首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Lishko VK  Kudryk B  Yakubenko VP  Yee VC  Ugarova TP 《Biochemistry》2002,41(43):12942-12951
Fibrinogen is a ligand for leukocyte integrin alpha(M)beta2 (CD11b/CD18, Mac-1) and mediates adhesion and migration of leukocytes during the immune-inflammatory responses. The binding site for alpha(M)beta2 resides in gammaC, a constituent subdomain in the D-domain of fibrinogen. The sequence gamma383-395 (P2-C) in gammaC was implicated as the major binding site for alpha(M)beta2. It is unknown why alpha(M)beta2 on leukocytes can bind to immobilized fibrinogen in the presence of high concentrations of soluble fibrinogen in plasma. In this study, we have investigated the accessibility of the binding site in fibrinogen for alpha(M)beta2. We found that the alpha(M)beta2-binding site in gammaC is cryptic and identified the mechanism that regulates its unmasking. Proteolytic removal of the small COOH-terminal segment(s) of gammaC, gamma397/405-411, converted the D100 fragment of fibrinogen, which contains intact gammaC and is not able to inhibit adhesion of the alpha(M)beta2-expressing cells, into the fragment D98, which effectively inhibited cell adhesion. D98, but not D100, bound to the recombinant alpha(M)I-domain, and the alpha(M)I-domain recognition peptide, alpha(M)(Glu253-Arg261). Exposure of the P2-C sequence in fibrinogen, D100, and D98 was probed with a site-specific mAb. P2-C is not accessible in soluble fibrinogen and D100 but becomes exposed in D98. P2-C is also unmasked by immobilization of fibrinogen onto a plastic and by deposition of fibrinogen in the extracellular matrix. Thus, exposure of P2-C by immobilization and by proteolysis correlates with unmasking of the alpha(M)beta2-binding site in the D-domain. These results demonstrate that conformational alterations regulate the alpha(M)beta2-binding site in gammaC and suggest that processes relevant to tissue injury and inflammation are likely to be involved in the activation of the alpha(M)beta2-binding site in fibrinogen.  相似文献   

2.
Adhesive interactions of platelet integrin alpha(IIb)beta3 with fibrinogen and fibrin are central events in hemostasis and thrombosis. However, the mechanisms by which alpha(IIb)beta3 binds these ligands remain incompletely understood. We have recently demonstrated that alpha(IIb)beta3 binds the gamma365-383 sequence in the gammaC-domain of fibrin(ogen). This sequence contains neither the AGDV nor the RGD recognition motifs, known to bind alpha(IIb)beta3, suggesting the different specificity of the integrin. Here, using peptide arrays, mutant fibrinogens, and recombinant mutant gammaC-domains, we have examined the mechanism whereby alpha(IIb)beta3 binds gamma365-383. The alpha(IIb)beta3-binding activity was localized within gamma370-381, with two short sequences, gamma370ATWKTR375 and gamma376WYSMKK381, being able to independently bind the integrin. Furthermore, recognition of alpha(IIb)beta3 by gamma370-381 depended on four basic residues, Lys373, Arg375, Lys380, and Lys381. Simultaneous replacement of these amino acids and deletion of the gamma408AGDV411 sequence in the recombinant gammaC-domain resulted in the loss of alpha(IIb)beta3-mediated platelet adhesion. Confirming the critical roles of the identified residues, abnormal fibrinogen Kaiserslautern, in which gammaLys380 is replaced by Asn, demonstrated delayed clot retraction and impaired alpha(IIb)beta3 binding. Also, a mutant recombinant fibrinogen modeled after the naturally occurring variant Osaka V (gammaArg375 --> Gly) showed delayed clot retraction and reduced binding to purified alpha(IIb)beta3. These results identify the gamma370-381 sequence of fibrin(ogen) as the binding site for alpha(IIb)beta3 involved in platelet adhesion and clot retraction and define the new recognition specificity of this integrin.  相似文献   

3.
Previously identified high affinity integrin-binding motifs in collagens, GFOGER and GLOGER, are not present in type III collagen. Here, we first characterized the binding of recombinant I domains from integrins alpha(1) and alpha(2) (alpha(1)I and alpha(2)I) to fibrillar collagen types I-III and showed that each I domain bound to the three types of collagens with similar affinities. Using rotary shadowing followed by electron microscopy, we identified a high affinity binding region in human type III collagen recognized by alpha(1)I and alpha(2)I. Examination of the region revealed the presence of two sequences that contain the critical GER motif, GROGER and GAOGER. Collagen-like peptides containing these two motifs were synthesized, and their triple helical nature was confirmed by circular dichroism spectroscopy. Experiments show that the GROGER-containing peptide was able to bind both alpha(1)I and alpha(2)I with high affinity and effectively inhibit the binding of alpha(1)I and alpha(2)I to type III and I collagens, whereas the GAOGER-containing peptide was considerably less effective. Furthermore, the GROGER-containing peptide supported adhesion of human lung fibroblast cells when coated on a culture dish. Thus, we have identified a novel high affinity binding sequence for the collagen-binding integrin I domains.  相似文献   

4.
To determine the molecular basis for the insensitivity of rat alpha(IIb)beta(3) to inhibition by RGD-containing peptides, hybrids of human and rat alpha(IIb)beta(3) and chimeras of alpha(IIb)beta(3) in which alpha(IIb) was composed of portions of human and rat alpha(IIb) were expressed in Chinese hamster ovary cells and B lymphocytes, and the ability of the tetrapeptide RGDS to inhibit fibrinogen binding to the various forms of alpha(IIb)beta(3) was measured. These measurements indicated that sequences regulating the sensitivity of alpha(IIb)beta(3) to RGDS are located in the seven amino-terminal repeats of alpha(IIb). Moreover, replacing the first three or four (but not the first two) repeats of rat alpha(IIb) with the corresponding human sequences enhanced sensitivity to RGDS, whereas replacing the first two or three repeats of human alpha(IIb) with the corresponding rat sequences had little or no effect. Nevertheless, RGDS bound to Chinese hamster ovary cells expressing alpha(IIb)beta(3) regardless whether the alpha(IIb) in the heterodimers was human, rat, or a rat-human chimera. These results indicate that the sequences determining the sensitivity of alpha(IIb)beta(3) to RGD-containing peptides are located in the third and fourth amino-terminal repeats of alpha(IIb). Because RGDS binds to both human and rat alpha(IIb)beta(3), the results suggest that differences in RGDS sensitivity result from differences in the allosteric changes induced in these repeats following RGDS binding.  相似文献   

5.
Agonist-generated inside-out signals enable the platelet integrin alpha(IIb)beta(3) to bind soluble ligands such as fibrinogen. We found that inhibiting actin polymerization in unstimulated platelets with cytochalasin D or latrunculin A mimics the effects of platelet agonists by inducing fibrinogen binding to alpha(IIb)beta(3). By contrast, stabilizing actin filaments with jasplakinolide prevented cytochalasin D-, latrunculin A-, and ADP-induced fibrinogen binding. Cytochalasin D- and latrunculin A-induced fibrinogen was inhibited by ADP scavengers, suggesting that subthreshold concentrations of ADP provided the stimulus for the actin filament turnover required to see cytochalasin D and latrunculin A effects. Gelsolin, which severs actin filaments, is activated by calcium, whereas the actin disassembly factor cofilin is inhibited by serine phosphorylation. Consistent with a role for these factors in regulating alpha(IIb)beta(3) function, cytochalasin D- and latrunculin A-induced fibrinogen binding was inhibited by the intracellular calcium chelators 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid acetoxymethyl ester and EGTA acetoxymethyl ester and the Ser/Thr phosphatase inhibitors okadaic acid and calyculin A. Our results suggest that the actin cytoskeleton in unstimulated platelets constrains alpha(IIb)beta(3) in a low affinity state. We propose that agonist-stimulated increases in platelet cytosolic calcium initiate actin filament turnover. Increased actin filament turnover then relieves cytoskeletal constraints on alpha(IIb)beta(3), allowing it to assume the high affinity conformation required for soluble ligand binding.  相似文献   

6.
The regulated ability of integrin alphaIIbbeta3 to bind fibrinogen plays a crucial role in platelet aggregation and hemostasis. We have developed a model system based on laser tweezers, enabling us to measure specific rupture forces needed to separate single receptor-ligand complexes. First of all, we performed a thorough and statistically representative analysis of nonspecific protein-protein binding versus specific alphaIIbbeta3-fibrinogen interactions in combination with experimental evidence for single-molecule measurements. The rupture force distribution of purified alphaIIbbeta3 and fibrinogen, covalently attached to underlying surfaces, ranged from approximately 20 to 150 pN. This distribution could be fit with a sum of an exponential curve for weak to moderate (20-60 pN) forces, and a Gaussian curve for strong (>60 pN) rupture forces that peaked at 80-90 pN. The interactions corresponding to these rupture force regimes differed in their susceptibility to alphaIIbbeta3 antagonists or Mn2+, an alphaIIbbeta3 activator. Varying the surface density of fibrinogen changed the total binding probability linearly >3.5-fold but did not affect the shape of the rupture force distribution, indicating that the measurements represent single-molecule binding. The yield strength of alphaIIbbeta3-fibrinogen interactions was independent of the loading rate (160-16,000 pN/s), whereas their binding probability markedly correlated with the duration of contact. The aggregate of data provides evidence for complex multi-step binding/unbinding pathways of alphaIIbbeta3 and fibrinogen revealed at the single-molecule level.  相似文献   

7.
This work characterizes a mutant integrin alpha IIb beta 3 (glycoprotein (GP) IIb-IIIa) from a thrombasthenic patient, ET, whose platelets fail to aggregate in response to stimuli. The nature of defect was defined by the reduced ability of synthetic peptide ligands, corresponding to the carboxyl terminus of the fibrinogen gamma chain (gamma 402-411) and Arg-Gly-Asp (RGD), to increase the binding of the occupancy-dependent anti-LIBS1 antibody to mutant alpha IIb beta 3 and the reduced binding of mutant alpha IIb beta 3 to an immobilized RGD peptide. In addition, ET's platelets failed to bind the ligand-mimetic monoclonal anti-alpha IIb beta 3, PAC1. DNA sequence analysis of amplified ET genomic DNA revealed a single G----A base change which encoded substitution of R214 by Q in mature beta 3. Introduction of this point mutation into recombinant wild type alpha IIb beta 3 expressed in Chinese hamster ovary cells reproduced the ET platelet alpha IIb beta 3 deficits in binding of fibrinogen, mAb PAC1, and synthetic peptide ligands. Furthermore, substitution of R214 by Q in the synthetic peptide containing the sequence of beta 3(211-222) resulted in decreased ability of this peptide to block fibrinogen binding to purified alpha IIb beta 3. These findings suggest that substitution of beta 3 R214 by Q is responsible for the functional defect in alpha IIb beta 3 and that R214 is proximal to or part of a ligand binding domain in alpha IIb beta 3.  相似文献   

8.
The interaction between the leukocyte integrin alpha(M)beta(2) (CD11b/CD18, Mac-1, CR3) and fibrinogen mediates the recruitment of phagocytes during the inflammatory response. Previous studies demonstrated that peptides P2 and P1, duplicating gamma 377-395 and gamma 190-202 sequences in the gamma C domain of fibrinogen, respectively, blocked the fibrinogen-binding function of alpha(M)beta(2), implicating these sequences as possible binding sites for alpha(M)beta(2). To determine the role of these sequences in integrin binding, recombinant wild-type and mutant gamma C domains were prepared, and their interactions with the alpha(M)I-domain, a ligand recognition domain within alpha(M)beta(2), were tested. Deletion of gamma 383-411 (P2-C) and gamma 377-411 produced gamma C mutants which were defective in binding to the alpha(M)I-domain. In contrast, alanine mutations of several residues in P1 did not affect alpha(M)I-domain binding, and simultaneous mutations in P1 and deletion of P2 did not decrease the binding function of gamma C further. Verifying the significance of P2, inserting P2-C and the entire P2 into the homologous position of the beta C-domain of fibrinogen imparted the higher alpha(M)I-domain binding ability to the chimeric proteins. To further define the molecular requirements for the P2-C activity, synthetic peptides derived from P2-C and a peptide array covering P2-C have been analyzed, and a minimal recognition motif was localized to gamma(390)NRLTIG(395). Confirming a critical role of this sequence, the cyclic peptide NRLTIG retained full activity inherent to P2-C, with Arg and Leu being important residues. Thus, these data demonstrate the essential role of the P2, but not P1, sequence for binding of gamma C by the alpha(M)I-domain and suggest that the adhesive function of P2 depends on the minimal recognition motif NRLTIG.  相似文献   

9.
The leukocyte integrin alpha(M)beta(2) (Mac-1, CD11b/CD18) is a cell surface adhesion receptor for fibrinogen. The interaction between fibrinogen and alpha(M)beta(2) mediates a range of adhesive reactions during the immune-inflammatory response. The sequence gamma(383)TMKIIPFNRLTIG(395), P2-C, within the gamma-module of the D-domain of fibrinogen, is a recognition site for alpha(M)beta(2) and alpha(X)beta(2). We have now identified the complementary sequences within the alpha(M)I-domain of the receptor responsible for recognition of P2-C. The strategy to localize the binding site for P2-C was based on distinct P2-C binding properties of the three structurally similar I-domains of alpha(M)beta(2), alpha(X)beta(2), and alpha(L)beta(2), i.e. the alpha(M)I- and alpha(X)I-domains bind P2-C, and the alpha(L)I-domain did not bind this ligand. The Lys(245)-Arg(261) sequence, which forms a loop betaD-alpha5 and an adjacent helix alpha5 in the three-dimensional structure of the alpha(M)I-domain, was identified as the binding site for P2-C. This conclusion is supported by the following data: 1) mutant cell lines in which the alpha(M)I-domain segments (245)KFG and Glu(253)-Arg(261) were switched to the homologous alpha(L)I-domain segments failed to support adhesion to P2-C; 2) synthetic peptides duplicating the Lys(245)-Tyr(252) and Glu(253)-Arg(261) sequences directly bound the D fragment and P2-C derivative, gamma384-402, and this interaction was blocked efficiently by the P2-C peptide; 3) mutation of three amino acid residues within the Lys(245)-Arg(261) segment, Phe(246), Asp(254), and Pro(257), resulted in the loss of the binding function of the recombinant alpha(M)I-domains; and 4) grafting the alpha(M)(Lys(245)-Arg(261)) segment into the alpha(L)I-domain converted it to a P2-C-binding protein. These results demonstrate that the alpha(M)(Lys(245)-Arg(261)) segment, a site of the major sequence and structure difference among alpha(M)I-, alpha(X)I-, and alpha(L)I-domains, is responsible for recognition of a small segment of fibrinogen, gammaThr(383)-Gly(395), by serving as ligand binding site.  相似文献   

10.
Angiogenesis is important for wound healing, tumor growth, and metastasis. Endothelial cells differentiate into capillary-like structures on a laminin-1-rich matrix (Matrigel). We previously identified 20 angiogenic sites on laminin-1 (alpha1beta1gamma1) by screening 559 overlapping synthetic peptides. C16, the most potent gamma1 chain peptide, blocked laminin-1-mediated adhesion and was the only gamma1 chain peptide to block attachment to both collagen I and fibronectin. This suggested that C16 was acting via a receptor common to these substrates. We demonstrated that C16 is angiogenic in vivo. Affinity chromatography identified the integrins alpha5beta1 and alpha(v)beta3 as surface receptors. Blocking antibodies confirmed the role of these receptors in C16 adhesion. C16 does not contain an RGD sequence and, as expected, an RGD-containing peptide did not block C16 adhesion nor did C16 act via MAP kinase phosphorylation. Furthermore, we identified a C16 scrambled sequence, C16S, which antagonizes the angiogenic activity of bFGF and of C16 by binding to the same receptors. Because the laminin gamma1 chain is ubiquitous in most tissues, C16 is likely an important functional site. Since the biological activity of C16 is blocked by a scrambled peptide, C16S may serve as an anti-angiogenic therapeutic agent.  相似文献   

11.
To further identify amino acid domains involved in the ligand binding specificity of alpha(IIb)beta(3), chimeras of the conserved calcium binding domains of alpha(IIb) and the alpha subunit of the fibronectin receptor alpha(5)beta(1) were constructed. Chimeras that replaced all four calcium binding domains, replaced all but the second calcium binding domain of alpha(IIb) with those of alpha(5), or deleted all four calcium binding domains were synthesized but not expressed on the cell surface. Additional chimeras exchanged subsets or all of the variant amino acids in the second calcium binding domain, a region implicated in ligand binding. Cell surface expression of each second calcium binding domain mutant complexed with beta(3) was observed. Each second calcium binding domain mutant was able to 1) bind to immobilized fibrinogen, 2) form fibrinogen-dependent aggregates after treatment with dithiothreitol, and 3) bind the activation-dependent antibody PAC1 after LIBS 6 treatment. Soluble fibrinogen binding studies suggested that there were only small changes in either the K(d) or B(max) of any mutant. We conclude that chimeras of alpha(IIb) containing the second calcium binding domain sequences of alpha(5) are capable of complexing with beta(3), that the complexes are expressed on the cell surface, and that mutant complexes are capable of binding both immobilized and soluble fibrinogen, suggesting that the second calcium binding domain does not determine ligand binding specificity.  相似文献   

12.
There are key differences between the amino acid residues of the RGD loops and the C termini of echistatin, a potent antagonist of alpha(IIb)beta(3), alpha(v)beta(3) and alpha(5)beta(1), and eristostatin, a similar disintegrin selectively inhibiting alpha(IIb)beta(3). In order to identify echistatin motifs required for selective recognition of alpha(v)beta(3) and alpha(5)beta(1) integrins, we expressed recombinant echistatin, eristostatin, and 15 hybrid molecules. We tested them for their ability to inhibit adhesion of different cell lines to fibronectin and von Willebrand factor and to express ligand-induced binding site epitope. The results showed that Asp(27) and Met(28) support recognition of both alpha(v)beta(3) and alpha(5)beta(1). Replacement of Met(28) with Asn completely abolished echistatin's ability to recognize each of the integrins, while replacement of Met(28) with Leu selectively decreased echistatin's ability to recognize alpha(5)beta(1) only. Eristostatin in which C-terminal WNG sequence was substituted with HKGPAT exhibited new activity with alpha(5)beta(1), which was 10-20-fold higher than that of wild type eristostatin. A hypothesis is proposed that the C terminus of echistatin interacts with separate sites on beta(1) and beta(3) integrin molecules.  相似文献   

13.
The angiogenic inducer CCN1 (cysteine-rich 61, CYR61), a secreted matricellular protein of the CCN family, is a ligand of multiple integrins, including alpha 6 beta 1. Previous studies have shown that CCN1 interaction with integrin alpha 6 beta 1 mediates adhesion of fibroblasts, endothelial cells, and smooth muscle cells, as well as migration of smooth muscle cells. Recently, we have reported that CCN1-induced tubule formation of unactivated endothelial cells is also mediated through integrin alpha 6 beta 1. In this study, we demonstrate that human skin fibroblasts adhere specifically to the T1 sequence (GQKCIVQTTSWSQCSKS) within domain III of CCN1, and this process is blocked by anti-alpha 6 and anti-beta 1 monoclonal antibodies. Alanine substitution mutagenesis of the T1 sequence further defines the sequence TTSWSQCSKS as the critical determinant for mediating alpha 6 beta 1-dependent adhesion. Soluble T1 peptide specifically inhibits fibroblast adhesion to CCN1 in a dose-dependent manner. Furthermore, T1 also inhibits cell adhesion to other alpha 6 beta 1 ligands, including CCN2 (CTGF), CCN3 (NOV), and laminin, but not to ligands of other integrins. In addition, T1 specifically inhibits alpha 6 beta 1-dependent tubule formation of unactivated endothelial cells in a CCN1-containing collagen gel matrix. To confirm that T1 binds integrin alpha 6 beta 1 directly, we perform affinity chromatography and show that integrin alpha 6 beta 1 is isolated from an octylglucoside extract of fibroblasts on T1-coupled Affi-gel. Taken together, these findings define the T1 sequence in CCN1 as a novel binding motif for integrin alpha 6 beta 1, providing the basis for the development of peptide mimetics to examine the functional role of alpha 6 beta 1 in angiogenesis.  相似文献   

14.
The alpha(1)beta(1) and alpha(2)beta(1) integrins are cell surface collagen receptors. Cells expressing the alpha(1)beta(1) integrin preferentially adhere to collagen IV, whereas cells expressing the alpha(2)beta(1) integrin preferentially adhere to collagen I. Recombinant alpha(1) and alpha(2) integrin I domains exhibit the same collagen type preferences as the intact integrins. In addition, the alpha(2) integrin I domain binds echovirus 1; the alpha(1) I domain does not. To identify the structural components of the I domains responsible for the varying ligand specificities, we have engineered several alpha(1)/alpha(2) integrin I domain chimeras and evaluated their virus and collagen binding activities. Initially, large secondary structural components of the alpha(2) I domain were replaced with corresponding regions of the alpha(1) I domain. Following analysis in echovirus 1 and collagen binding assays, chimeras with successively smaller regions of alpha(1) I were constructed and analyzed. The chimeras were analyzed by ELISA with several different alpha(2) integrin monoclonal antibodies to assess their proper folding. Three different regions of the alpha(1) I domain, when present in the alpha(2) I domain, conferred enhanced collagen IV binding activity upon the alpha(2) I domain. These include the alpha3 and alpha5 helices and a portion of the alpha6 helix. Echovirus 1 binding was lost in a chimera containing the alphaC-alpha6 loop; higher resolution mapping identified Asn(289) as playing a critical role in echovirus 1 binding. Asn(289) had not been implicated in previous echovirus 1 binding studies. Taken together, these data reveal the existence of multiple determinants of ligand binding specificities within the alpha(1) and alpha(2) integrin I domains.  相似文献   

15.
Intracellular signals are received and generated by the alpha(IIb)beta(3) integrin on platelets. Recent advances have been made in the areas of agonist receptors that initiate platelet activation, downstream signaling molecules (e.g. small G-proteins and kinases) and changes in ligand-occupied alpha(IIb)beta(3) that cause further signaling and clot retraction.  相似文献   

16.
Ligands "activate" integrin alpha IIb beta 3 (platelet GPIIb-IIIa)   总被引:29,自引:0,他引:29  
Integrin alpha IIb beta 3 (platelet GPIIb-IIIa) binds fibrinogen via recognition sequences such as Arg-Gly-Asp (RGD). Fibrinogen binding requires agonist activation of platelets, whereas the binding of short synthetic RGD peptides does not. We now find that RGD peptide binding leads to changes in alpha IIb beta 3 that are associated with acquisition of high affinity fibrinogen-binding function (activation) and subsequent platelet aggregation. The structural specificities for peptide activation and for inhibition of ligand binding are similar, indicating that both are consequences of occupancy of the same site(s) on alpha IIb beta 3. Thus, the RGD sequence is a trigger of high affinity ligand binding to alpha IIb beta 3, and certain RGD-mimetics are partial agonists as well as competitive antagonists of integrin function.  相似文献   

17.
The aim of this investigation was to identify the domains of type IV collagen participating in cell binding and the cell surface receptor involved. A major cell binding site was found in the trimeric cyanogen bromide-derived fragment CB3, located 100 nm away from the NH2 terminus of the molecule, in which the triple-helical conformation is stabilized by interchain disulfide bridges. Cell attachment assays with type IV collagen and CB3 revealed comparable cell binding activities. Antibodies against CB3 inhibited attachment on fragment CB3 completely and on type IV collagen to 80%. The ability to bind cells was strictly conformation dependent. Four trypsin derived fragments of CB3 allowed a closer investigation of the binding site. The smallest, fully active triple-helical fragment was (150)3-amino acid residues long. It contained segments of 27 and 37 residues, respectively, at the NH2 and COOH terminus, which proved to be essential for cell binding. By affinity chromatography on Sepharose-immobilized CB3, two receptor molecules of the integrin family, alpha 1 beta 1 and alpha 2 beta 1, were isolated. Their subunits were identified by sequencing the NH2 termini or by immunoblotting. The availability of fragment CB3 will allow for a more in-depth study of the molecular interaction of a short, well defined triple-helical ligand with collagen receptors alpha 1 beta 1 and alpha 2 beta 1.  相似文献   

18.
Integrins contain a number of divalent cation binding sites that control ligand binding affinity. Ions such as Ca(2+) and Mg(2+) bind to distinct sites on integrin and can have opposing effects on ligand binding. These effects are presumably brought about by alterations of the shape of the ligand binding pocket. To gain insight into the nature of these structural differences, we probed the integrin ligand binding site with an RGD-based library of unparalleled complexity. A cysteine-constrained phage library containing six random amino acids and the RGD motif present in seven different registers was used to select for ligands that exhibit ion-selective binding to integrin alpha(IIb)beta(3). The library was used to select for peptides that bind to the integrin alpha(IIb)beta(3) preferentially in Ca(2+) versus Mg(2+). Peptides were identified which bound selectively in each ion. The Ca(2+)-selective peptides had a range of sequences, with the only obvious consensus involving a motif that had four cysteine residues bonded in a 1,4:2,3 arrangement. Interestingly though, the Mg(2+)-selective peptides exhibited a well defined consensus motif containing Cys-X-aromatic-L/G-R-G-D-hydrophobic-R-R/K-Cys. As a first step toward understanding the structural basis for this selectivity, solution NMR structures were obtained for representatives of both sets of peptides. All peptides formed turns, with the RGD motif at the apex. The Mg(2+)-selected peptides contained a unique basic patch that protrudes from the base of the turn.  相似文献   

19.
alpha(IIb)beta(3), a member of the integrin family of adhesive protein receptors, is the most abundant glycoprotein on platelet plasma-membranes and binds to adhesive proteins via the recognition of short amino acid sequences, for example the ubiquitous RGD motif. However, elucidation of the ligand-binding domains of the receptor remains controversial, mainly owing to the fact that integrins are conformationally labile during purification and storage. In this study, a detailed mapping of the extracellular region of the alpha(IIb) subunit is presented, using overlapping 20-peptides, in order to identify the binding sites of alpha(IIb) potentially involved in the platelet-aggregation event. Regions alpha(IIb) 313-332, alpha(IIb) 265-284 and alpha(IIb) 57-64 of alpha(IIb)beta(3) were identified as putative fibrinogen-binding domains because the corresponding peptides inhibited platelet aggregation and antagonized fibrinogen association, possibly by interacting with this ligand. The latter is further supported by the finding that the above peptides did not interfere with the binding of PAC-1 to the activated form of alpha(IIb)beta(3). Furthermore, alpha(IIb) 313-332 was found to bind to fibrinogen in a solid-phase binding assay. It should be emphasized that all the experiments in this study were carried out on activated platelets and consequently on the activated form of this integrin receptor. We hypothesize that RAD and RAE adhesive motifs, encompassed in alpha(IIb) 313-332, 265-284 and 57-64, are capable of recognizing complementary domains of fibrinogen, thus inhibiting the binding of this ligand to platelets.  相似文献   

20.
Integrins alpha(1)beta(1) and alpha(2)beta(1) are two major collagen receptors on the surface of eukaryotic cells. Binding to collagen is primarily due to an A-domain near the N terminus of the alpha chains. Previously, we reported that recombinant A-domain of alpha(1)beta(1) (alpha(1)A) had at least two affinity classes of binding sites in type I collagen (Rich, R. L., et al. (1999) J. Biol. Chem. 274, 24906-24913). Here, we compared the binding of the recombinant A-domain of alpha(2)beta(1) (alpha(2)A) to type I collagen with that of alpha(1)A using surface plasmon resonance and showed that alpha(2)A exhibited only one detectable class of binding sites in type I collagen, with a K(D) of approximately 10 microm at approximately 3 binding sites per collagen molecule. We further demonstrated that alpha(1)A and alpha(2)A competed with each other for binding to type I collagen in enzyme-linked immunosorbent assay (ELISA), suggesting that the binding sites in collagen for the two A-domains overlap or are adjacent to each other. By using rotary shadowing, the complexes of alpha(1)A- and alpha(2)A-procollagen were visualized. Morphometric analyses indicated three major binding regions (near the N terminus, in the central part, and near the C terminus) along the type I procollagen molecule for both A-domains. The positions of the respective binding regions for alpha(1)A and alpha(2)A were overlapping with or adjacent to each other, consistent with the ELISA results. Analysis of the sequences of type I collagen revealed that GER or GER-like motifs are present at each of the binding regions, and notably, the central region contains the GFOGER sequence, which was previously identified as a high affinity site for both alpha(1)A and alpha(2)A (Knight, C. G., et al. (2000) J. Biol. Chem. 275, 35-40). Peptides containing GLOGERGRO (peptide I, near the N terminus), GFOGERGVQ (peptide II, central), and GASGERGPO (peptide III, near the C terminus) were synthesized. Peptides I and II effectively inhibited the binding of alpha(1)A and alpha(2)A to type I collagen, while peptide III did so moderately. The N-terminal site in type I collagen has the sequence GLOGER in all three chains. Thus, it seems that peptide I represents a newly discovered native high affinity site for alpha(1)A and alpha(2)A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号