首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a chloride channel. Nucleotide-binding domain 1 (NBD1), one of two ABC domains in CFTR, also contains sites for the predominant CF-causing mutation and, potentially, for regulatory phosphorylation. We have determined crystal structures for mouse NBD1 in unliganded, ADP- and ATP-bound states, with and without phosphorylation. This NBD1 differs from typical ABC domains in having added regulatory segments, a foreshortened subdomain interconnection, and an unusual nucleotide conformation. Moreover, isolated NBD1 has undetectable ATPase activity and its structure is essentially the same independent of ligand state. Phe508, which is commonly deleted in CF, is exposed at a putative NBD1-transmembrane interface. Our results are consistent with a CFTR mechanism, whereby channel gating occurs through ATP binding in an NBD1-NBD2 nucleotide sandwich that forms upon displacement of NBD1 regulatory segments.  相似文献   

2.
One feature of the mutations thus far found to be associated with the disease cystic fibrosis (CF) is that many of them are clustered within the first nucleotide-binding domain (NBD) of the CF transmembrane conductance regulator (CFTR). We sought to discover the molecular basis for this clustering by introducing into the two NBDs of CFTR mutations either mimicking amino acid changes associated with CF or altering residues within highly conserved motifs. Synthesis and maturation of the mutant CFTR were studied by transient expression in COS cells. The ability of the altered proteins to generate cyclic AMP-stimulated anion efflux was assessed by using 6-methoxy-N-(sulfopropyl) quinolinium (SPQ) fluorescence measurements in HeLa cells expressing mutated plasmids. The results show that (i) all CF-associated mutants, with one exception, lack functional activity as measured in the SPQ assay, (ii) mutations in NBD1 are more sensitive to the effects of the same amino acid change than are the corresponding mutations in NBD2, (iii) cells transfected with plasmids bearing CF-associated mutations commonly but not exclusively lack mature CFTR, (iv) NBD mutants lacking mature CFTR fail to activate Cl- channels, and (v) the glycosylation of CFTR, per se, is not required for CFTR function. We reason that the structure of NBD1 itself or of the surrounding domains renders it particularly sensitive to mutational changes. As a result, most NBD1 mutants, but only a few NBD2 mutants, fail to mature or lack functional activity. These findings are consistent with the observed uneven distribution of CFTR missense mutations between NBD1 and NBD2 of CF patients.  相似文献   

3.
Cystic fibrosis (CF) is a fatal genetic disorder associated with defective hydration of lung airways due to the loss of chloride transport through the CF transmembrane conductance regulator protein (CFTR). CFTR contains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory domain, and its channel assembly requires multiple interdomain contacts. The most common CF-causing mutation, F508del, occurs in NBD1 and results in misfolding and premature degradation of F508del-CFTR. VX-809 is an investigational CFTR corrector that partially restores CFTR function in people who are homozygous for F508del-CFTR. To identify the folding defect(s) in F508del-CFTR that must be repaired to treat CF, we explored the mechanism of VX-809 action. VX-809 stabilized an N-terminal domain in CFTR that contains only MSD1 and efficaciously restored function to CFTR forms that have missense mutations in MSD1. The action of VX-809 on MSD1 appears to suppress folding defects in F508del-CFTR by enhancing interactions among the NBD1, MSD1, and MSD2 domains. The ability of VX-809 to correct F508del-CFTR is enhanced when combined with mutations that improve F508del-NBD1 interaction with MSD2. These data suggest that the use of VX-809 in combination with an additional CFTR corrector that suppresses folding defects downstream of MSD1 may further enhance CFTR function in people with F508del-CFTR.  相似文献   

4.
Cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels are essential mediators of salt transport across epithelia. Channel opening normally requires ATP binding to both nucleotide-binding domains (NBDs), probable dimerization of the two NBDs, and phosphorylation of the R domain. How phosphorylation controls channel gating is unknown. Loss-of-function mutations in the CFTR gene cause cystic fibrosis; thus, there is considerable interest in compounds that improve mutant CFTR function. Here we investigated the mechanism by which CFTR is activated by curcumin, a natural compound found in turmeric. Curcumin opened CFTR channels by a novel mechanism that required neither ATP nor the second nucleotide-binding domain (NBD2). Consequently, this compound potently activated CF mutant channels that are defective for the normal ATP-dependent mode of gating (e.g. G551D and W1282X), including channels that lack NBD2. The stimulation of NBD2 deletion mutants by curcumin was strongly inhibited by ATP binding to NBD1, which implicates NBD1 as a plausible activation site. Curcumin activation became irreversible during prolonged exposure to this compound following which persistently activated channels gated dynamically in the absence of any agonist. Although CFTR activation by curcumin required neither ATP binding nor heterodimerization of the two NBDs, it was strongly dependent on prior channel phosphorylation by protein kinase A. Curcumin is a useful functional probe of CFTR gating that opens mutant channels by circumventing the normal requirements for ATP binding and NBD heterodimerization. The phosphorylation dependence of curcumin activation indicates that the R domain can modulate channel opening without affecting ATP binding to the NBDs or their heterodimerization.  相似文献   

5.
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR serves as a cAMP-stimulated chloride channel in a wide range of epithelial tissues and its dysfunction is a hallmark of CF. Over 1400 mutations in the CFTR gene are known, but functional data exist only for a minority of the mutant channels. The aim of the present study was to functionally characterize a novel CFTR mutation identified in a patient with atypical CF. Full length sequencing of the patient's CFTR gene revealed a homozygous C to T transition at nucleotide position 331 (CCT>TCT), which results in a P67S amino acid substitution. Mutant and wild-type CFTR were heterologously expressed in Xenopus laevis oocytes. CFTR whole-cell currents were studied using the two-electrode voltage-clamp technique. Channel surface expression was assessed by a chemiluminescence assay. Expression of P67S-CFTR resulted in functional CFTR chloride channels. However, the CFTR chloride conductance observed in oocytes expressing the mutant channel averaged only 24% of that in oocytes expressing wild-type CFTR. Similarly, surface expression of the mutant channel was reduced. In contrast, the mutation did not alter the anion selectivity of the channel, and Western blot analysis indicated a similar protein expression level of mutant and wild-type CFTR. Our findings indicate that the P67S mutation reduces CFTR chloride channel function by reducing channel surface expression. The mild disease phenotype of the patient indicates that the residual function of the mutant channel is sufficient to prevent the development of severe CF symptoms.  相似文献   

6.
The cystic fibrosis transmembrane conductance regulator (CFTR) functions as a cAMP-activated chloride channel, which is regulated by protein-protein interactions. The extent to which CFTR is regulated by these interactions remains unknown. Annexin V is overexpressed in cystic fibrosis (CF), and given the functional properties of annexin V and CFTR we considered whether they are associated and if so whether this has implications for CFTR function. Using co-immunoprecipitation and overlay experiments, we show that annexin V is associated with nucleotide-binding domain 1 (NBD1) of CFTR. Surface plasmon resonance (SPR) indicated different KD values in the absence and presence of both calcium and ATP, suggesting that this interaction is calcium- and ATP-dependent. Using an siRNA approach and overexpression, we showed that CFTR chloride channel function and its localization in the cell membranes were dependent on annexin V expression. We concluded that annexin V is necessary for normal CFTR chloride channel activity. Furthermore, we show that CFTR and annexin V are partially co-distributed in normal epithelial cells in human bronchi. In conclusion, we show for the first time that annexin V is associated with CFTR and is involved in its function.  相似文献   

7.
Cheung JC  Deber CM 《Biochemistry》2008,47(6):1465-1473
Understanding the structural basis for defects in protein function that underlie protein-based genetic diseases is the fundamental requirement for development of therapies. This situation is epitomized by the cystic fibrosis transmembrane conductance regulator (CFTR)-the gene product known to be defective in CF patients-that appears particularly susceptible to misfolding when its biogenesis is hampered by mutations at critical loci. While the primary CF-related defect in CFTR has been localized to deletion of nucleotide binding fold (NBD1) residue Phe508, an increasing number of mutations (now ca. 1,500) are being associated with CF disease of varying severity. Hundreds of these mutations occur in the CFTR transmembrane domain, the site of the protein's chloride channel. This report summarizes our current knowledge on how mutation-dependent misfolding of the CFTR protein is recognized on the cellular level; how specific types of mutations can contribute to the misfolding process; and describes experimental approaches to detecting and elucidating the structural consequences of CF-phenotypic mutations.  相似文献   

8.
囊性纤维化跨膜电导调节体:ATP结合和水解门控Cl-通道   总被引:1,自引:1,他引:0  
Bompadre SG  Hwang TC 《生理学报》2007,59(4):431-442
囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,CFTR)是一种Cl^-通道,属于ATP结合(ATP-binding cassette,ABC)转运体超家族。CFTR功能缺陷是高加索人种中普遍存在的致死性常染色体隐性遗传疾病囊性纤维化(cystic fibrosis,CF)发生的主要原因。这种疾病患者各组织上皮细胞内Cl^-转运失调。目前,与CF相关的不同突变超过1400种。CFTR调节(regulatory,R)域负责调控,核苷酸结合域(nucleotide-binding domains,NBDs)NBD1和NBD2负责ATP结合和水解门控。近期研究发现CFFR的NBDs与其它ABC蛋白一样可以二聚化。二聚化过程中,NBD1和NBD2首-尾相连,一个NBD上的WalkerA和B模块与另一个NBD提供的标签序列(signature sequence)形成ATP结合袋(ATP-binding pockets,ABPs)ABP1和ABP2。ABPs中与ATP结合相关的氨基酸突变实验揭示,ABP1和ABP2在CFTR的ATP依赖门控中发挥不同作用。ABP2由NBD2上的WalkA和B模块与NBD1提供的标签序列形成,它与ATP结合催化通道开放,而ABP1单独与ATP结合不能促进通道开放,只能稳定通道构象。有一些CFrR突变相关疾病的特征就是门控失调,进一步深入研究CFTR的NBD1和NBD2如何通过相互作用而达到通道门控,将为药理学研究提供更多所需的机制信息,有利于为CF治疗的药物设计铺平道路。  相似文献   

9.
The gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), an ATP binding cassette (ABC) transporter that functions as a phosphorylation- and nucleotide-regulated chloride channel, is mutated in cystic fibrosis (CF) patients. Deletion of a phenylalanine at amino acid position 508 (DeltaF508) in the first nucleotide binding domain (NBD1) is the most prevalent CF-causing mutation and results in defective protein processing and reduced CFTR function, leading to chloride impermeability in CF epithelia and heterologous systems. Using a STE6/CFTRDeltaF508 chimera system in yeast, we isolated two novel DeltaF508 revertant mutations, I539T and G550E, proximal to and within the conserved ABC signature motif of NBD1, respectively. Western blot and functional analysis in mammalian cells indicate that mutations I539T and G550E each partially rescue the CFTRDeltaF508 defect. Furthermore, a combination of both revertant mutations resulted in a 38-fold increase in CFTRDeltaF508-mediated chloride current, representing 29% of wild type channel activity. The G550E mutation increased the sensitivity of CFTRDeltaF508 and wild type CFTR to activation by cAMP agonists and blocked the enhancement of CFTRDeltaF508 channel activity by 2 mm 3-isobutyl-1-methylxanthine. The data show that the DeltaF508 defect can be significantly rescued by second-site mutations in the nucleotide binding domain 1 region, that includes the LSGGQ consensus motif.  相似文献   

10.
Cystic fibrosis (CF) is caused by mutations that disrupt the surface localization and/or gating of the CF transmembrane conductance regulator (CFTR) chloride channel. The most common CF mutant is deltaF508-CFTR, which inefficiently traffics to the surfaces of most cells. The deltaF508 mutation may also disrupt the opening of CFTR channels once they reach the cell surface, but the extent of this gating defect is unclear. Here, we describe potent activators of wild-type and deltaF508-CFTR channels that are structurally related to 5-nitro-2-(3-phenylpropylamino)benzoate (NPPB), a negatively charged pore blocker that we show to have mixed agonistic activity (channel activation plus voltage-dependent pore block). These CFTR agonists include 1) an uncharged NPPB analog that stimulates channel opening at submicromolar concentrations without blocking the pore and 2) curcumin, a dietary compound recently reported to augment deltaF508-CFTR function in mice by an unknown mechanism. The uncharged NPPB analog enhanced the activities of wild-type and deltaF508-CFTR channels both in excised membrane patches and in intact epithelial monolayers. This compound increased the open probabilities of deltaF508-CFTR channels in excised membrane patches by 10-15-fold under conditions in which wild-type channels were already maximally active. Our results support the emerging view that CFTR channel activity is substantially reduced by the deltaF508 mutation and that effective CF therapies may require the use of channel openers to activate mutant CFTR channels at the cell surface.  相似文献   

11.
Defective cAMP-stimulated chloride conductance of the plasma membrane of epithelial cell is the hallmark of cystic fibrosis (CF) and results from mutations in the cystic fibrosis transmembrane conductance regulator, CFTR. In the majority of CF patients, mutations in the CFTR lead to its misfolding and premature degradation at the endoplasmic reticulum (ER). Other mutations impair the cAMP-dependent activation or the ion conductance of CFTR chloride channel. In the present work we identify a novel mechanism leading to reduced expression of CFTR at the cell surface, caused by C-terminal truncations. The phenotype of C-terminally truncated CFTR, representing naturally occurring premature termination and frameshift mutations, were examined in transient and stable heterologous expression systems. Whereas the biosynthesis, processing, and macroscopic chloride channel function of truncated CFTRs are essentially normal, the degradation rate of the mature, complex-glycosylated form is 5- to 6-fold faster than the wild type CFTR. These experiments suggest that the C terminus has a central role in maintaining the metabolic stability of the complex-glycosylated CFTR following its exit from the ER and provide a plausible explanation for the severe phenotype of CF patients harboring C-terminal truncations.  相似文献   

12.
13.
Liver disease is a severe complication in patients with Cystic Fibrosis (CF), a genetic disease caused by mutations in the gene encoding for cystic fibrosis transmembrane conductance regulator (CFTR) channel. The sequence of events leading to CFLD is still unclear and has limited the development of more specific treatments other than the bile acid UDCA. However, in the last twenty years, several gaps have been filled, which have mainly been possible due to the availability of different animal models that mimic CF. CF mice, although they lack a spontaneous liver manifestation, have been essential to better understand the multiple functions of CFTR expression on the apical membrane of cholangiocytes, from chloride channel to regulator of epithelial innate immunity. Additionally, we have learned that the gut microbiota might be a pathogenetic factor for the development of liver disease. The recent creation of novel CF animal models (i.e. pig and ferret) that better reproduce the human disease, will allow for comparative studies with species that spontaneously develop the liver disease and will hopefully lead to novel therapeutic treatments. In this review, we have compared and summarized the main features of the current available CF animal models and their applicability for the study of the liver phenotype.  相似文献   

14.
Cystic fibrosis (CF), a disease caused by mutations in the cystic fibrosis transmembrane regulator (CFTR) chloride channel, is associated in the respiratory system with the accumulation of mucus and impaired lung function. The role of the CFTR channel in the regulation of the intracellular pathways that determine the overexpression of mucin genes is unknown. Using differential display, we have observed the differential expression of several mRNAs that may correspond to putative CFTR-dependent genes. One of these mRNAs was further characterized, and it corresponds to the tyrosine kinase c-Src. Additional results suggest that c-Src is a central element in the pathway connecting the CFTR channel with MUC1 overexpression and that the overexpression of mucins is a primary response to CFTR malfunction in cystic fibrosis, which occurs even in the absence of bacterial infection.  相似文献   

15.
The number of complex cystic fibrosis transmembrane conductance regulator (CFTR) genotypes identified as having double-mutant alleles with two mutations inherited in cis has been growing. We investigated the structure-function relationships of a severe cystic fibrosis (CF)-associated double mutant (R347H-D979A) to evaluate the contribution of each mild mutation to the phenotype. CFTR mutants expressed in HeLa cells were analyzed for protein biosynthesis and Cl(-) channel activity. Our data show that R347H is associated with mild defective Cl(-) channel activity and that the D979A defect leads to misprocessing. The mutant R347H-D979A combines both defects for a dramatic decrease in Cl(-) current. To decipher the molecular mechanism of this phenotype, single and double mutants with different charge combinations at residues 347 and 979 were constructed as charged residues were involved in this complex genotype. These studies revealed that residue 979, located in the third cytoplasmic loop, is critical for CFTR processing and Cl(-) channel activity highlighting the role of charged residues. These results have also important implications for CF, as they show that two mutations in cis can act in concert to alter dramatically CFTR function contributing to the wide phenotypic variability of CF disease.  相似文献   

16.
Cystic fibrosis is caused by mutations inthe cystic fibrosis transmembrane conductance regulator (CFTR) gene.CFTR is a chloride channel whose activity requires protein kinaseA-dependent phosphorylation of an intracellular regulatory domain(R-domain) and ATP hydrolysis at the nucleotide-binding domains (NBDs).To identify potential sites of domain-domain interaction within CFTR,we expressed, purified, and refolded histidine (His)- andglutathione-S-transferase (GST)-tagged cytoplasmic domainsof CFTR. ATP-binding to his-NBD1 and his-NBD2 was demonstrated bymeasuring tryptophan fluorescence quenching. Trypticdigestion of in vitro phosphorylated his-NBD1-R and in situphosphorylated CFTR generated the same phosphopeptides. An interactionbetween NBD1-R and NBD2 was assayed by tryptophan fluorescencequenching. Binding among all pairwise combinations of R-domain, NBD1,and NBD2 was demonstrated with an overlay assay. To identifyspecific sites of interaction between domains of CFTR, an overlay assaywas used to probe an overlapping peptide library spanning allintracellular regions of CFTR with his-NBD1, his-NBD2, andGST-R-domain. By mapping peptides from NBD1 and NBD2 that bound toother intracellular domains onto crystal structures for HisP, MalK, andRad50, probable sites of interaction between NBD1 and NBD2 wereidentified. Our data support a model where NBDs form dimers with theATP-binding sites at the domain-domain interface.

  相似文献   

17.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride channel comprising two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs) and a unique regulatory (R) domain. The most frequent cystic fibrosis (CF) mutation, a deletion of Phe508 in NBD1, results in the retention of the DeltaF508 CFTR in the endoplasmic reticulum, as do many other natural or constructed mutations located within the first NBD. In order to further define the role of NBD1 in CFTR folding and to determine whether the higher frequency of mutations in NBD1 with respect to NBD2 results from its position in the molecule or is related to its primary sequence, we constructed and expressed chimeric CFTRs wherein NBD domains were either exchanged or deleted. Synthesis, maturation and activity of the chimeras were assessed by Western blotting and iodide efflux assay after transient or stable expression in COS-1 or CHO cells respectively. The data showed that deletion of NBD1 prevented transport of CFTR to the cytoplasmic membrane whereas deletion of NBD2 did not impair this process but resulted in an inactive chloride channel. On the other hand, substituting or inverting NBDs in the CFTR molecule impaired its processing. In addition, while the NBD1 R555K mutation is known to partially correct the processing of CFTR DeltaF508 and to increase activity of both wild-type and DeltaF508 individual channels, it showed no positive effect when introduced into the double NBD1 chimera. Taken together, these observations suggest that the proper folding process of CFTR results from complex interactions between NBDs and their surrounding domains (MSDs and/or R domain).  相似文献   

18.
Cystic fibrosis is the commonest, fatal, inherited disease of caucasian populations occurring with a frequency of 1 in 2000 live births. The CF gene spans about 230 kb of genomic DNA and encodes a protein of 1480 amino acids named the cystic fibrosis transmembrane conductance regulator (CFTR). The primary sequence predicts that CFTR is an ABC type protein with twelve transmembrane spans, two nucleotide binding domains and a cytoplasmic regulatory domain. CFTR functions as a cyclic AMP-regulated, low conductance, chloride channel in epithelial cells, but other roles are possible. Failure of the CFTR channel in CF reduces epithelial salt and water secretion, leading to a dehydration of epithelial surfaces which initiates the pathology of the disease.  相似文献   

19.
The expression of the cystic fibrosis (CF) gene on its introduction into nonepithelial somatic cells has recently been shown to result in the appearance of distinctive low conductance chloride channels stimulated by cyclic AMP (Kartner, N., Hanrahan, J.W., Jensen, T.J., Naismith, A.L., Sun, S., Ackerley, C.A., Reyes, E.F., Tsui, L.-C., Rommens, J.M., Bear, C.E., and Riordan, J.R. (1991) Cell 64, 681-691; Anderson, M. P., Rich, D.P., Gregory, R.J., Smith, A.E., and Welsh, M.J. (1991) Science 251, 679-682). Since Xenopus oocytes provide a powerful system for ion channel characterization, we have examined whole cell and single channel currents in them after injection of cRNA to program the synthesis of the cystic fibrosis transmembrane conductance regulator (CFTR). This has enabled the direct demonstration that the cyclic AMP activation is mediated by protein kinase A and that CFTR is without effect on the endogenous calcium-activated chloride channels of the oocyte, which have been well characterized previously and widely used as reporters of the expression of G-protein-coupled receptors. These findings strengthen the argument that the CF gene codes for a novel regulated chloride channel rather than a regulatory protein which can modulate separate chloride channel molecules.  相似文献   

20.
Mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis (CF) (Collins, 1992). Over 500 naturally occurring mutations have been identified in CF gene which are located in all of the domains of the protein (Kerem et al., 1990; Mercier et al., 1993; Ghanem et al., 1994; Fanen et al., 1992; Ferec et al., 1992; Cutting et al., 1990). Early studies by several investigators characterized CFTR as a chloride channel (Anderson et al.; 1991b,c; Bear et al., 1991). The complex secondary structure of the protein suggested that CFTR might possess other functions in addition to being a chloride channel. Studies have established that the CFTR functions not only as a chloride channel but is indeed a regulator of sodium channels (Stutts et al., 1995), outwardly rectifying chloride channels (ORCC) (Gray et al., 1989; Garber et al., 1992; Egan et al., 1992; Hwang et al., 1989; Schwiebert et al., 1995) and also the transport of ATP (Schwiebert et al., 1995; Reisin et al., 1994). This mini-review deals with the studies which elucidate the functions of the various domains of CFTR, namely the transmembrane domains, TMD1 and TMD2, the two cytoplasmic nucleotide binding domains, NBD1 and NBD2, and the regulatory, R, domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号