首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The oxidation of malate by isolated plant mitochondria   总被引:24,自引:0,他引:24  
  相似文献   

3.
1. Pyruvate strongly inhibited aspartate production by mitochondria isolated from Ehrlich ascites-tumour cells, and rat kidney and liver respiring in the presence of glutamine or glutamate; the production of (14)CO(2) from l-[U-(14)C]glutamine was not inhibited though that from l-[U-(14)C]glutamate was inhibited by more than 50%. 2. Inhibition of aspartate production during glutamine oxidation by intact Ehrlich ascites-tumour cells in the presence of glucose was not accompanied by inhibition of CO(2) production. 3. The addition of amino-oxyacetate, which almost completely suppressed aspartate production, did not inhibit the respiration of the mitochondria in the presence of glutamine, though the respiration in the presence of glutamate was inhibited. 4. Glutamate stimulated the respiration of kidney mitochondria in the presence of glutamine, but the production of aspartate was the same as that in the presence of glutamate alone. 5. The results suggest that the oxidation of glutamate produced by the activity of mitochondrial glutaminase can proceed almost completely through the glutamate dehydrogenase pathway if the transamination pathway is inhibited. This indicates that the oxidation of glutamate is not limited by a high [NADPH]/[NADP(+)] ratio. 6. It is suggested that under physiological conditions the transamination pathway is a less favourable route for the oxidation of glutamate (produced by hydrolysis of glutamine) in Ehrlich ascites-tumour cells, and perhaps also kidney, than the glutamate dehydrogenase pathway, as the production of acetyl-CoA strongly inhibits the first mechanism. The predominance of the transamination pathway in the oxidation of glutamate by isolated mitochondria can be explained by a restricted permeability of the inner mitochondrial membrane to glutamate and by a more favourable location of glutamate-oxaloacetate transaminase compared with that of glutamate dehydrogenase.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
Histatin-5 is a peptide secreted in the human saliva, which possesses powerful antifungal activity. Previous studies have shown that this peptide exerts its candidacidal activity, through the inhibition of both mitochondrial respiration and the formation of reactive oxygen species. The purpose of the present study was to investigate the biological consequences of histatin-5 action on mammalian mitochondria to verify if the toxic mechanism exerted on mitochondria from Candida albicans is an exclusive for fungal cells. Moreover, hypothesising that the damage exerted on mitochondria may induce programmed cellular death pathways, we evaluated two main markers of apoptosis: the mitochondrial membrane potential (DeltaPsi) and the release of cytochrome c. The results obtained show that exposure of isolated mammalian mitochondria to histatin-5 determines: (i) a large inhibition of the respiratory chain at the level of complex I, (ii) a slight decrease in the mitochondrial membrane potential, and (iii) no release of cytochrome c.  相似文献   

12.
13.
The oxidation of matrix NADH in the presence and absence of rotenone was investigated in submitochondrial particles prepared from purified beetroot ( Beta vulgaris L.) mitochondria. The submitochondrial particles oxidised NADH using oxygen and artificial electron acceptors such as ferricyanide (FeCN) and short-chain analogues of ubiquinone(UQ)-10, although the NADH-FeCN reductase activity was not inhibited by rotenone. NADH-oxygen reductase activity in the presence and absence of rotenone displayed different affinities for NADH (145 ± 37 and 24 ± 9 μ M , respectively). However, in the presence of 0.15 m M UQ-1 where any contribution from non-specific sites of UQ-reduction was minimal, the rotenone-insensitive oxygen uptake was stimulated dramatically and the Km(NADH) decreased from 167 ± 55 μ M to 11 ± 1 μ M ; a value close to that determined for the total oxygen uptake which itself was virtually unaffected by the addition of UO-1 [Km(NADH) of 13 ± 3 μ M ).
The similar affinity of NADH-oxygen reductase for NADH when UQ-1 was present in both the presence and absence of rotenone, suggested that there may be only one NADH binding site involved in the two activities. A quantitative two-stage model for Complex I is postulated with one NADH binding site and two sites of UQ-reduction (one of which is insensitive to rotenone) with a common intermediate 'P' whose level of reduction can influence the NADH binding site. The poor affinity that rotenone-insensitive NADH-oxygen reductase activity displayed for NADH results from a limitation on the interaction of its UQ-reduction site with UQ-10 in the membrane; possibly from a low concentration of UQ-10 around this site or from steric hindrance restricting the access of UQ-10 to this reduction site.  相似文献   

14.
15.
16.
17.
Long chain fatty acids at concentrations inhibiting mitochondrial respiration were, in the presence of serum albumin, found to produce almost as high a rate of oxygen uptake as alpha-ketoglutarate, succinate, or acetate. This oxidation was characterized in terms of its coupling to phosphorylation, need for cofactors, and production of different metabolites during the reactions. Fatty acids were oxidized to carbon dioxide, acetoacetate, beta-hydroxybutyrate, and other water-soluble metabolites, tentatively identified as intermediates of the citric acid cycle. An agent to spark the citric acid cycle and adenosine tri- or monophosphate were necessary for optimal oxidation rate, as described for other fatty acid oxidation systems. Balance experiments with different amounts of malate were performed with incubations lasting as long as oxygen uptake took place. In the presence of 1 mumole of malate, practically all added palmitic acid was used up and found to be converted primarily to carbon dioxide, acetoacetate, and other water-soluble metabolites of which the major part was tentatively identified as succinate. A significant portion was found in mitochondrial phospholipids. With 10 mumoles of malate some palmitic acid remained in the system, while a comparatively small amount was converted to carbon dioxide, and a major part was found as succinate. Here also incorporation into phospholipids occurred. With no malate added, fatty acid oxidation was much smaller than with malate, although significant conversion to carbon dioxide took place. Only a little succinate and phospholipid were found. Oxygen uptake was greater than a theoretical value calculated from radioactive balance experiments. It was concluded that albumin contains oxidizable material even after extraction and dialysis. Albumin at high concentrations inhibited both fatty acid and alpha-ketoglutarate oxidation. The oxidation of long chain fatty acids in high concentrations in the form of albumin-fatty acid complex was coupled to phosphorylation. Thus P:O ratios above 2 were found as well as evidence for respiratory control. It was concluded that oxidation of long chain fatty acids by isolated mitochondria occurs from their albumin complex. This process can also be studied at high concentrations of fatty acids, where high rates of oxygen uptake are obtained from oxidation which is coupled to phosphorylation.  相似文献   

18.
A role for uncoupling protein (UCP) homologues in mediating the proton leak in mammalian mitochondria is controversial. We subjected insulinoma (INS-1) cells to adenoviral expression of UCP2 or UCP1 and assessed the proton leak as the kinetic relationship between oxygen use and the inner mitochondrial membrane potential. Cells were infected with different amounts of rat UCP2, and, in other experiments, with either UCP2 or UCP1. The relative molar expression of these subtypes was quantified through comparison with histidine-tagged UCP1 or UCP2 proteins engineered by expression in Escherichia coli. Adenoviral infection with UCP2, compared with beta-galactosidase, resulted in a dose-dependent shift in kinetics indicating increased H(+) flux at any given membrane potential. UCP1 also enhanced H(+) flux, but, on a relative molar basis, the overexpression of the endogenous protein, UCP2, was more potent than UCP1. These results were not due to nonspecific overexpression of mitochondrial protein since UCP1 activity was inhibited by GDP and because overexpression of another membrane carrier protein, the oxoglutarate malate carrier had no effect. UCP2-mediated H(+) conduction was not GDP sensitive. These data suggest that the UCP homologue, UCP2, mediates the proton leak in mitochondria of a mammalian cell wherein UCP2 is the native subtype.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号