首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The experiment was conducted to study the effects of fermentation of barley, using two different strains of lactic acid bacteria, a Lactobacillus plantarum/pentosus strain isolated from spontaneously fermented rye sourdough (AD2) and a starch-degrading Lactobacillus plantarum (AM4), on contents of mixed-linked (1 → 3) (1 → 4)-β-glucans, α-amylase inhibitor activity, inositol phosphates, and apparent digestibility of macronutrients in mink. Effects of fermentation were compared with effects of gamma irradiation (γ-irradiation: 60Co γ-rays at 25 kGy). The diets were fed to mink with and without a supplementary enzyme preparation. Both lactic acid fermentation and γ-irradiation followed by soaking and incubation, reduced concentrations of soluble β-glucans, phytate and α-amylase inhibitor activity. Dietary enzyme supplementation increased significantly digestibility of crude protein, fat, starch and crude carbohydrate (CHO). Fermentation of the barley increased digestibility of starch and CHO. Fermentation with lactic acid bacteria AD2 resulted in higher starch and CHO digestibility than strain AM4, and had greater effect than γ-irradiation, soaking and incubation. The highest digestibility of starch and CHO was obtained after AD2 fermentation followed by enzyme supplementation. It is concluded that both lactic acid fermentation of barley and enzyme supplementation have positive nutritional implications in the mink by limiting the effects of antinutrients and improving digestibility and energy utilization.  相似文献   

2.
Wheat and barley whole meal flours (WMFs) were subjected to treatment by fermentation, autoclaving, and fermentation followed by autoclaving. The WMFs were analysed for chemical composition, formulated into wet diets (282 g kg−1) and fed to adult mink (Mustela vison) for determination of total tract digestibility of total starch, total carbohydrate, crude protein and fat. Fermentation of WMF/water mixtures inoculated with a Lactobacillus sp. (strain AD2) was performed at 30°C for 16 h. Autoclaving was carried out for 60 min at 120°C. Fermentation increased colony-forming units (CFUs) to about 108 g−1 and lowered pH to 3.7–3.8 in both WMFs. All carbohydrate parameters were affected by type of cereal, and were, except for total starch, affected by treatment. Levels of total dietary fibre and β-glucans decreased by fermentation in both WMFs. The decrease in total β-glucans from 33.5 to 18.4 g kg−1 in barley WMF, was mainly restricted to the soluble fraction. Glucose levels in barley WMF increased simultaneously from 0.6 to 12.3 g kg−1. The main effects of autoclaving were increased levels of total dietary fibre, maltose, and increased hydration capacity. With fermentation prior to autoclaving, increases in levels of the fibre fractions and maltose were prevented while hydration capacity prevailed as an effect of autoclaving. Compared with fermentation alone, the combined treatment increased damaged starch levels and hydration capacity. Digestibilities of total carbohydrate, crude protein and fat were significantly higher for wheat than for barley. Fermentation had no effect on digestibility of total starch or total carbohydrate of wheat, but increased digestibility of total starch of barley significantly from 0.742 to 0.880, and of total carbohydrate from 0.457 to 0.616. Autoclaving had no significant effect on digestibility of total starch and total carbohydrate of wheat. Digestibility of total starch and total carbohydrate in barley increased significantly after autoclaving. Total starch and total carbohydrate digestibility of both wheat and barley were significantly enhanced by combined fermentation and autoclaving compared with fermentation alone. Compared with autoclaving alone, combined fermentation and autoclaving promoted no significant improvement of total starch and total carbohydrate digestibility in wheat, whereas total carbohydrate digestibility in barley increased from 0.605 to 0.672. Fat digestibility was slightly improved by both fermentation and autoclaving. Autoclaving of cereals reduced significantly the faecal dry matter contents of mink. This effect could be counteracted by preceding fermentation. In conclusion, lactic acid fermentation of wheat and especially barley provided chemical changes of benefit for carbohydrate digestion in the mink.  相似文献   

3.
Lactic acid fermentation of starch by Lactobacillus manihotivorans LMG 18010T, a new amylolytic L(+) lactic acid producer, was investigated and compared with starch fermentation by Lact. plantarum A6. At non-controlled pH, growth and lactic acid production from starch by Lact. manihotivorans LMG 18010T lasted 25 h. Specific growth and lactic acid production rates continuously decreased from the onset of the fermentation, unlike Lact. plantarum A6 which was able to grow and convert starch product hydrolysis into lactic acid more rapidly and efficiently at a constant rate up to pH 4.5. In spite of complete and rapid starch hydrolysis by Lact. manihotivorans LMG 18010T during the first 6 h, only 45% of starch hydrolysis products were converted to lactic acid. When pH was maintained at 6.0, lactic acid, amylase and final biomass production by Lact. manihotivorans LMG 18010T increased markedly and the fermentation time was reduced by half. Under the same conditions, an increase only in amylase production was observed with Lact. plantarum A6. When grown on glucose or starch at pH 6.0, Lact. manihotivorans LMG 18010T had an identical maximum specific growth rate (0.35 h(-1)), whereas the maximum rate of specific lactic acid production was three times higher with glucose as substrate. Lactobacillus manihotivorans LMG 18010T did not produce amylase when grown on glucose. Based on the differences in the physiology between the two species and other amylolytic lactic acid bacteria, different applications may be expected.  相似文献   

4.
This work presents the purification and characterization of an extracellular alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) produced by a new lactic acid bacterium: Lactobacillus manihotivorans able to produce L(+) lactic acid from starch. The molecular weight was found to be 135 kDa. The temperature and pH optimum were 55 degrees C and 5.5, respectively, and pI was 3.8. The alpha-amylase had good stability at pH range from 5 to 6 and the enzyme was sensitive to temperature, losing activity within 1 h of incubation at 55 degrees C. Higher thermal stability was observed when the enzyme was incubated in presence of soluble starch. K(m) value and activation energy were 3.44 mg/ml and 32.55 kJ/mol, respectively. Amylose was found to be a better substrate than soluble starch and amylopectin. Al(3+), Fe(3+), and Hg(2+) (10 mM) almost completely inhibited the alpha-amylase.  相似文献   

5.
Lactobacillus cellobiosus, isolated from city wastes, produced an extracellular alpha-amylase and produced lactic acid by direct fermentation of waste potato mash. Using a 5% (w/v) potato mash with 3% (w/v) CaCO to neutralise the lactic acid produced, 50% conversion of starch to lactic acid occurred in 48 h without any other media supplement.  相似文献   

6.
Crude extract from sweet sorghum supplemented with vetch juice was utilized as the carbohydrate source for fermentative production of lactic acid. Fermentation of media containing 7%(w/v) total sugar was complex completed in 60–80 hr by Lactobacillus plantarum, product yield averaging 85%. Maximum acid production rates were dependent on pH, initial substrate distribution, and concentration, the rates varying from 2 to 5 g(liter·hr.) The lactic acid yield was lowered to 67% under limited medium supplementation. The fermented ammoniated product contained over eight times as much equivalent crude protein (N × 6.25) as the original medium. Unstructured kinetic models were developed for cell growth, lactic acid formation, and substrate consumption in batch fermentation. With the provision of experimentally determined kinetic parameters, the proposed models accurately the fermentation process.  相似文献   

7.
The effects of age of growing turkeys and beta-glucanase-xylanase activity-containing feed enzyme supplementation on digestibility and feeding value of pelleted maize, wheat, barley and oats were investigated in growing turkeys using excreta collection and ileal sampling by slaughter. Excreta were collected and turkeys were slaughtered at 4, 8 and 12 weeks of age. Viscosity of jejuno-duodenal digesta, caecal volatile fatty acid concentration, ileal crude protein digestibility, total tract fat digestibility and AMEN were assayed using titanium dioxide as an indigestible marker. The highest viscosities were observed in barley and wheat. Viscosity of wheat, barley and oats digesta decreased while caecal volatile fatty acid concentration, fat digestibility and AMEN increased with age. Ileal crude protein digestibility was highest in wheat and lowest in barley. Ileal crude protein digestibility significantly declined with age in most feeding treatments. Enzyme reduced digesta viscosity most efficiently in wheat and barley and improved ileal crude protein digestibility, total tract fat digestibility and AMEN in wheat, barley and oats, but interactions occurred, the effect of enzyme on viscosity being the most remarkable for wheat and barley and for the young birds.  相似文献   

8.
Lactic acid fermentation of leguminous plant juices was modeled to provide a comparative efficiency assessment of the previously selected strains of lactic acid bacteria as potential components of starter cultures. Juices of the legumes fodder galega, red clover, and alfalfa were subjected to lactic acid fermentation in 27 variants of experiment. Local strains (Lactobacillus sp. RS 2, Lactobacillus sp. RS 3, and Lactobacillus sp. RS 4) and the collection strain Lactobacillus plantarum BS 933 appeared the most efficient (with reference to the rate and degree of acidogenesis, ratio of lactic and acetic acids, and dynamics of microflora) in fermenting fodder galega juice; Lactobacillus sp. RS 1, Lactobacillus sp. RS 2, Lactobacillus sp. RS 3, Lactobacillus sp. RS 4, and L. plantarum BS 933 were the most efficient for red clover juice. Correction of alfalfa juice fermentation using the tested lactic acid bacterial strains appeared inefficient, which is explainable by its increased protein content and a low level of the acids produced during fermentation.  相似文献   

9.
Yun JS  Wee YJ  Kim JN  Ryu HW 《Biotechnology letters》2004,26(20):1613-1616
Rice and wheat brans, without additional nutrients and hydrolyzed by alpha-amylase and amyloglucosidase, were fermented to DL-lactic acid using a newly isolated strain of Lactobacillus sp. RKY2. In batch fermentations at 36 degrees C and pH 6, the amount of lactic acid in fermentation broth reached 129 g l(-1) by supplementation of rice bran with whole rice flour. The maximum productivity was 3.1 g lactic acid l(-1) h(-1) in rice bran medium supplemented with whole rice flour or whole wheat flour.  相似文献   

10.
C. FIGUEROA, A.M. DAVILA AND J. POURQUIÉ 1997. Sour cassava starch is the result of a lactic fermentation of raw cassava starch followed by sun drying. Lactobacillus plantarum strains are commonly isolated from this fermentation. Among them, a particular group of strains has been characterized by a strong ropy phenotype, the production of a thickening factor under submerged cultures conditions, a low nutritional requirement for organic nitrogen and an absence of amylolytic activity. However, these strains have been shown to thrive on starch, through commensalistic interactions with amylolytic lactic acid bacteria. These results explain the frequent occurrence of ropy, non-amylolytic strains in sour starch fermentation, and support the hypothesis of exopolysaccharides production during this fermentation.  相似文献   

11.
The effects of age of growing turkeys and β-glucanase-xylanase activity-containing feed enzyme supplementation on digestibility and feeding value of pelleted maize, wheat, barley and oats were investigated in growing turkeys using excreta collection and ileal sampling by slaughter. Excreta were collected and turkeys were slaughtered at 4, 8 and 12 weeks of age. Viscosity of jejuno-duodenal digesta, caecal volatile fatty acid concentration, ileal crude protein digestibility, total tract fat digestibility and AMEN were assayed using titanium dioxide as an indigestible marker. The highest viscosities were observed in barley and wheat. Viscosity of wheat, barley and oats digesta decreased while caecal volatile fatty acid concentration, fat digestibility and AMEN increased with age. Ileal crude protein digestibility was highest in wheat and lowest in barley. Ileal crude protein digestibility significantly declined with age in most feeding treatments. Enzyme reduced digesta viscosity most efficiently in wheat and barley and improved ileal crude protein digestibility, total tract fat digestibility and AMEN in wheat, barley and oats, but interactions occurred, the effect of enzyme on viscosity being the most remarkable for wheat and barley and for the young birds.  相似文献   

12.
AIMS: Development of cost-effective production medium by applying statistical designs for single-step fermentation of starch (corn flour - CF) to L-(+) lactic acid, using inexpensive nitrogen sources as substitutes for peptone and yeast extract in MRS medium by amylolytic Lactobacillus amylophilus GV6. METHODS AND RESULTS: A two-level Plackett-Burman design was employed for screening various available crude starches (flours) for L-(+) lactic acid production by Lact. amylophilus GV6 using red lentil flour (RL) and bakers yeast cells (YC) as substitutes for commercial peptone and yeast extract in MRS medium in anaerobic submerged fermentation. Of all the tested flours, CF was found to be the most significant. Central composite rotatable design was employed to determine maximum production of L-(+) lactic acid at optimum values of process variables, CF, RL, YC, CaCO(3) and incubation period (IP). minitab analyses showed that lactic acid production was significantly affected by the linear terms CF, RL, CaCO(3) and IP. The interactions of CF-RL, CF-YC, CF-CaCO(3), RL-YC and RL-CaCO(3) and the square terms CF and IP were significant. The maximum lactic acid production of 29 g/37 g of starch present in 50 g of CF was obtained at optimized concentrations of CF 5%, RL 0.7%, YC 0.8%, CaCO(3) 0.8% and IP 2.9 days. CONCLUSIONS: Successful application of Plackett-Burman design helped in identifying CF as the best carbon source among the tested flours for L-(+) lactic acid production using inexpensive nitrogen sources. Further optimization of the process variables by response surface methods (RSMs) led to maximum production of lactic acid (29 g lactic acid from 37 g of starch present in 50 g of flour). SIGNIFICANCE AND IMPACT OF THE STUDY: Lactobacillus amylophilus GV6 showed 78.4% lactic acid production efficiency (g lactic acid produced/g starch taken) and 96% lactic acid yield efficiency (g lactic acid produced/g starch utilized). Information from the present studies provides a better understanding on production of L-(+) lactic acid on fermentation of CF using inexpensive nitrogen sources and on changes in the production as a response from interaction of factors. Use of inexpensive nitrogen sources and starch as substrate in MRS medium for single-step fermentation of lactic acid can become an efficient, economic and viable process. This report is on optimization of inexpensive nitrogen sources completely replacing peptone and yeast extract in single-step submerged fermentation of starch (present in CF) to lactic acid with high production efficiency.  相似文献   

13.
L(+) Lactic acid fermentation was studied by Lactobacillus amylophilus GV6 under the influence of inexpensive nitrogen sources (red lentil-RL, and Baker's yeast cells-YC) and starch by response surface methodology (RSM). Central composite rotatable design (CCRD) was employed to determine maximum lactic acid production at optimum values for process variables RL, YC and incubation period (IP) and a satisfactory fit model was realized. Lactic acid production was significantly affected by RL and IP interactions as well as by independent variables RL and YC. Maximum lactic acid production of 13.5 g/15.2g starch was obtained with RL 0.8%, YC 1% and IP of 48 h, with 92% lactic acid yield efficiency (g lactic acid produced/g substrate utilized) and 40% increase (from 50 g to 92 g/100 g starch utilized) in lactic acid production. This is the first report on response optimization in direct fermentation of starch to lactic acid using inexpensive nitrogen sources substituting peptone and yeast extract in anaerobic submerged fermentation by amylolytic lactic acid bacteria (LAB).  相似文献   

14.
植物乳杆菌DY6主要抑菌代谢物的分析和鉴定   总被引:1,自引:0,他引:1  
【背景】被广泛应用于食品和饲料等多个行业的乳酸菌已成为制作生物防腐剂的研究热点。【目的】探究抑菌性能良好的植物乳杆菌DY6的抑菌物质,为其进一步应用提供参考依据。【方法】对植物乳杆菌发酵液中抑菌物质的理化特性进行研究,采用GC-MS分析发酵上清液代谢物,通过多元统计学分析方法推测主要抑菌物质,抑菌物质通过半制备进行初步分离后用GC-MS鉴定。【结果】植物乳杆菌DY6对金黄色葡萄球菌、大肠杆菌、沙门氏菌都有较强的抑制作用。采用不同发酵时间的发酵液作为研究对象,测定发酵上清液的抑菌能力,发酵0-4 h上清液无抑菌能力,发酵至8 h抑菌能力逐步上升,发酵24-48 h发酵上清液抑菌能力趋于稳定,在48 h时抑菌能力最佳,抑菌直径为15.28mm。通过多元统计学分析乳酸菌发酵液差异标志物,发现主要差异物为有机酸(如乳酸、乙酸、丙酸等)和脂肪酸(如辛酸、癸酸等)。经过半制备液相分离发酵上清液得到的抑菌组分,主要有有机酸(如乳酸、乙酸、3-苯基乳酸、苯丙酸等)和脂肪酸(如癸酸、辛酸、壬酸等),另外还有少量的醛类和醇类物质。【结论】确定了植物乳杆菌DY6的抑菌物质主要为有机酸和脂肪酸,为其进一步防腐应用提供了理论基础。  相似文献   

15.
One hundred and thirty four lactic acid bacterial strains isolated during the 96-h period of cassava fermentation for fufu production were identified. The spectrum and proportion of the strains include Lactobacillus plantarum , 81%; Leuconostoc mesenteroides , 16%; Lact. cellobiosus , 15%; Lact. brevis , 9%; Lact, coprophilus , 5%; Lact. lactis , 4%; Leuc. lactis , 3% and Lact. bulgaricus , 1%. The isolates were characterized into strains. The succession among the lactic isolates was established. Lactobacillus plantarum was identified as the most dominant lactic acid bacterial strain involved in the fermentation.  相似文献   

16.
Fermentation of capers (the fruits of Capparis sp.) was studied by molecular and culture-independent methods. A lactic acid fermentation occurred following immersion of caper berries in water, resulting in fast acidification and development of the organoleptic properties typical of this fermented food. A collection of 133 isolates obtained at different times of fermentation was reduced to 75 after randomly amplified polymorphic DNA (RAPD)-PCR analysis. Isolates were identified by PCR or 16S rRNA gene sequencing as Lactobacillus plantarum (37 isolates), Lactobacillus paraplantarum (1 isolate), Lactobacillus pentosus (5 isolates), Lactobacillus brevis (9 isolates), Lactobacillus fermentum (6 isolates), Pediococcus pentosaceus (14 isolates), Pediococcus acidilactici (1 isolate), and Enterococcus faecium (2 isolates). Cluster analysis of RAPD-PCR patterns revealed a high degree of diversity among lactobacilli (with four major groups and five subgroups), while pediococci clustered in two closely related groups. A culture-independent analysis of fermentation samples by temporal temperature gradient electrophoresis (TTGE) also indicated that L. plantarum is the predominant species in this fermentation, in agreement with culture-dependent results. The distribution of L. brevis and L. fermentum in samples was also determined by TTGE, but identification of Pediococcus at the species level was not possible. TTGE also allowed a more precise estimation of the distribution of E. faecium, and the detection of Enterococcus casseliflavus (which was not revealed by the culture-dependent analysis). Results from this study indicate that complementary data from molecular and culture-dependent analysis provide a more accurate determination of the microbial community dynamics during caper fermentation.  相似文献   

17.
Summary Sayur asin is a fermented mustard cabbage product of Indonesia. The cabbage is fermented naturally in the presence of brined water taken from boiled rice. Fermentation was characterized by a sequential growth of the lactic acid bacteria, Leuconostoc mesenteroides, Lactobacillus confusus, Lactobacillus curvatus, Pediococcus pentosaceus, and Lactobacillus plantarum. Starch degrading species of Bacillus, Staphylococcus and Corynebacterium exhibited limited growth during the first day of fermentation. The yeasts, Candida sake and Candida guilliermondii contributed to the fermentation. Lactic acid, acetic acid, succinic acid, ethanol and glycerol were products of fermentation. Glucose, generated by the degradation of rice starch and maltose, was metabolized by the species that grew.  相似文献   

18.
Anaerobic l-lactate degradation by Lactobacillus plantarum   总被引:5,自引:0,他引:5  
Abstract Lactobacillus plantarum strains used as silage inoculants were investigated for their ability to metabolize lactic acid anaerobically after prolonged incubation (7–30 days) when glucose was absent from the medium. When citrate was present in the medium together with glucose during the initial fermentation, the lactic acid produced was degraded. Citrate was concomitantly degraded, resulting in accumulation of formic, acetic and succinic acids along with CO2. The anaerobic degradation was confirmed by the use of l 14C(U) labelled lactate. The existence of pyruvate formate lyase in L. plantarum was indicated by using 14C-labelled pyruvate and HPLC identification of end-products. The 1-14C-carboxylic acid group of pyruvate was converted to formic acid, and the 3-14C was found in acetic acid. The key enzyme(s) in this metabolic pathway appears to require anaerobic conditions and induction by citrate.  相似文献   

19.
We developed a new cell surface engineering system based on the PgsA anchor protein from Bacillus subtilis. In this system, the N terminus of the target protein was fused to the PgsA protein and the resulting fusion protein was expressed on the cell surface. Using this new system, we constructed a novel starch-degrading strain of Lactobacillus casei by genetically displaying alpha-amylase from the Streptococcus bovis strain 148 with a FLAG peptide tag (AmyAF). Localization of the PgsA-AmyA-FLAG fusion protein on the cell surface was confirmed by immunofluorescence microscopy and flow cytometric analysis. The lactic acid bacteria which displayed AmyAF showed significantly elevated hydrolytic activity toward soluble starch. By fermentation using AmyAF-displaying L. casei cells, 50 g/liter of soluble starch was reduced to 13.7 g/liter, and 21.8 g/liter of lactic acid was produced within about 24 h. The yield in terms of grams of lactic acid produced per gram of carbohydrate utilized was 0.60 g per g of carbohydrate consumed at 24 h. Since AmyA was immobilized on the cells, cells were recovered after fermentation and used repeatedly. During repeated utilization of cells, the lactic acid yield was improved to 0.81 g per g of carbohydrate consumed at 72 h. These results indicate that efficient simultaneous saccharification and fermentation from soluble starch to lactic acid were carried out by recombinant L. casei cells with cell surface display of AmyA.  相似文献   

20.
Different starch components were added to rations with maize silage measuring the influence of the supplements on the digestibility and energy content of maize silage in cattle (n = 36) and sheep (n = 36). The starch‐rich components maize, wheat, barley, oat, cassava meal and potatoe starch were added to the total rations on average of 33%. All supplements were ground (sieve of 2.5 mm), additionally, wheat was added in extruded or crushed form. All rations including the control ration without starch components were supplemented with soybean meal to an average crude protein content of 12.4% DM. The mean starch content of the total rations was 42% DM.

The supplementation of maize silage with the different starch components increased the digestibility of the organic matter of all rations on average only slightly from 77% to 78% in cattle, while the mean digestibility in sheep rised from 74% to 79% more pronounced. However, the influence of the different starch components on the digestibility was similiar for both ruminants. The supplementation with the ground, crushed or extruded wheat, with barley and with oats impaired the digestibility of the crude fibre of the total ration and of the maize silage, respectively. Therefore, the digestibility of the organic matter of maize silage was reduced and the energy content decreased by about 6% in comparison to the control ration without starch supplementation. However, the supplementation with maize, cassava meal or pota‐toe starch had no negative effects on the digestiblity and energy content of maize silage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号