首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present here a three-dimensional FE model of the healthy human knee that included the main structures of the joint: bones, all the relevant ligaments and patellar tendon, menisci and articular cartilages. Bones were considered to be rigid, articular cartilage and menisci linearly elastic, isotropic and homogeneous and ligaments hyperelastic and transversely isotropic. Initial strains on the ligaments and patellar tendon were also considered. This model was validated using experimental and numerical results obtained by other authors. Our main goal was to analyze the combined role of menisci and ligaments in load transmission and stability of the human knee. The results obtained reproduce the complex, nonuniform stress and strain fields that occur in the biological soft tissues involved and the kinematics of the human knee joint under a physiological external load.  相似文献   

2.
In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models.Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome.  相似文献   

3.
The menisci play an important role in load distribution, load bearing, joint stability, lubrication, and proprioception. Partial meniscectomy has been shown to result in changes in the kinematics and kinetics at the knee during gait that can lead to progressive meniscal degeneration. This study examined changes in the strains within the menisci associated with kinematic and kinetic changes during the gait cycle. The gait changes considered were a 5 deg shift toward external rotation of the tibia with respect to the femur and an increased medial-lateral load ratio representing an increased adduction moment. A finite element model of the knee was developed and tested using a cadaveric specimen. The cadaver was placed in positions representing heel-strike and midstance of the normal gait, and magnetic resonance images were taken. Comparisons of the model predictions to boundaries digitized from images acquired in the loaded states were within the errors produced by a 1 pixel shift of either meniscus. The finite element model predicted that an increased adduction moment caused increased strains of both the anterior and posterior horns of the medial meniscus. The lateral meniscus exhibited much lower strains and had minimal changes under the various loading conditions. The external tibial rotational change resulted in a 20% decrease in the strains in the posterior medial horn and increased strains in the anterior medial horn. The results of this study suggest that the shift toward external tibial rotation seen clinically after partial medial meniscectomy is not likely to cause subsequent degenerative medial meniscal damage, but the consequence of this kinematic shift on the pathogenesis of osteoarthritis following meniscectomy requires further consideration.  相似文献   

4.
Surgical reconstruction is generally recommended for posterior cruciate ligament (PCL) injuries; however, the use of grafts is still a controversial problem. In this study, a three-dimensional finite element model of the human tibiofemoral joint with articular cartilage layers, menisci, and four main ligaments was constructed to investigate the effects of graft strengths on knee kinematics and in-situ forces of PCL grafts. Nine different graft strengths with stiffness ranging from 0% (PCL rupture) to 200%, in increments of 25%, of an intact PCL’s strength were used to simulate the PCL reconstruction. A 100 N posterior tibial drawer load was applied to the knee joint at full extension. Results revealed that the maximum posterior translation of the PCL rupture model (0% stiffness) was 6.77 mm in the medial compartment, which resulted in tibial internal rotation of about 3.01°. After PCL reconstruction with any graft strength, the laxity of the medial tibial compartment was noticeably improved. Tibial translation and rotation were similar to the intact knee after PCL reconstruction with graft strengths ranging from 75% to 125% of an intact PCL. When the graft’s strength surpassed 150%, the medial tibia moved forward and external tibial rotation greatly increased. The in-situ forces generated in the PCL grafts ranged from 13.15 N to 75.82 N, depending on the stiffness. In conclusion, the strength of PCL grafts have has a noticeable effect on anterior-posterior translation of the medial tibial compartment and its in-situ force. Similar kinematic response may happen in the models when the PCL graft’s strength lies between 75% and 125% of an intact PCL.  相似文献   

5.
IntroductionMusculoskeletal modeling allows insight into the interaction of muscle force and knee joint kinematics that cannot be measured in the laboratory. However, musculoskeletal models of the lower extremity commonly use simplified representations of the knee that may limit analyses of the interaction between muscle forces and joint kinematics. The goal of this research was to demonstrate how muscle forces alter knee kinematics and consequently muscle moment arms and joint torque in a musculoskeletal model of the lower limb that includes a deformable representation of the knee.MethodsTwo musculoskeletal models of the lower limb including specimen-specific articular geometries and ligament deformability at the knee were built in a finite element framework and calibrated to match mean isometric torque data collected from 12 healthy subjects. Muscle moment arms were compared between simulations of passive knee flexion and maximum isometric knee extension and flexion. In addition, isometric torque results were compared with predictions using simplified knee models in which the deformability of the knee was removed and the kinematics at the joint were prescribed for all degrees of freedom.ResultsPeak isometric torque estimated with a deformable knee representation occurred between 45° and 60° in extension, and 45° in flexion. The maximum isometric flexion torques generated by the models with deformable ligaments were 14.6% and 17.9% larger than those generated by the models with prescribed kinematics; by contrast, the maximum isometric extension torques generated by the models were similar. The change in hamstrings moment arms during isometric flexion was greater than that of the quadriceps during isometric extension (a mean RMS difference of 9.8 mm compared to 2.9 mm, respectively).DiscussionThe large changes in the moment arms of the hamstrings, when activated in a model with deformable ligaments, resulted in changes to flexion torque. When simulating human motion, the inclusion of a deformable joint in a multi-scale musculoskeletal finite element model of the lower limb may preserve the realistic interaction of muscle force with knee kinematics and torque.  相似文献   

6.
This work presents a finite element analysis of anterior cruciate ligament (ACL) impingement against the intercondylar notch during tibial external rotation and abduction, as a mechanism of noncontact ACL injuries. Experimentally, ACL impingement was measured in a cadaveric knee in terms of impingement contact pressure and six degrees-of-freedom tibiofemoral kinematics. Three-dimensional geometries of the ACL, femur and tibia were incorporated into the finite element model of the individual knee specimen. A fiber-reinforced model was adopted, which accounts for the anisotropy, large deformation, nonlinearity and incompressibility of the ACL. With boundary conditions specified based on the experimental tibiofemoral kinematics, the finite element analysis showed that impingement between the ligament and the lateral wall of intercondylar notch could occur when qthe knee at 45° was externally rotated at 29.1° and abducted at 10.0°. Strong contact pressure and tensile stress occurred at the impinging and nonimpinging sides of the ligament, respectively. The impingement force and contact area estimated from the model matched their counterparts from the corresponding cadaver experiment. The modeling and experimental approach provides a useful tool to characterize potential ACL impingement on a knee-specific basis, which may help elucidate the ACL injury mechanism and develop more effective treatments.  相似文献   

7.
Several finite element models have been developed for estimating the mechanical response of joint internal structures, where direct or indirect in vivo measurement is difficult or impossible. The quality of the predictions made by those models is largely dependent on the quality of the experimental data (e.g. load/displacement) used to drive them. Also numerical problems have been described in the literature when using implicit finite element techniques to simulate problems that involve contacts and large displacements. In this study, a unique strategy was developed combining high accuracy in vivo three-dimensional kinematics and a lower limb finite element model based on explicit finite element techniques. The method presents an analytical technique applied to a dynamic loading condition (impact during hopping on one leg). The validation of the lower limb model focused on the response of the whole model and the knee joint in particular to the imposed 3D femoral in vivo kinematics and ground reaction forces. The approach outlined in this study introduces a generic tool for the study of in vivo knee joint behavior.  相似文献   

8.
The present investigation of fiber arrangement in the collateral ligaments of the knee was carried out in cats and man in various positions of flexion and extension, without compression load. In all knee joint positions, the fibers of the collateral ligaments are twisted except for the fibers in the meniscal part of the medial collateral ligament which have a parallel arrangement. Furthermore, most of the fibers in the collateral ligaments are taut in all positions of the knee joint in both cat and man. By means of planar models representing different fiber arrangements, the kinematic behavior of the collateral ligaments was analyzed. It appears that a crossed (twisted) arrangement of the fibers is most effective in rotatory movements, whereas a parallel orientation is most effective in translation. Our data further indicate that, in measuring the changes in lengths of ligaments during joint motion, one cannot neglect the internal arrangement of fibers and the geometry of the articular surfaces and menisci.  相似文献   

9.
目的:建立膝关节半月板三维有限元模型。方法:拍摄健康成人膝关节CT图像,使用Materialise Interactive Medical ImageControl System 10.0(Mimics10.0)、Freeform Modeling System 10(FMS10)、ANSYS12.0等软件建立半月板三维有限元模型并进行初步生物力学分析验证模型的有效性。结果:建立的半月板三维有限元模型几何形态与实体解剖标本相似性高。初步生物力学分析结果显示模型能准确反映半月板的生物力学特性。结论:采用CT扫描图像建立膝关节半月板三维有限元模型是切实可行的。  相似文献   

10.
If the biomechanic function of the different anatomical sub-structures of the knee joint was needed in physiological conditions, the only possible way is a modelling approach. Subject-specific geometries and kinematic data, acquired from the same living subject, were the foundations of the 3D quasi-static knee model developed. Each cruciate ligament was modelled by means of 25 elastic springs, paying attention to the anatomical twisting of the fibres. The sensitivity of the model to the cross-sectional area was performed during the anterior/posterior tibial translations, the sensitivity to all the cruciate ligaments parameters was performed during the internal/external rotations. The model reproduced very well the mechanical behaviour reported in literature during anterior/posterior translations, in particular considering 30% of the mean insertional area. During the internal/external tibial rotations, similar behaviour of the axial torques was obtained in the three sensitivity analyses. The overlapping of the ligaments was assessed at about 25 degrees of internal axial rotation. The presented model featured a good level of accuracy in combination with a low computational weight, and it could provide an in vivo estimation of the role of the cruciate ligaments during the execution of daily living activities.  相似文献   

11.
The menisci are important biomechanical components of the knee. We developed and validated a finite element model of meniscal replacement to assess the effect of surgical fixation technique on contact behavior and knee stability. The geometry of femoral and tibial articular cartilage and menisci was segmented from magnetic resonance images of a normal cadaver knee using MIMICS (Materialise, Leuven, Belgium). A finite element mesh was generated using HyperWorks (Altair Inc, Santa Ana, CA). A finite element solver (Abaqus v6.9, Simulia, Providence, RI) was used to compute contact area and stresses under axial loading and to assess stability (reaction force generated during anteroposterior translation of the femur). The natural and surgical attachments of the meniscal horns and peripheral rim were simulated using springs. After total meniscectomy, femoral contact area decreased by 26% with a concomitant increase in average contact stresses (36%) and peak contact stresses (33%). Replacing the meniscus without suturing the horns did little to restore femoral contact area. Suturing the horns increased contact area and reduced peak contact stresses. Increasing suture stiffness correlated with increased meniscal contact stresses as a greater proportion of tibiofemoral load was transferred to the meniscus. A small incremental benefit was seen of simulated bone plug fixation over the suture construct with the highest stiffness (50 N/mm). Suturing the rim did little to change contact conditions. The nominal anteroposterior stiffness reduced by 3.1 N/mm after meniscectomy. In contrast to contact area and stress, stiffness of the horn fixation sutures had a smaller effect on anteroposterior stability. On the other hand suturing the rim of the meniscus affected anteroposterior stability to a much larger degree. This model emphasizes the importance of the meniscus in knee biomechanics. Appropriate meniscal replacement fixation techniques are likely to be critical to the clinical success of meniscal replacement. While contact conditions are mainly sensitive to meniscus horn fixation, the stability of the knee under anteroposterior shear loads appeared to be more sensitive to meniscal rim fixation. This model may also be useful in predicting the effect of biomaterial mechanical properties and meniscal replacement shape on knee contact conditions.  相似文献   

12.
As a step towards developing a finite element model of the knee that can be used to study how the variables associated with a meniscal replacement affect tibio-femoral contact, the goals of this study were 1) to develop a geometrically accurate three-dimensional solid model of the knee joint with special attention given to the menisci and articular cartilage, 2) to determine to what extent bony deformations affect contact behavior, and 3) to determine whether constraining rotations other than flexion/extension affects the contact behavior of the joint during compressive loading. The model included both the cortical and trabecular bone of the femur and tibia, articular cartilage of the femoral condyles and tibial plateau, both the medial and lateral menisci with their horn attachments, the transverse ligament, the anterior cruciate ligament, and the medial collateral ligament. The solid models for the menisci and articular cartilage were created from surface scans provided by a noncontacting, laser-based, three-dimensional coordinate digitizing system with an root mean squared error (RMSE) of less than 8 microns. Solid models of both the tibia and femur were created from CT images, except for the most proximal surface of the tibia and most distal surface of the femur which were created with the three-dimensional coordinate digitizing system. The constitutive relation of the menisci treated the tissue as transversely isotropic and linearly elastic. Under the application of an 800 N compressive load at 0 degrees of flexion, six contact variables in each compartment (ie., medial and lateral) were computed including maximum pressure, mean pressure, contact area, total contact force, and coordinates of the center of pressure. Convergence of the finite element solution was studied using three mesh sizes ranging from an average element size of 5 mm by 5 mm to 1 mm by 1 mm. The solution was considered converged for an average element size of 2 mm by 2 mm. Using this mesh size, finite element solutions for rigid versus deformable bones indicated that none of the contact variables changed by more than 2% when the femur and tibia were treated as rigid. However, differences in contact variables as large as 19% occurred when rotations other than flexion/extension were constrained. The largest difference was in the maximum pressure. Among the principal conclusions of the study are that accurate finite element solutions of tibio-femoral contact behavior can be obtained by treating the bones as rigid. However, unrealistic constraints on rotations other than flexion/extension can result in relatively large errors in contact variables.  相似文献   

13.
Little is known about in vivo menisci loads and displacements in the knee during strenuous activities. A new method that combines high-speed kinematics measured with biplane dynamic Roentgen stereogrammetric analysis (DRSA) and a subject-specific finite element (FE) model for studying in vivo meniscal behavior is presented here. Further model calibration in a very controlled uniaxial low and high-rate compression loading condition is presented by comparing the model behavior against the measured high-accuracy menisci DRSA kinematics and direct tibio-femoral pressure measurement from a K-scan sensor. It is apparent that certain model aspects such as removing of the pressure sensor from the model can result in relatively large errors (14%) in contact parameters that are not reflected in the change of the measured meniscal kinematics. Changing mesh size to 1mm by 1mm elements increased the magnitude of all but one of the contact variables by up to 45%. This local validation using accurate localized patient-specific geometry and meniscal kinematics was needed to enhance model fidelity at the level of contact between menisci and cartilage.  相似文献   

14.
Most E  Axe J  Rubash H  Li G 《Journal of biomechanics》2004,37(11):1743-1748
Various flexion axes have been used in the literature to describe knee joint kinematics. This study measured the passive knee kinematics of six cadaveric human knee specimens using two widely accepted flexion axes; transepicondylar axis and the geometric center axis. These two axes were found to form an angle of 4.0 degrees +/- 0.8 degrees. The tibial rotation calculated using the transepicondylar axis was significantly different than the rotation obtained using the geometric center axis for the same knee motion. At 90 degrees of flexion, the tibial rotation obtained using the transepicondylar axis was 4.8 degrees +/- 9.4 degrees whereas the rotation recorded using the geometric center axis at the same flexion angle was 13.8 degrees +/- 10.2 degrees. At 150 degrees of knee flexion, the rotations obtained from the transepicondylar and the geometric center axes were 7.2 degrees +/- 5.7 degrees and 19.9 degrees +/- 6.9 degrees, respectively. The data suggest that a clear definition of the flexion axis is necessary when reporting knee joint kinematics.  相似文献   

15.
Knee ligaments guide and restrain joint motion, and their properties influence joint mechanics. Inverse modeling schemes have been used to estimate specimen-specific ligament properties, where external joint forces are assumed to balance with internal ligament and contact forces. This study simplifies this assumption by adjusting experimental loads to remove internal contact forces. The purpose of this study was to use novel experimental loading in an inverse modeling scheme to estimate ligament slack lengths, perform validation using additional loading scenarios, and evaluate sensitivity to the applied loading. Joint kinematics and kinetics were experimentally measured for a set of load cases. An optimization scheme used a specimen-specific forward kinematics model to estimate ligament slack lengths by minimizing the residual between model and experimentally measured kinetics. The calibrated model was used for a form of validation by evaluating non-optimized load cases. Additionally, uncertainty analysis related kinetic errors to previously reported kinematic errors. The six DOF tibial reactions realized RMS errors less than 23 N and 0.75 Nm for optimized load cases, and 33 N and 2.25 Nm for the non-optimized load cases. The uncertainty analysis, which was performed using the optimized load cases, showed average kinetic RMS errors less than 26 N and 0.45 Nm. The model’s recruitment patterns were similar to those found in clinical and cadaveric studies. This study demonstrated that experimental distraction loading can be used in an inverse modeling scheme to estimate ligament slack lengths with a forward kinematics model.  相似文献   

16.
Standard registration techniques of bone morphology to motion analysis data often lead to unsatisfactory motion simulation because of discrepancies during the location of anatomical landmarks in the datasets. This paper describes an iterative registration method of a three-dimensional (3D) skeletal model with both 6 degrees-of-freedom joint kinematics and standard motion analysis data. The method is demonstrated in this paper on the lower limb. The method includes two steps. A primary registration allowed synchronization of in vitro kinematics of the knee and ankle joints using flexion/extension angles from in vivo gait analysis. Results from primary registration were then improved by a so-called advanced registration, which integrated external constraints obtained from experimental gait pre-knowledge. One cadaver specimen was analyzed to obtain both joint kinematics of knee and ankle joints using 3D electrogoniometry, and 3D bone morphology from medical imaging data. These data were registered with motion analysis data from a volunteer during the execution of locomotor tasks. Computer graphics output was implemented to visualize the results for a motion of sitting on a chair. Final registration results allowed the observation of both in vivo motion data and joint kinematics from the synchronized specimen data. The method improved interpretation of gait analysis data, thanks to the combination of realistic 3D bone models and joint mechanism. This method should be of interest both for research in gait analysis and medical education. Validation of the overall method was performed using RMS of the differences between bone poses estimated after registration and original data from motion analysis.  相似文献   

17.
The human knee joint has a three-dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. Understanding the complex mechanical interactions of these load-bearing structures is of use when the treatment of relevant diseases is evaluated and assisting devices are designed. The anterior cruciate ligament (ACL) in the knee is one of four main ligaments that connects the femur to the tibia and is often torn during sudden twisting motions, resulting in knee instability. The objective of this work is to study the mechanical behavior of the human knee joint and evaluate the differences in its response for three different states, i.e., intact, ACL-deficient, and surgically treated (reconstructed) knee. The finite element models corresponding to these states were developed. For the reconstructed model, a novel repair device was developed and patented by the author in previous work. Static load cases were applied, as have already been presented in a previous work, in order to compare the calculated results produced by the two models the ACL-deficient and the surgically reconstructed knee joint, under the exact same loading conditions. Displacements were calculated in different directions for the load cases studied and were found to be very close to those from previous modeling work and were in good agreement with experimental data presented in literature. The developed finite element model for both the intact and the ACL-deficient human knee joint is a reliable tool to study the kinematics of the human knee, as results of this study show. In addition, the reconstructed human knee joint model had kinematic behavior similar to the intact knee joint, showing that such reconstruction devices can restore human knee stability to an adequate extent.  相似文献   

18.
Use of computational models with kinematic boundary conditions to study the knee joint contact behavior for normal and pathologic knee joints depends on an understanding of the impacts of kinematic uncertainty. We studied the sensitivities of tibio-menisco-femoral joint contact behavior to variations in knee kinematics using a finite element model (FEM) with geometry and kinematic boundary conditions derived from sequences of magnetic resonance (MR) images. The MR images were taken before and after axial compression was applied to the knee joint of a healthy subject. A design of experiments approach was used to study the impact of the variation in knee kinematics on the contact outputs. We also explored the feasibility of using supplementary hip images to improve the accuracy of knee kinematics. Variations in knee kinematics (0.25mm in medial-lateral, 0.1mm in anterior-posterior and superior-inferior translations, and 0.1 degrees in flexion-extension and varus-valgus, 0.25 degrees in external-internal rotations) caused large variations in joint contact behavior. When kinematic boundary conditions resulted in close approximations of the model-predicted joint contact force to the applied force, variations in predictions of contact parameters were also reduced. The combination of inferior-superior and medial-lateral translations accounted for over 70% of variations for all the contact parameters examined. The inclusion of hip images in kinematic calculations improved knee kinematics by matching the femoral head position. Our findings demonstrate the importance of improving the accuracy and precision of knee kinematic measurements, especially when utilized as an input for finite element models.  相似文献   

19.
The ligaments of the knee consist of fiber bundles with variable orientations, lengths and mechanical properties. In concept, however, these structures were too often seen as homogeneous structures, which are either stretched or slack during knee motions. In previous studies, we proposed a new structural concept of the ligaments of the knee. In this concept, the ligaments were considered as multi-bundle structures, with nonuniform mechanical properties and zero force lengths. The purpose of the present study was to verify this new concept.

For this purpose, laxity characteristics of a human knee joint were compared as measured in an experiment and predicted in a model simulation study. In the experiment, the varus-valgus and anterior-posterior laxities of a knee-joint specimen containing the ligaments and the articular surfaces only, were determined. From this knee-joint, geometric and mechanical parameters were derived to supply the parameters for a three-dimensional quasi-static knee-joint model. These parameters included (i) the three-dimensional insertion points of bundles, defined in the four major knee ligaments, (ii) the mechanical properties of these ligament, as functions of their relative insertion orientations and (iii) three-dimensional representations of the articular surfaces. With this model the experiments were simulated. If knee-model predictions and experimental results agree, then the multi-bundle ligament models are validated, at least with respect to their functional role in anterior-posterior and varus-valgus loading of the joint.

The model described the laxity characteristics in AP-translation and VV-rotation of the cadaveric knee-joint specimen reasonably well. Both display the same patterns of laxity changes during knee flexion. Only if a varus moment of 8 N m was applied and if the tibia was posteriorly loaded, did the model predict a slightly higher laxity than that measured experimentally.

From the model-experiment comparisons it was concluded that the proposed structural representations of the ligaments and their mechanical property distributions seem to be valid for studying the anterior-posterior and varus-valgus laxity characteristics of the human knee-joint.  相似文献   


20.
The goal of this study is to quantify changes in knee joint contact behavior following varying degrees of the medial partial meniscectomy. A previously validated 3D finite element model was used to simulate 11 different meniscectomies. The accompanying changes in the contact pressure on the superior surface of the menisci and tibial plateau were quantified as was the axial strain in the menisci and articular cartilage. The percentage of medial meniscus removed was linearly correlated with maximum contact pressure, mean contact pressure, and contact area. The lateral hemi-joint was minimally affected by the simulated medial meniscectomies. The location of maximum strain and location of maximum contact pressure did not change with varying degrees of partial medial meniscectomy. When 60% of the medial meniscus was removed, contact pressures increased 65% on the remaining medial meniscus and 55% on the medial tibial plateau. These data will be helpful for assessing potential complications with the surgical treatment of meniscal tears. Additionally, these data provide insight into the role of mechanical loading in the etiology of post-meniscectomy osteoarthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号