in bronchoalveolar lavage fluid was significantly inhibited by oral FTY720 treatment. Similarly, FTY720 suppressed the Th2 cell-induced bronchoalveolar lavage fluid eosinophilia and the infiltration of T lymphocytes and eosinophils into the bronchial tissue. Moreover, the Ag-induced bronchial hyperresponsiveness to inhaled metacholine was almost completely blocked. The inhibitory effect of FTY720 on airway inflammation, induction of bronchial hyperresponsiveness, and goblet cell hyperplasia could be confirmed in an actively Ag-sensitized murine asthma model, clearly indicating that Th2 cell-driven allergic diseases such as asthma could benefit from such treatment.  相似文献   

20.
CTLA-4, a homologue of CD28, is a negative regulator of T cell activation in the periphery and is transiently expressed on the cell surface after T cell activation. However, the role of CTLA-4 in T cell activation in the thymus is not clear. This investigation was initiated to determine the role of CTLA-4 in the activation of CD4(+)CD8(+) double-positive (DP) and CD4(+)CD8(-) and CD4(-)CD8(+) single-positive (SP) thymocytes using fetal thymic organ cultures (FTOC) of MHC class II-restricted, OVA(323-339)-restricted TCR transgenic mice (DO11.10). We found that treatment of the FTOC with anti-CTLA-4-blocking Ab during activation with OVA(323-339) increased the proportion and number of DP thymocytes, but decreased the proportion and number of SP thymocytes compared with OVA(323-339)-stimulated FTOC without anti-CTLA-4 Ab treatment. In addition, anti-CTLA-4 Ab treatment inhibited OVA(323-339)-induced expression of the early activation marker, CD69, in DP thymocytes, but increased CD69 in SP thymocytes. Similarly, CTLA-4 blockage decreased phosphorylation of ERK in DP thymocytes by Ag-specific TCR engagement, but increased phosphorylation of ERK in SP thymocytes. CTLA-4 blockage inhibited deletion of DP thymocytes treated with a high dose of OVA(323-339), whereas CTLA-4 blockage did not inhibit deletion of DP thymocytes treated with a low dose of OVA(323-339). We conclude that CTLA-4 positively regulates the activation of DP thymocytes, resulting in their deletion, whereas blocking CTLA-4 suppresses the activation of DP thymocytes, leading to inhibition of DP thymocyte deletion. In contrast, CTLA-4 negatively regulates the activation of SP thymocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号