首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The enzyme poly(ADP-ribosyl)transferase (ADPRT) becomes activated soon after a mitogenic stimulus is applied to lymphocyte cultures. It has also been reported that ADPRT inhibitors prevent cell proliferation when added to cultures at the same time as the mitogen. While this has been ascribed to the need to seal physiologically present DNA strand breaks before cells enter S phase, the presence of DNA strand breaks in quiescent human lymphocytes has been recently questioned. We demonstrate here that non-toxic concentrations of ADPRT inhibitors do not affect lymphocyte blastization and proliferation, as measured by thymidine incorporation and cytofluorimetry. We therefore suggest that ADPRT activation is required for late functions which are not needed for cell cycle progression.  相似文献   

2.
A calcium-activated, phospholipid-dependent protein kinase (protein kinase C) was purified to near homogeneity from human polymorphonuclear leukocytes and shown to be identical to bovine protein kinase C. The Ca2+ activation of the enzyme was studied and the Ca2+ concentrations required to activate the enzyme were compared to free cytosolic Ca2+ concentrations in resting and activated polymorphonuclear leukocytes. The free calcium concentrations in the cytosol and in the enzyme assay mixture were determined using the calcium indicator quin 2. The enzyme activity was almost totally dependent upon phosphatidylserine and could be strongly activated by Ca2+ concentrations in the micromolar range, but was not activated by phosphatidylserine at Ca2+ concentrations corresponding to the intracellular free Ca2+ concentration under resting conditions. However, at similar Ca2+ concentrations (less than 2.5 X 10(-7) M) the enzyme was highly activated by phorbol 12-myristate 13-acetate (PMA) or diolein in the presence of phosphatidylserine. It was demonstrated that PMA stimulation of human polymorphonuclear leukocytes did not induce any increase in the level of the intracellular free calcium concentration. It was concluded that PMA activation of protein kinase C occurred independently of a rise in the intracellular Ca2+ concentration. K0.5 (half-maximal activation) for the PMA activation of purified protein kinase C was shown to be equivalent to the K0.5 for PMA stimulation of superoxide (O-2) production in human polymorphonuclear leukocytes, suggesting that protein kinase C is involved in activation of the NADPH oxidase. The presumed intracellular Ca2+ antagonist TMB-8 inhibited the PMA-induced superoxide production, but neither by an intracellular Ca2+ antagonism nor by a direct inhibition of protein kinase C activity.  相似文献   

3.
The involvement of protein phosphatases in the activation of superoxide (O2-)- generating enzyme in human neutrophils was examined using calyculin A, an inhibitor of protein phosphatase type 1 and 2A. Calyculin A inhibited the phorbol myristate acetate (PMA)- and opsonized zymosan (OZ)-activated O2- generation by human neutrophils. This inhibitory effect of calyculin A on PMA-activated O2- generation was reversed by the addition of KT5926, a specific inhibitor of myosin light chain kinase and Ca2+/calmodulin-dependent protein kinase II. These results suggest that the addition of calyculin A may cause hyperphosphorylation of some protein(s) that plays a crucial role in the PMA-dependent activation of O2- generating enzyme, and that this protein hyperphosphorylation may be evoked by a KT5926-sensitive kinase or its downstream kinase. Whereas two-dimensional analysis involving 32P revealed that calyculin A caused the hyperphosphorylation of many proteins, KT5926 mainly reduced the calyculin A-induced hyperphosphorylation of a 67 kDa protein in activated neutrophils, suggesting that the hyperphosphorylation of the 67 kDa protein might inhibit the PMA-dependent activation of NADPH oxidase. The 67 kDa cytosolic protein was moderately phosphorylated on the addition of PMA. On the other hand, in the absence of calyculin A, KT5926 inhibited both PMA-induced O2- generation and phosphorylation of the 67 kDa protein. Amino acid sequence analysis of peptides derived from the 67 kDa protein revealed that the 67 kDa protein was identical to L-plastin, an actin-bundling protein. We conclude that optimally phosphorylated L-plastin may play some crucial role in the activation of NADPH oxidase.  相似文献   

4.
During the induced differentiation of the human promyelocytic leukaemic cell line, HL-60, along the myelocytic lineage, DNA strand-breaks are formed. These breaks which are formed in the face of a proficient DNA repair mechanism, are only transiently maintained and subsequently become religated. The ligation of these breaks requires the activity of the nuclear adenosine diphosphoribosyl transferase (ADPRT). Inhibition of nuclear ADPRT, an enzyme totally dependent on the presence of DNA strand-breaks for its activity and required for efficient DNA repair in eukaryotic cells, blocks the religation of these breaks but not their formation. The inhibition of DNA strand ligation in the differentiating HL-60 cells results in loss of viability and cell death.  相似文献   

5.
Eosinophil respiratory burst is an important event in asthma and related inflammatory disorders. However, little is known concerning activation of the respiratory burst NADPH oxidase in human eosinophils. Conversely, neutrophils are known to assemble NADPH oxidase in intracellular and plasma membranes. We hypothesized that eosinophils and neutrophils translocate NADPH oxidase to distinct intracellular locations, consistent with their respective functions in O(2)(-)-mediated cytotoxicity. PMA-induced O(2)(-) release assayed by cytochrome c was 3.4-fold higher in atopic human eosinophils than in neutrophils, although membrane-permeable dihydrorhodamine-123 showed similar amounts of release. Eosinophil O(2)(-) release was dependent on Rac, in that it was 54% inhibited by Clostridium difficile toxin B (400-800 ng/ml). In eosinophils stimulated with PMA, a pronounced shift of cytosolic Rac to p22(phox)-positive plasma membrane was observed by confocal microscopy, whereas neutrophils directed Rac2 mainly to intracellular sites coexpressing p22(phox). Similarly, ex vivo sputum eosinophils from asthmatic subjects exhibited predominantly plasma membrane-associated immunoreactivity for Rac, whereas sputum neutrophils exhibited cytoplasmic Rac2 staining. Thus, activated sputum eosinophils, rather than neutrophils, may contribute significantly to the pathogenesis of asthma by extracellular release of tissue-damaging O(2)(-). Our findings suggest that the differential modes of NADPH oxidase assembly in these cells may have important implications for oxidant-mediated tissue injury.  相似文献   

6.
The accumulation of DNA strand breaks and activation of ADP-ribosyltransferase (ADPRT) have recently been associated with cellular differentiation. Murine erythroleukemia (MEL) cells undergo erythropoietic differentiation when exposed to dimethyl sulfoxide (Me2SO) and several studies have suggested that DNA strand scission induced by this agent is a prerequisite for expression of the differentiated phenotype. Me2SO induction of MEL cells has also been associated with increases in ADPRT activity in one study, but not in another. We have monitored the effects of Me2SO on DNA strand breaks in preformed and replicating MEL cell DNA. The results clearly demonstrate that DNA fragmentation is not detectable during Me2SO induction of MEL differentiation, even in the presence of 3-aminobenzamide, an inhibitor of ADPRT. Further, these results are consistent with an absence of detectable changes in both endogenous and total potential ADPRT activity during Me2SO-induced MEL differentiation. These findings would argue against Me2SO induction of DNA strand scission and ADPRT in MEL cells undergoing differentiation.  相似文献   

7.
One-electron reduction of diaziquone (AZQ) by purified rat liver NADPH cytochrome c reductase was associated with formation of AZQ semiquinone, superoxide anions, hydrogen peroxide, and hydroxyl radicals as indicated by ESR spin-trapping studies. Reactive oxygen formation correlated with AZQ-dependent production of single and double PM2 plasmid DNA strand breaks mediated by this system as detected by gel electrophoresis. Direct two-electron reduction of AZQ by purified rat liver NAD(P)H (quinone acceptor) oxidoreductase (QAO) was also associated with formation of AZQ semiquinone, superoxide anions, hydrogen peroxide, and hydroxyl radicals as detected by ESR spin trapping. Furthermore, PM2 plasmid DNA strand breaks were detected in the presence of this system. Plasmid DNA strand breakage was inhibited by dicumarol (49 +/- 5%), catalase (57 +/- 2.3%), SOD (42.2 +/- 3.6%) and ethanol (41.1 +/- 3.9%) showing QAO and reactive oxygen formation was involved in the PM2 plasmid DNA strand breaks observed. These results show that both one- and two-electron enzymatic reduction of AZQ give rise to formation of reactive oxygen species and DNA strand breaks. Autoxidation of the AZQ semiquinone and hydroquinone in the presence of molecular oxygen appears to be responsible for these processes. QAO appears to be involved in the metabolic activation of AZQ to free radical species. The cellular levels and distribution of this enzyme may play an important role in the response of tumor and normal cells to this antitumor agent.  相似文献   

8.
The tumor promoter phorbol-12-myristate-13-acetate (PMA) induces rapid poly ADP-ribosylation and a drop in cellular NAD concentration in human monocytes. The antioxidants CuZn-superoxide dismutase, catalase, glutathione peroxidase and butylated-hydroxytoluene inhibit the reaction indicating that active oxygen species produced in the PMA-induced oxidative burst represent intermediates. The inhibitor of ADP-ribosyl-transferase, 3-amino-benzamide, inhibited poly ADP-ribosylation but did not prevent the drop in NAD-levels. PMA also causes the slow accumulation of DNA strand breaks in monocytes. The difference in the kinetics of poly ADP-ribosylation and DNA breakage argues against a simple relationship between the two reactions.  相似文献   

9.
Activation of quiescent human peripheral blood lymphocytes or purified T cells by the mitogen, phytohemagglutinin (PHA), involves a rapid rejoining of DNA breaks present in the resting cells as detected by both nucleoid sedimentation analysis and rate of strand unwinding in alkali. Inhibitors of the enzyme ADP-ribosyltransferase (ADPRT) prevent activation of peripheral lymphocytes or T cells by PHA or concanavalin A in a dose-dependent manner, but only if present during the early stages. They do not affect subsequent proliferation if added later, nor do they inhibit the growth of lymphoblastoid cell lines. The inhibitors slow the rejoining of DNA breaks but do not affect the binding of mitogen to the cell surface or the early PHA-stimulated turnover of plasma membrane inositol phospholipids. DNA breaking and rejoining, regulated by ADPRT, may be involved in controlling gene expression during differentiation.  相似文献   

10.
A specific stimulation of tubulin tyrosinolation in human neutrophils (PMNs) is induced by the synthetic peptide chemoattractant N-formylmethionylleucylphenylalanine (fMet-Leu-Phe), and this stimulation is closely associated with activation of the NADPH oxidase-mediated respiratory burst (Nath, J., and Gallin, J. I. (1983) J. Clin. Invest. 71, 1273-1281). In contrast, along with tubulin tyrosinolation, a distinctly different respiratory burst-associated random posttranslational incorporation of tyrosine into multiple PMN proteins is observed in PMNs stimulated with the phorbol ester phorbol 12-myristate 13-acetate (PMA) or sn-1,2-dioctanoylglycerol (DAG). In studies exploring the mechanism(s) of signal transduction for these distinct neutrophil responses, we found that the fMet-Leu-Phe-induced stimulation of tubulin tyrosinolation in PMNs and in differentiated HL-60 cells is completely blocked by pertussis toxin, while the PMA-induced random incorporation of tyrosine is not inhibited. We also found that expression of the fMet-Leu-Phe-mediated stimulation of tubulin tyrosinolation in HL-60 cells is correlated with increases in the specific activity of protein kinase C and with the acquisition of respiratory burst activity which occur during induced myeloid maturation of these cells. Furthermore, both the fMet-Leu-Phe-induced stimulation of tubulin tyrosinolation and the PMA or DAG-induced random posttranslational incorporation of tyrosine into multiple proteins in activated neutrophils, were found to be reversibly inhibited (greater than 70%) by the protein kinase inhibitors 1-(5-isoquinolinesulfonyl)piperazine (C-I) and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), in parallel with inhibition of superoxide (O2-) generation. In related studies, we also found that fMet-Leu-Phe-stimulated O2- production is comparably inhibited by C-I and H-7, but in a highly temperature-dependent manner. Inhibition was observed only when C-I or H-7 is added to PMNs at physiologic temperature, i.e. 37 degrees C. Interestingly, inhibition of the PMA-induced O2- generation by C-I or H-7 was not found to be similarly temperature-dependent. Considered together, these findings argue against the suggestion that there is a protein kinase C-independent pathway for activation of the respiratory burst in neutrophils stimulated with N-formyl peptides.  相似文献   

11.
Regulation of phospholipase D2 activity by protein kinase C alpha   总被引:1,自引:0,他引:1  
It has been well documented that protein kinase C (PKC) plays an important role in regulation of phospholipase D (PLD) activity. Although PKC regulation of PLD1 activity has been studied extensively, the role of PKC in PLD2 regulation remains to be established. In the present study it was demonstrated that phorbol 12-myristate 13-acetate (PMA) induced PLD2 activation in COS-7 cells. PLD2 was also phosphorylated on both serine and threonine residues after PMA treatment. PKC inhibitors Ro-31-8220 and bisindolylmaleimide I inhibited both PMA-induced PLD2 phosphorylation and activation. However, G? 6976, a PKC inhibitor relatively specific for conventional PKC isoforms, almost completely abolished PLD2 phosphorylation by PMA but only slightly inhibited PLD2 activation. Furthermore, time course studies showed that phosphorylation of PLD2 lagged behind its activation by PMA. Concentration curves for PMA action on PLD2 phosphorylation and activation also showed that PLD2 was activated by PMA at concentrations at which PMA didn't induce phosphorylation. A kinase-deficient mutant of PKCalpha stimulated PLD2 activity to an even higher level than wild type PKCalpha. Co-expression of wild type PKCalpha, but not PKCdelta, greatly enhanced both basal and PMA-induced PLD2 phosphorylation. A PKCdelta-specific inhibitor, rottlerin, failed to inhibit PMA-induced PLD2 phosphorylation and activation. Co-immunoprecipitation studies indicated an association between PLD2 and PKCalpha under basal conditions that was further enhanced by PMA. Time course studies of the effects of PKCalpha on PLD2 showed that as the phosphorylation of PLD2 increased, its activity declined. In summary, the data demonstrated that PLD2 is activated and phosphorylated by PMA and PKCalpha in COS-7 cells. However, the phosphorylation is not required for PKCalpha to activate PLD2. It is suggested that interaction rather than phosphorylation underscores the activation of PLD2 by PKC in vivo and that phosphorylation may contribute to the inactivation of the enzyme.  相似文献   

12.
Koike N  Takamura T  Kaneko S 《Life sciences》2007,80(18):1721-1728
Diabetic nephropathy is a major complication of diabetes leading to end-stage renal disease, which requires hemodialysis. Although the mechanism by which it progresses is largely unknown, the role of hyperglycemia-derived oxidative stress has recently been the focus of attention as the cause of diabetic complications. Constituent cells of the renal glomeruli have the capacity to release reactive oxygen species (ROS) upon stimulation of NADPH oxidase activated by protein kinase C (PKC). Hyperglycemia and insulin resistance in the diabetic state are often associated with activation of PKC and tumor necrosis factor (TNF)-alpha, respectively. The aim of this study is to clarify the signaling pathway leading to ROS production by PKC and TNF-alpha in rat glomeruli. Isolated rat glomeruli were stimulated with phorbol 12-myristate 13-acetate (PMA) and TNF-alpha, and the amount of ROS was measured using a chemiluminescence method. Stimulation with PMA (10 ng/ml) generated ROS with a peak value of 136+/-1.2 cpm/mg protein (mean+/-SEM). The PKC inhibitor H-7, the NADPH oxidase inhibitor diphenylene iodonium and the phosphatidylinositol-3 (PI-3) kinase inhibitor wortmannin inhibited PMA-induced ROS production by 100%, 100% and 80%, respectively. In addition, TNF-alpha stimulated ROS production (283+/-5.8/mg protein/20 min). The phosphodiesterase inhibitor cilostazol activates protein kinase A and is reported to improve albuminuria in diabetic rats. Cilostazol (100 microg/ml) inhibited PMA, and TNF-alpha-induced ROS production by 78+/-1.8, and 19+/-2.7%, respectively. The effects of cilostazol were not additive with wortmannin. Cilostazol arrests oxidative stress induced by PKC activation by inhibiting the PI-3 kinase-dependent pathway, and may thus prevent the development of diabetic nephropathy.  相似文献   

13.
Y N Yu  C Ding  Z N Cai  X R Chen 《Mutation research》1986,174(3):233-239
ADP-ribosyl transferase (ADPRT) is a DNA-dependent chromatin-associated enzyme which covalently attaches ADP-ribose moieties derived from NAD+ to protein acceptors to form poly(ADP-ribose). ADPRT activity is strongly stimulated by breaks in DNA, and it is suggested that its activity is required for efficient DNA excision repair. In this paper, a cell-cycle-dependent fluctuation of basal ADPRT activity was demonstrated by measuring it in permeabilized FL cells. The cell used was subjected to arginine starvation for 48 h before being released from the block by replacement of deficient medium with complete medium and cells in different proliferating stages were traced by [3H]TdR pulse labelling and obtained at different intervals after block release. The peak basal ADPRT activity appeared 4-6 h after the appearance of the peak of DNA synthesis. After treating the cells with MNNG (10(-4) M), MMS (10(-3)-10(-4) M) and 4NQO (10(-5) M) for 90 min just after release of the block, the ADPRT activity was markedly stimulated. It was further demonstrated that the effects of MNNG/4NQO and cell cycle influence on the level of poly(ADP-ribose) synthesis appear to be additive. While concerning MMS, quite a different pattern of ADPRT stimulation in the cell cycle was demonstrated, i.e., the activity of ADPRT stimulation of 10(-3) M MMS was found to be completely dependent on the basal ADPRT activity. In the cells with the highest basal ADPRT activity 12 h after block release, the MMS-induced ADPRT stimulation could not be observed. It was suggested that more than one pathway might be present in ADPRT stimulation induced by DNA-damaging chemicals, and the cells synchronized in late G1 stage might be the most suitable for demonstrating poly(ADP-ribose) synthesis after DNA damage.  相似文献   

14.
The most commonly used DNA transfection method, which employs the calcium phosphate co-precipitation of the donor DNA, involves several discrete steps (1,2). These include the uptake of the donor DNA by the recipient cells, the transport of the DNA to the nucleus, transient expression prior to integration into the host cell genome, concatenation and integration of the transfected DNA into the host cell genome and finally the stable expression of the integrated genes (2,3). Both the concatenation and the integration of the donor DNA into the host genome involve the formation and ligation of DNA strand-breaks. In the present study we demonstrate that the nuclear enzyme, adenosine diphosphoribosyl transferase (ADPRT, E.C. 2.4.2.30), which is dependent on the presence of DNA strand breaks for its activity (4,5) and necessary for the efficient ligation of DNA strand-breaks in eukaryotic cells (4,6), is required for the integration of donor DNA into the host genome. However, ADPRT activity does not influence the uptake of DNA into the cell, its episomal maintenance or replication, nor its expression either before or after integration into the host genome. These observations strongly suggest the involvement of ADPRT activity in eukaryotic DNA recombination events.  相似文献   

15.
Morphine modulates monocyte-macrophage conversion phase   总被引:2,自引:0,他引:2  
Monocyte migration and their activation into the macrophage phenotype play a role in the modulation of tissue injury. We studied the effect of morphine on the monocyte-macrophage conversion phase (MMCP). Phorbol 12-myristate 13-acetate (PMA) activated THP-1 cells and promoted their adhesion to the substrate. Morphine inhibited PMA-induced MMCP. However, opiate receptor antagonists attenuated this effect of morphine. Interestingly, PMA as well as morphine-stimulated superoxide production by monocytes. Superoxide dismutase (SOD) not only inhibited PMA-mediated MMCP but also attenuated the inhibitory effect of morphine. PMA not only enhanced adhesion of monocytes to a filter but also promoted their migration. These findings suggest that the PMA-induced macrophage phenotype conversion may be accelerating their migration; whereas, morphine may be preventing the migration of monocytes by inhibiting MMCP.  相似文献   

16.
Ectodomain shedding of cell surface membrane-anchoring proteins is an important process in a wide variety of physiological events(1, 2). Tumor necrosis factor alpha (TNF-alpha) converting enzyme (TACE) is the first discovered mammalian sheddase responsible for cleavage of several important surface proteins, including TNF-alpha, TNF p75 receptor, L-selectin, and transforming growth factor-a. Phorbol myristate acetate (PMA) has long been known as a potent agent to enhance ectodomain shedding. However, it is not fully understood how PMA activates TACE and induces ectodomain shedding. Here, we demonstrate that PMA induces both reactive oxygen species (ROS) generation and TNF p75 receptor shedding in Mono Mac 6 cells, a human monocytic cell line, and l-selectin shedding in Jurkat T-cells. ROS scavengers significantly attenuated PMA-induced TNF p75 receptor shedding. Exogenous H2O2 mimicked PMA-induced enhancement of ectodomain shedding, and H2O2-induced shedding was blocked by TAPI, a TACE inhibitor. Furthermore, both PMA and H2O2 failed to cause ectodomain shedding in a cell line that lacks TACE activity. By use of an in vitro TACE cleavage assay, H2O2 activated TACE that had been rendered inactive by the addition of the TACE inhibitory pro-domain sequence. We presume that the mechanism of TACE activation by H2O2 is due to an oxidative attack of the pro-domain thiol group and disruption of its inhibitory coordination with the Zn++ in the catalytic domain of TACE. These results demonstrate that ROS production is involved in PMA-induced ectodomain shedding and implicate a role for ROS in other shedding processes.  相似文献   

17.
18.
1. The effect of N-ethylmaleimide (MalNEt) modification on O2- production by guinea-pig eosinophils mediated by different soluble stimuli was studied. 2. MalNEt pretreatment inhibited the O2- production stimulated by concanavalin A (Con A), cytochalasin E or digitonin, but not A23187 or sodium fluoride. 3. Particulate fractions from MalNEt-pretreated eosinophils before exposure to the stimulus showed the inhibition of the enhancement of NADPH-dependent O2- production induced by Con A, cytochalasin E or digitonin, but not A23187. 4. Treatment of eosinophils with MalNEt after stimulation had no effect on the NADPH oxidase activity. 5. These findings suggest that at least two pathways exist for the activation of the O2(-)-generating enzyme system, probably the NADPH oxidase system, in guinea-pig eosinophils.  相似文献   

19.
1-Nitropyrene and its chemically synthesised derivatives were investigated for their cytotoxicity and ability to induce DNA-strand breaks in Chinese hamster lung fibroblasts. Both 1-nitrosopyrene (0.25-60 micrograms/ml) and 1-aminopyrene (0.25-25 micrograms/ml) were cytotoxic, and induced the formation of DNA lesions, which were measured as DNA single-strand breaks after sedimentation in alkaline sucrose-density gradients. Higher doses of 1-aminopyrene (25-60 micrograms/ml) inhibited the formation of DNA single-strand breaks. 1-Nitropyrene was not toxic (0.25-60 micrograms/ml) and induced low levels of detectable DNA strand breaks, whilst N-acetyl-1-aminopyrene was inactive. The post-mitochondrial supernatant fraction of Aroclor-induced rat-liver containing 4 mM NADPH (S9 mix) did not promote the activation of 1-nitropyrene. In fact DNA strand breaks induced by either 1-nitropyrene or 1-nitrosopyrene was abolished in the presence of S9 mix. The 1-nitropyrene reduced intermediate, N-hydroxy-1-aminopyrene was synthesised by the reduction of 1-nitrosopyrene with ascorbic acid. In the presence of ascorbic acid, 1-nitrosopyrene caused a 5-fold increase in the number of DNA single-strand breaks when compared to cells treated with 1-nitrosopyrene alone. The results are discussed in terms of the metabolic activation of 1-nitropyrene and 1-aminopyrene in Chinese hamster lung cells.  相似文献   

20.
Cellular differentiation in a number of eukaryotic systems is associated with changes in the number of DNA-strand breaks and involves the activity of adenosine diphosphoribosyl transferase (ADPRT). DNA-strand breaks are essential for activation of nuclear ADPRT, the activity of which is required for efficient religation of DNA-strand breaks. In this study we demonstrate the dynamic nature of DNA-strand breaks formed in the genome of differentiating avian skeletal muscle cells and quiescent human lymphocytes. Inhibition of ADPRT activity blocks DNA-strand ligation in both cell types and leads to the accumulation of a higher number of strand breaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号