首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Metabolic effects of pent-4-enoate in isolated perfused rat heart.   总被引:2,自引:2,他引:0       下载免费PDF全文
The metabolic effects of the hypoglycaemic agent pent-4-enoate were studied in isolated, beating or potassium-arrested rat hearts. The addition of 0.8mM-pent-4-enoate to the perfusion fluid increased O2 consumption by 76% in the arrested heart and by 14% in the beating heart; the concentration ratio of phosphocreatine/creatine increase concomitantly by 47% and 27% respectively. Perfusion of the heart with pent-4-enoate resulted in a 30-fold increase in the concentration of the pool of tricarboxylic acid-cycle intermediates in the tissue, about 90% of this increase being due to malate. The sum of the concentrations of the myocardial free amino acids remained virtually unchanged during the accumulation of the tricarboxylic acid-cycle intermediates. It was concluded that pent-4-enoate can be effectively metabolized in the myocardium and that its metabolism probably proceeds via propionyl-CoA, since pent-4-enoate reproduces many of the metabolic characteristics of propionate in the cardiac muscle. The accumulation of the tricarboxylic acid-cycle intermediates is probably due to carboxylation of propionyl-CoA. The response pattern of the metabolite concentrations in the cardiac muscle is quite different from that in the liver, in which decrease of the concentrations of the tricarboxylic acid-cycle intermediates has been observed previously [Williamson, Rostand & Peterson (1970) J. Biol. Chem. 245, 3242-3251].  相似文献   

2.
3.
4.
The metabolic effects of pent-4-enoate were studied in beating and potassium-arrested perfused rat hearts. The addition of 0.8mm-pent-4-enoate to the fluid used to perfuse a potassium-arrested heart resulted in a 70% increase in the O(2) consumption and a 66% decrease in the glycolytic flux as measured in terms of the de-tritiation of [3-(3)H]glucose, although the proportion of the O(2) consumption attributable to glucose oxidation decreased from an initial 30% to 10%. The pent-4-enoate-induced increase in O(2) consumption was only 15% in the beating heart. In the potassium-arrested heart, pent-4-enoate stimulated palmitate oxidation by more than 100% when measured in terms of the production of (14)CO(2) from [1-(14)C]palmitate, but in the beating heart palmitate oxidation was inhibited. Perfusion of the heart with pent-4-enoate had no effect on the proportion of pyruvate dehydrogenase found in the active form, in spite of large changes in the CoASH and acetyl-CoA concentrations and changes in their concentration ratios. The effects of pent-4-enoate on the cellular redox state were dependent on the ATP consumption of the heart. In the beating heart, pent-4-enoate caused a rapid mitochondrial NAD(+) reduction that subsequently faded out, so that the final state was more oxidized than the initial state. The arrested heart, however, remained in a more reduced state than initially, even after the partial re-oxidation that followed the initial rapid NAD(+) reduction. The ability of pent-4-enoate to increase or decrease fatty acid oxidation can be explained on the basis of the differential effects of pent-4-enoate on the concentration of citric acid-cycle intermediates under conditions of high or low ATP consumption of the myocardial cell. The proportion of the fatty acids in the fuel consumed by the heart is probably primarily determined by the regulatory mechanisms of glycolysis. When pent-4-enoate causes an increase in the citric acid-cycle intermediates, feedback inhibition of glycolysis results in an increase in the oxidation of fatty acids.  相似文献   

5.
The metabolism of four short-chain odd-number-carbon fatty acids, pentanoate, pent-4-enoate, propionate and acrylate, was studied in isolated rat heart mitochondria incubated in [14C]bicarbonate buffer. Under these conditions pentanoate was metabolized with a concomitant accumulation of malate and incorporation of 14CO2 into non-volatile compounds. The metabolism of propionate to tricarboxylic acid-cycle intermediates required the addition of ATP and oligomycin. After addition of a small amount of rotenone to the incubation medium, pent-4-enoate was metabolized with an increase in malate from less than 3 nmol/mg of protein to 34.0 +/- 1.5 nmol/mg in 40 min, during which time the amount of 14CO2 fixed in acid-stable compounds increased from 1.56 +/- 0.30 to 41.1 +/- 2.6 nmol/mg of protein. Acrylate was not metabolized under any of the conditions tested. The results show that cardiac mitochondria must have an enzyme system that is capable of reducing the double bond of either pent-4-enoate or its metabolities. That the metabolism of pent-4-enoate occurs through a reductive step and energy-dependent carboxylation is evident from the requirement for NAD+ reduction by partial inhibition of the mitochondrial respiratory chain and the presence of ATP and CO2. The results do not enable us to say whether the compound reduced is pent-4-enoyl-CoA or acryloyl-CoA.  相似文献   

6.
7.
An ultrastructural and biochemical study of the toxic and hypoglycaemic effects of hypoglycin and pent-4-enoate was made on the livers of normal and clofibrate-fed rats. Injection of hypoglycin to rats doubles (from 22% to 44%) the volume fraction of mitochondria and decreases (from 1.05% to 0.26%) the volume fraction of peroxisomes in hepatocytes. The fast-acting toxin pent-4-enoate causes few ultrastructural changes except for the accumulation of lipids. In male adult rats fed with 0.5% clofibrate in their diet for 1-2 months, the volume fraction occupied by peroxisomes and mitochondria in hepatocytes rose to 6.26% and 29.5% respectively. Clofibrate feeding apparently protected the animals against the toxic, hypoglycaemic and hypothermic effects of hypoglycin and of pent-4-enoate, and completely prevented the ultrastructural damage caused by hypoglycin. After hypoglycin administration, hepatic mitochondrial butyryl-CoA dehydrogenase activity was inhibited by more than 90% and, surprisingly, the activity of the peroxisomal enzymes studied was largely preserved. When hypoglycin was given to rats fed on a clofibrate-containing diet, the oxidation of decanoylcarnitine, which was incomplete after hypoglycin treatment alone, remained incomplete with uncoupled mitochondria, but became apparently complete with coupled mitochondria. In the latter condition, there was a slowing of the rate during the last quarter of the pulse of oxygen uptake. Further, butyryl-CoA dehydrogenase activity was much less affected by hypoglycin in clofibrate-fed animals. Pent-4-enoate does not inhibit beta-oxidation in coupled mitochondria from clofibrate-treated rats.  相似文献   

8.
Pent-4-enoate at 0.1 to 1.0 mM strongly inhibited urea synthesis in isolated rat hepatocytes. Pent-4-enoate at the same concentrations markedly decreased concentrations of N-acetyl-L-glutamate, an essential activator of carbamoyl-phosphate synthase-I (EC 2.7.2.5), and the decrease was well parallel with the inhibition of urea synthesis by pent-4-enoate. This compound also lowered cellular concentrations of acetyl-CoA, a substrate of acetylglutamate synthase (EC 2.3.1.1). Pent-4-enoate in a dose of 1 mM did not significantly affect cellular concentrations of ATP, and had no direct effect on acetylglutamate synthase activity. These results suggest that the inhibition of urea synthesis by pent-4-enoate is due to decrease in N-acetyl-L-glutamate concentration and that the decrease is probably brought about by decreased rate of its synthesis due to the lowered concentration of cellular acetyl-CoA.  相似文献   

9.
Autoactivation of C1r is closely correlated with an irreversible increase of its intrinsic fluorescence. The activation and the fluorescence increase of C1r are accelerated on addition of activated C1r. Ca2+, di-isopropyl phosphorofluoridate and C1 inhibitor, which all inhibit, although to different extents, C1r activation, inhibit in parallel the fluorescence increase. C1r activation is blocked at pH 4.0-5.0, whereas it is accelerated at pH 10.5; under the same conditions the fluorescence increase shows parallel effects. No such fluorescence increase is observed during C1s activation by trace amounts of C1r. Far-u.v. circular-dichroism spectra of C1r indicate 73 and 78% of unordered form in both the proenzyme and the activated species respectively. The slight changes observed on activation are not restricted to C1r, as comparable results are obtained for proenzyme and activated C1s. C1r activation appears thus to involve structural changes leading to an 'activated state' distinct from the 'proenzyme state'. Monoclonal antibody to activated C1r is poorly reactive with proenzyme C1r, a finding that also supports this hypothesis.  相似文献   

10.
Glucagon, at a maximally effective concentration of 1 μM, stimulated by 35% the rate at which rat hepatocytes synthesized urea from 10 mM NH4Cl in the presence of 10 mM ornithine. The rate at which citrulline accumulated in the incubations was relatively unchanged by the presence of glucagon.Mitochondria isolated from glucagon treated hepatocytes were observed to synthesize citrulline from 10 mM NH4Cl and 10 mM ornithine more rapidly than did mitochondria isolated from untreated hepatocytes.The role of the intracellular malate concentration in the regulation of the rate of urea synthesis, and the changes observed in the cellular content of malate in response to glucagon are discussed.  相似文献   

11.
The contribution of endogenous fluorophores - such as proteins, bound and free NAD(P)H, flavins, vitamin A, arachidonic acid - to the liver autofluorescence was studied on tissue homogenate extracts and on isolated hepatocytes by means of spectrofluorometric analysis. Autofluorescence spectral analysis was then applied to investigate the response of single living hepatocytes to experimental conditions resembling the various phases of the organ transplantation. The following conditions were considered: 1 h after cells isolation (reference condition); cold hypoxia; rewarming-reoxygenation after cold preservation. The main alterations occurred for NAD(P)H and flavins, the coenzymes strictly involved in energetic metabolism. During cold hypoxia NAD(P)H, mainly the bound form, showed an increase followed by a slow decrease, in agreement with the inability of the respiratory chain to reoxidize the coenzyme, and a subsequent NADH reoxidation through alternative anaerobic metabolic pathways. Both bound/free NAD(P)H and total NAD(P)H/flavin ratio values were altered during cold hypoxia, but approached the reference condition values after rewarming-reoxygenation, indicating the cells capability to restore the basal redox equilibrium. A decrease of arachidonic acid and vitamin A contributions occurred after cold hypoxia: in the former case it may depend on the balance between deacylation and reacylation of fatty acids, in the latter it might be related to the vitamin A antioxidant role. An influence of physico-chemical status and microenvironment on the fluorescence efficiency of these fluorophores cannot be excluded. In general, all the changes observed for cell autofluorescence properties were consistent with the complex metabolic pathways providing for energy supply.  相似文献   

12.
Feeding of clofibrate to male rats leads to a 4–7 fold increase in the activity of the 4-enoyl-CoA reductase in the liver. Concomitantly the inhibition of fatty acid oxidation by pent-4-enoate is abolished, and an increased glucose formation in the presence of pent-4-enoate is observed. It is suggested that pent-4-enoate is converted to propionyl-CoA via the reaction sequence pent-4-enoyl-CoA→pent-2,4-dienoyl-CoA→pent-2-enoyl-CoA→propionyl-CoA + acetyl-CoA.  相似文献   

13.
Unscheduled DNA synthesis (UDS), following exposure to dimethylnitrosamine (DMN), was potentiated in cultured hepatocytes isolated following treatment of rats for 14 or 28 days with 20% ethanol/5% sucrose solution. Ethanol treatment was associated with increased UDS, a concomitant increase in hepatic microsomal protein concentration and DMN N-demethylase activity. Increased aniline hydroxylase activity of hepatic microsomes from ethanol-treated rats preceded the measured increase in microsomal protein content or DMN metabolism. The increase in metabolism of DMN in vitro and potentiation of DMN-induced UDS associated with ethanol treatment may contribute to a synergistic effect of ethanol on DMN hepatotoxicity and carcinogenicity. In contrast, ethanol pretreatment did not increase the cytotoxicity of DMN as characterized by enzyme release.  相似文献   

14.
15.
16.
Pent-4-enoic acid inhibited ureagenesis approximatively 90% in rat hepatocytes incubated with pyruvate, ammonia and ornithine. Inhibition of ureagenesis was much less with alanine as substrate (approximatively 10%). The addition of ammonia led to a drastic dose-dependent inhibition of ureagenesis by pent-4-enoate. Half-maximum effect of ammonia was observed at 0.2 mM concentration. Concomitant cellular concentrations of N-acetylglutamate were also drastically modified by the addition of ammonia as was the accumulation of citrulline. These data suggest that ammonia may seriously interfere with the metabolism of pent-4-enoic acid and leads to a dramatic potentiation of its toxicity.  相似文献   

17.
Vanadate counteracts glucagon effects in isolated rat hepatocytes   总被引:1,自引:0,他引:1  
The incubation of isolated rat hepatocytes with vanadate increased the concentration of fructose 2,6-bisphosphate without modifying 6-phosphofructo-2-kinase activity. Vanadate also reverted and prevented the decrease of fructose 2,6-bisphosphate levels, of the "active" form of the 6-phosphofructo 2-kinase and of the pyruvate kinase activity ratio produced by glucagon, by probably counteracting the increase in cyclic AMP concentration.  相似文献   

18.
19.
The regulation of urea synthesis from ammonia was investigated using isolated hepatocytes from fasted rats. Addition of ammonia alone produced only a small increase of urea formation, which was stimulated 2-fold by ornithine in conjunction with a fall of ATP levels and an accumulation of citrulline. Further addition of oleate or beta-hydroxybutyrate produced an additional 2-fold stimulation of urea formation to approximately 200 mumol/g dry weight/hour. The presence of oleate also protected against the inhibitory effect of 2,4-dinitrophenol on urea synthesis and the cellular ATP content. The data suggest that both the rate of of energy production and the rate of generation of reducing equivalents from endogensou substrates are insufficient to meet the requirements for optimal rates of urea synthesis. Urea formation from NH3 in the presence of ornithine and oleate, but iin the absence of gluconeogenic precursors, was inhibited by butylmalonate, a known inhibitor of malate-phosphate exchange across the mitochondrial membrane, and stimulated by theaddition of malate and other dicarboxylic acids and amino acids to the cell suspension...  相似文献   

20.
Very low density lipoprotein (VLDL) synthesis was studied using suspensions of isolated rat hepatocytes prepared and incubated as described previously (1). These hepatocytes synthesized and secreted VLDL over a 24-hr period, in quantities permitting its isolation, without using carrier, for determining absolute synthesis rates and analysing the peptide pattern. The mean secretion of triglyceride, cholesterol and rat VLDL protein was 410 ± 46.6, 36.6 ± 0.1 and 34.9 ± 5.4 (mean ± SEM, n = 5) μg/g hepatocyte/hr over 24 hr, during which incorporation of 3H-valine into VLDL protein approached linearity. Suitable polyacrylamide gel electrophoresis showed the hepatocytes secreted the peptides found in circulating rat VLDL but with a different proportion of the fast to the slowly migrating ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号