首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Wilson disease protein (WND) is a transport ATPase involved in copper delivery to the secretory pathway. Mutations in WND and its homolog, the Menkes protein, lead to genetic disorders of copper metabolism. The WND and Menkes proteins are distinguished from other P-type ATPases by the presence of six soluble N-terminal metal-binding domains containing a conserved CXXC metal-binding motif. The exact roles of these domains are not well established, but possible functions include exchanging copper with the metallochaperone Atox1 and mediating copper-responsive cellular relocalization. Although all six domains can bind copper, genetic and biochemical studies indicate that the domains are not functionally equivalent. One way the domains could be tuned to perform different functions is by having different affinities for Cu(I). We have used isothermal titration calorimetry to measure the association constant (K(a)) and stoichiometry (n) values of Cu(I) binding to the WND metal-binding domains and to their metallochaperone Atox1. The association constants for both the chaperone and target domains are approximately 10(5) to 10(6) m(-1), suggesting that the handling of copper by Atox1 and copper transfer between Atox1 and WND are under kinetic rather than thermodynamic control. Although some differences in both n and K(a) values are observed for variant proteins containing less than the full complement of six metal-binding domains, the data for domains 1-6 were best fitted with a single site model. Thus, the individual functions of the six WND metal-binding domains are not conferred by different Cu(I) affinities but instead by fold and electrostatic surface properties.  相似文献   

2.
Flavodoxins are proteins with an alpha/beta doubly wound topology that mediate electron transfer through a non-covalently bound flavin mononucleotide (FMN). The FMN moiety binds strongly to folded flavodoxin (K(D)=0.1 nM, oxidized FMN). To study the effect of this organic cofactor on the conformational stability, we have characterized apo and holo forms of Desulfovibrio desulfuricans flavodoxin by GuHCl-induced denaturation. The unfolding reactions for both holo- and apo-flavodoxin are reversible. However, the unfolding curves monitored by far-UV circular dichroism and fluorescence spectroscopy do not coincide. For both apo- and holo-flavodoxin, a native-like intermediate (with altered tryptophan fluorescence but secondary structure as the folded form) is present at low GuHCl concentrations. There is no effect on the flavodoxin stability imposed by the presence of the FMN cofactor (DeltaG=20(+/-2) and 19(+/-1) kJ/mol for holo- and apo-flavodoxin, respectively). A thermodynamic cycle, connecting FMN binding to folded and unfolded flavodoxin with the unfolding free energies for apo- and holo-flavodoxin, suggests that the binding strength of FMN to unfolded flavodoxin must be very high (K(D)=0.2 nM). In agreement, we discovered that the FMN remains coordinated to the polypeptide upon unfolding.  相似文献   

3.
The flavin mononucleotide (FMN) cofactor in Desulfovibrio desulfuricans flavodoxin stays associated with the polypeptide upon guanidine hydrochloride (GuHCl) induced unfolding. Using isothermal titration calorimetry (ITC), we determined the affinity of FMN for the flavodoxin polypeptide as a function of both urea and GuHCl concentrations (pH 7, 25 degrees C). The FMN affinity for folded and GuHCl-unfolded flavodoxin differs 10-fold, which is in agreement with the difference in thermodynamic stability between the apo- and holo-forms. In contrast, the urea-unfolded protein does not interact with FMN and equilibrium unfolding of holo-flavodoxin in urea results in FMN dissociation prior to polypeptide unfolding. ANS-binding, near-UV circular dichroism (CD), acrylamide quenching and FMN-emission experiments reveal the presence of native-like intermediates, not detected by far-UV CD and aromatic fluorescence detection methods, in low concentrations of both denaturants. Time-resolved experiments show that FMN binding is fastest at GuHCl concentrations where the native-like intermediate species is populated.  相似文献   

4.
Extracellular copper regulates the DNA binding activity of the CopY repressor of Enterococcus hirae and thereby controls expression of the copper homeostatic genes encoded by the cop operon. CopY has a CxCxxxxCxC metal binding motif. CopZ, a copper chaperone belonging to a family of metallochaperones characterized by a MxCxxC metal binding motif, transfers copper to CopY. The copper binding stoichiometries of CopZ and CopY were determined by in vitro metal reconstitutions. The stoichiometries were found to be one copper(I) per CopZ and two copper(I) per CopY monomer. X-ray absorption studies suggested a mixture of two- and three-coordinate copper in Cu(I)CopZ, but a purely three-coordinate copper coordination with a Cu-Cu interaction for Cu(I)2CopY. The latter coordination is consistent with the formation of a compact binuclear Cu(I)-thiolate core in the CxCxxxxCxC binding motif of CopY. Displacement of zinc, by copper, from CopY was monitored with 2,4-pyridylazoresorcinol. Two copper(I) ions were required to release the single zinc(II) ion bound per CopY monomer. The specificity of copper transfer between CopZ and CopY was dependent on electrostatic interactions. Relative copper binding affinities of the proteins were investigated using the chelator, diethyldithiocarbamic acid (DDC). These data suggest that CopY has a higher affinity for copper than CopZ. However, this affinity difference is not the sole factor in the copper exchange; a charge-based interaction between the two proteins is required for the transfer reaction to proceed. Gain-of-function mutation of a CopZ homologue demonstrated the necessity of four lysine residues on the chaperone for the interaction with CopY. Taken together, these results suggest a mechanism for copper exchange between CopZ and CopY.  相似文献   

5.
Wilson and Menkes diseases are genetic disorders of copper metabolism caused by mutations in the Wilson (WND) and Menkes (MNK) copper-transporting P1B-type ATPases. The N termini of these ATPases consist of six metal binding domains (MBDs). The MBDs interact with the copper chaperone Atox1 and are believed to play roles in catalysis and in copper-mediated cellular relocalization of WND and MNK. Although all six MBDs have similar folds and bind one Cu(I) ion via a conserved CXXC motif, biochemical and genetic data suggest that they have distinct functions. Most studies aimed at characterizing the MBDs have employed smaller polypeptides consisting of one or two domains. The role of each MBD is probably defined by its environment within the six-domain N terminus, however. To study the properties of the individual domains within the context of the intact Wilson N terminus (N-WND), a series of variants in which five of the six metal binding CXXC motifs are mutated to SXXS was generated. For each variant, the Cu(I) binding affinity and the ability to exchange Cu(I) with Atox1 were investigated. The results indicate that Atox1 can deliver Cu(I) to and remove Cu(I) from each MBD, that each MBD has stronger Cu(I) retention properties than Atox1, and that all of the MBDs as well as Atox1 have similar K(Cu) values of (2.2-6.3) x 10(10) m(-1). Therefore, the specific role of each MBD is not conferred by its position within the intact N-WND but may be related to interactions with other domains and partner proteins.  相似文献   

6.
7.
Human γD-crystallin (HγD-Crys) is a highly stable protein that remains folded in the eye lens for the majority of an individual's lifetime. HγD-Crys exhibits two homologous crystallin domains, each containing two Greek key motifs with eight β-strands. Six aromatic pairs (four Tyr/Tyr, one Tyr/Phe and one Phe/Phe) are present in the β-hairpin sequences of the Greek keys. Ultraviolet damage to the aromatic residues in lens crystallins may contribute to the genesis of cataract. Mutant proteins with these aromatic residues substituted with alanines were constructed and expressed in E. coli. All mutant proteins except F115A and F117A had lower thermal stability than the WT protein. In equilibrium experiments in guanidine hydrochloride (GuHCl), all mutant proteins had lower thermodynamic stability than the WT protein. N-terminal domain (N-td) substitutions shifted the N-td transition to lower GuHCl concentration, but the C-terminal domain (C-td) transition remained unaffected. C-td substitutions led to a more cooperative unfolding/refolding process, with both the N-td and C-td transitions shifted to lower GuHCl concentration. The aromatic pairs conserved for each Greek key motif (Greek key pairs) had larger contributions to both thermal stability and thermodynamic stability than the other pairs. Aromatic-aromatic interaction was estimated as 1.5-2.0 kcal/mol. In kinetic experiments, N-td substitutions accelerated the early phase of unfolding, while C-td substitutions accelerated the late phase, suggesting independent domain unfolding. Only substitutions of the second Greek key pair of each crystallin domain slowed refolding. The second Greek keys may provide nucleation sites during the folding of the double-Greek-key crystallin domains.  相似文献   

8.
CopZ, an Atx1-like copper chaperone from the bacterium Bacillus subtilis, functions as part of a complex cellular machinery for Cu(I) trafficking and detoxification, in which it interacts specifically with the transmembrane Cu(I)-transporter CopA. Here we demonstrate that the cysteine residues of the MXCXXC Cu(I)-binding motif of CopZ have low proton affinities, with both exhibiting pK(a) values of 6 or below. Chelator competition experiments demonstrated that the protein binds Cu(I) with extremely high affinity, with a small but significant pH-dependence over the range pH 6.5-8.0. From these data, a pH-corrected formation constant, beta(2)= approximately 6 x 10(22) M(-2), was determined. Rapid exchange of Cu(I) between CopZ and the Cu(I)-chelator BCS (bathocuproine disulfonate) indicated that the mechanism of exchange does not involve simple dissociation of Cu(I) from CopZ (or BCS), but instead proceeds via the formation of a transient Cu(I)-mediated protein-chelator complex. Such a mechanism has similarities to the Cu(I)-exchange pathway that occurs between components of copper-trafficking pathways.  相似文献   

9.
A recently discovered family of proteins that function as copper chaperones route copper to proteins that either require it for their function or are involved in its transport. In Enterococcus hirae the copper chaperone function is performed by the 8-kDa protein CopZ. This paper describes the NMR structure of apo-CopZ, obtained using uniformly (15)N-labeled CopZ overexpressed in Escherichia coli and NMR studies of the impact of Cu(I) binding on the CopZ structure. The protein has a betaalphabetabetaalphabeta fold, where the four beta-strands form an antiparallel twisted beta-sheet, and the two helices are located on the same side of the beta-sheet. A sequence motif GMXCXXC in the loop between the first beta-strand and the first alpha-helix contains the primary ligands, which bind copper(I). Binding of copper(I) caused major structural changes in this molecular region, as manifested by the fact that most NMR signals of the loop and the N-terminal part of the first helix were broadened beyond detection. This effect was strictly localized, because the remainder of the apo-CopZ structure was maintained after addition of Cu(I). NMR relaxation data showed a decreased correlation time of overall molecular tumbling for Cu(I)-CopZ when compared with apo-CopZ, indicating aggregation of Cu(I)-CopZ. The structure of CopZ is the first three-dimensional structure of a cupro-protein for which the metal ion is an exchangeable substrate rather than an integral part of the structure. Implications of the present structural work for the in vivo function of CopZ are discussed, whereby it is of special interest that the distribution of charged residues on the CopZ surface is highly uneven and suggests preferred recognition sites for other proteins that might be involved in copper transfer.  相似文献   

10.
Transient protein-protein and protein-ligand interactions are fundamental components of biological activity. To understand biological activity, not only the structures of the involved proteins are important but also the energetics of the individual steps of a reaction. Here we use in vitro biophysical methods to deduce thermodynamic parameters of copper (Cu) transfer from the human copper chaperone Atox1 to the fourth metal-binding domain of the Wilson disease protein (WD4). Atox1 and WD4 have the same fold (ferredoxin-like fold) and Cu-binding site (two surface exposed cysteine residues) and thus it is not clear what drives metal transfer from one protein to the other. Cu transfer is a two-step reaction involving a metal-dependent ternary complex in which the metal is coordinated by cysteines from both proteins (i.e., Atox1-Cu-WD4). We employ size exclusion chromatography to estimate individual equilibrium constants for the two steps. This information together with calorimetric titration data are used to reveal enthalpic and entropic contributions of each step in the transfer process. Upon combining the equilibrium constants for both steps, a metal exchange factor (from Atox1 to WD4) of 10 is calculated, governed by a negative net enthalpy change of ~10 kJ/mol. Thus, small variations in interaction energies, not always obvious upon comparing protein structures alone, may fuel vectorial metal transfer.  相似文献   

11.
Stirpe A  Sportelli L  Guzzi R 《Biopolymers》2006,83(5):487-497
The contribution of the copper ion to the stability and to the unfolding pathway of pseudoazurin was investigated by a comparative analysis of the thermal unfolding of the Cu(II)-holo and apo form of the protein. The unfolding has been followed by calorimetry, fluorescence, optical density, and electron paramagnetic resonance (EPR) spectroscopy. The thermal transition of Cu(II)-holo pseudoazurin is irreversible and occurs between 60.0 and 67.3 degrees C, depending on the scan rate and technique used. The denaturation pathway of Cu(II)-holo pseudoazurin can be described by the Lumry-Eyring model: N --> U --> [corrected] F; the protein reversibly goes from the native (N) to the unfolded (U) state, and then irreversibly to the final (F) state. The simulation of the experimental calorimetric profiles, according to this model, allowed us to determine the thermodynamic and kinetic parameters of the two steps. The DeltaG value calculated for the Cu(II)-holo pseudoazurin is 39.2 kJ.mol(-1) at 25 degrees C. The sequence of events in the denaturation process of Cu(II)-holo pseudoazurin emergence starts with the disruption of the copper site and the hydrophobic core destabilization followed by the global protein unfolding. According to the EPR findings, the native type-1 copper ion shows type-2 copper features after the denaturation. The removal of the copper ion (apo form) significantly reduces the stability of the protein as evidenced by a DeltaG value of 16.5 kJ.mol(-1) at 25 degrees C. Moreover, the apo Paz unfolding occurs at 41.8 degrees C and is compatible with a two-state reversible process N --> [corrected] U.  相似文献   

12.
Expression of the cop operon which effects copper homeostasis in Enterococcus hirae is controlled by the copper responsive repressor CopY. Purified Zn(II)CopY binds to a synthetic cop promoter fragment in vitro. Here we show that the 8 kDa protein CopZ acts as a copper chaperone by specifically delivering copper(I) to Zn(II)CopY and releasing CopY from the DNA. As shown by gel filtration and luminescence spectroscopy, two copper(I) are thereby quantitatively transferred from Cu(I)CopZ to Zn(II)CopY, with displacement of the zinc(II) and transfer of copper from a non-luminescent, exposed, binding site in CopZ to a luminescent, solvent shielded, binding site in CopY.  相似文献   

13.
Bacterial CopZ proteins deliver copper to P1B-type Cu+-ATPases that are homologous to the human Wilson and Menkes disease proteins. The genome of the hyperthermophile Archaeoglobus fulgidus encodes a putative CopZ copper chaperone that contains an unusual cysteine-rich N-terminal domain of 130 amino acids in addition to a C-terminal copper binding domain with a conserved CXXC motif. The N-terminal domain (CopZ-NT) is homologous to proteins found only in extremophiles and is the only such protein that is fused to a copper chaperone. Surprisingly, optical, electron paramagnetic resonance, and x-ray absorption spectroscopic data indicate the presence of a [2Fe-2S] cluster in CopZ-NT. The intact CopZ protein binds two copper ions, one in each domain. The 1.8 A resolution crystal structure of CopZ-NT reveals that the [2Fe-2S] cluster is housed within a novel fold and that the protein also binds a zinc ion at a four-cysteine site. CopZ can deliver Cu+ to the A. fulgidus CopA N-terminal metal binding domain and is capable of reducing Cu2+ to Cu+. This unique fusion of a redox-active domain with a CXXC-containing copper chaperone domain is relevant to the evolution of copper homeostatic mechanisms and suggests new models for copper trafficking.  相似文献   

14.
The thermal unfolding of ribonuclease T1 has been studied by high-sensitivity differential scanning calorimetry as a function of temperature, [GuHCl], and scanning rate. The destabilizing effect of GuHCl has revealed that the kinetics of the unfolding transition become extremely slow as the transition temperature decreases. At pH 5.3 and zero GuHCl, the unfolding transition is centered at 59.1 degrees C; upon increasing the GuHCl concentration, the transition occurs at lower temperatures and exhibits progressively slower kinetics; so, for example, at 3 M GuHCl, the transition temperature is 40.6 degrees C and is characterized by a time constant close to 10 min. Under all conditions studied (pH 5.3, pH 7.0, [GuHCl] < 3 M), the transition is thermodynamically reversible. The slow kinetics of the transition induce significant distortions in the shape of the transition profiles that can be mistakenly interpreted as deviations from a two-state mechanism. Determination of the thermodynamic parameters from the calorimetric data has required the development of an analytical formalism that explicitly includes the thermodynamics as well as the kinetics of the transition. Using this formalism, it is shown that a two-state slow-kinetics model is capable of accurately describing the structural stability of ribonuclease T1 as a function of temperature, GuHCl concentration, and scanning rate. Multidimensional analysis of the calorimetric data has been used to estimate the intrinsic thermodynamic parameters for protein stability, the interaction parameters with GuHCl, and the time constant for the unfolding transition and its temperature dependence.  相似文献   

15.
XAS studies have been performed, under various experimental conditions, on a copper(I)-transporting protein, CopZ, of Bacillus subtilis. The copper(I) ion, reduced with dithiothreitol, is three-coordinate with three sulfur donor atoms, two of which presumably provided by the protein and one by dithiothreitol. If a molar excess of acetate (15 mM; 5:1 respect to CopZ) or citrate (6 mM; 2:1 respect to CopZ) is present in solution, the EXAFS spectra suggest the presence of a dimeric form involving a close contact between Cu(I) ions from two molecules, where Cu is still three-coordinate. (1)H and (15)N NMR data provide further structural details. If copper reduction is accomplished with ascorbate, the data indicate that one oxygen of ascorbate enters in the first-coordination sphere of copper, together with two sulfur atoms, in a dimeric form of the protein. These results are instructive and have been discussed with respect to the molecular basis of copper trafficking.  相似文献   

16.
Ervatamin A, a cysteine proteases from Ervatamia coronaria, has been used as model system to examine structure-function relationship by equilibrium unfolding methods. Ervatamin A belongs to alpha+beta class of proteins and exhibit stability towards temperature and chemical denaturants. Acid induced unfolding of ervatamin A was incomplete with respect to the structural content of the enzyme. Between pH 0.5 and 2.0, the enzyme is predominantly in beta-sheet conformation and shows a strong ANS binding suggesting the existence of a partially unfolded intermediate state (I(A) state). Surprisingly, high concentrations of GuHCl required to unfold this state and the transition mid points GuHCl induced unfolding curves are significantly higher. GuHCl induced unfolding of ervatamin A at pH 3.0 as well as at pH 4.0 is complex and cannot be satisfactorily fit to a two-state model for unfolding. Besides, a strong ANS binding to the protein is observed at low concentration of GuHCl, indicating the presence of intermediate in the unfolding pathway. On the other hand, even in the presence of urea (8M) the enzyme retains all the activity as well as structural parameters at neutral pH. However, the protein is susceptible to urea unfolding at pH 3.0 and below. Urea induced unfolding of ervatamin A at pH 3.0 is cooperative and the transitions curves obtained by different probes are and non-coincidental. Temperature denaturation of ervatamin A in I(A) state is non-cooperative, contrary to the cooperativity seen with native protein, suggesting the presence of two parts in the molecular structure of ervatamin A may be domains, with different stability that unfolds in steps. Careful inspection of biophysical properties of intermediate states populated in urea and GuHCl (I(UG) state) induced unfolding suggests all these three intermediates are identical and populated in different conditions. However, the properties of the intermediate (I(A) state) identified at pH approximately 1.5 are different from those of the I(UG) state.  相似文献   

17.
Human acidic fibroblast growth factor (FGF-1) is a powerful mitogen and angiogenic factor with an apparent melting temperature (Tm) in the physiological range. FGF-1 is an example of a protein that is regulated, in part, by stability-based mechanisms. For example, the low Tm of FGF-1 has been postulated to play an important role in the unusual endoplasmic reticulum-independent secretion of this growth factor. Despite the close relationship between function and stability, accurate thermodynamic parameters of unfolding for FGF-1 have been unavailable, presumably due to effects of irreversible thermal denaturation. Here we report the determination of thermodynamic parameters of unfolding (DeltaH, DeltaG, and DeltaCp) for FGF-1 using differential scanning calorimetry (DSC). The thermal denaturation is demonstrated to be two-state and reversible upon the addition of low concentrations of added guanidine hydrochloride (GuHCl). DeltaG values from the DSC studies are in excellent agreement with values from isothermal GuHCl denaturation monitored by fluorescence and circular dichroism (CD) spectroscopy. Furthermore, the results indicate that irreversible denaturation is closely associated with the formation of an unfolding intermediate. GuHCl appears to promote reversible two-state denaturation by initially preventing aggregation of this unfolding intermediate, and at subsequently higher concentrations, by preventing formation of the intermediate.  相似文献   

18.
Literature estimates of metal-protein affinities are widely scattered for many systems, as highlighted by the class of metallo-chaperone proteins, which includes human Atox1. The discrepancies may be attributed to unreliable detection probes and/or inconsistent affinity standards. In this study, application of the four Cu(I) ligand probes bicinchoninate, bathocuproine disulfonate, dithiothreitol (Dtt), and glutathione (GSH) is reviewed, and their Cu(I) affinities are re-estimated and unified. Excess bicinchoninate or bathocuproine disulfonate reacts with Cu(I) to yield distinct 1:2 chromatophoric complexes [Cu(I)L(2)](3-) with formation constants β(2) = 10(17.2) and 10(19.8) m(-2), respectively. These constants do not depend on proton concentration for pH ≥7.0. Consequently, they are a pair of complementary and stable probes capable of detecting free Cu(+) concentrations from 10(-12) to 10(-19) m. Dtt binds Cu(I) with K(D) ~10(-15) m at pH 7, but it is air-sensitive, and its Cu(I) affinity varies with pH. The Cu(I) binding properties of Atox1 and related proteins (including the fifth and sixth domains at the N terminus of the Wilson protein ATP7B) were assessed with these probes. The results demonstrate the following: (i) their use permits the stoichiometry of high affinity Cu(I) binding and the individual quantitative affinities (K(D) values) to be determined reliably via noncompetitive and competitive reactions, respectively; (ii) the scattered literature values are unified by using reliable probes on a unified scale; and (iii) Atox1-type proteins bind Cu(I) with sub-femtomolar affinities, consistent with tight control of labile Cu(+) concentrations in living cells.  相似文献   

19.
CopC is a periplasmic copper carrier that, in contrast to cytoplasmic copper chaperones, has a beta-barrel fold and two metal-binding sites distinct for Cu(II) and Cu(I). The copper sites are located in each end of the molecule: the Cu(I) site involves His and Met coordination whereas the Cu(II) site consists of charged residues. To reveal biophysical properties of this protein, we have explored the effects of the cofactors on CopC unfolding in vitro. We demonstrate that Cu(II) coordination affects both protein stability and unfolding pathway, whereas Cu(I) has only a small effect on stability. Apo-CopC unfolds in a two-state reaction between pH 4 and 7.5 with maximal stability at pH 6. In contrast, Cu(II)-CopC unfolds in a three-state reaction at pH6 that involves a partly folded intermediate that retains Cu(II). This intermediate exhibits high thermal and chemical stability. Unique energetic and structural properties of different metalated CopC forms may help facilitate metal transport to many partners in vivo.  相似文献   

20.
A putative partner of the already characterized CopZ from Bacillus subtilis was found, both proteins being encoded by genes located in the same operon. This new protein is highly homologous to eukaryotic and prokaryotic P-type ATPases such as CopA, Ccc2 and Menkes proteins. The N-terminal region of this protein contains two soluble domains constituted by amino acid residues 1 to 72 and 73 to 147, respectively, which were expressed both separately and together. In both cases only the 73-147 domain is folded and is stable both in the copper(I)-free and in the copper(I)-bound forms. The folded and unfolded state is monitored through the chemical shift dispersion of 15N-HSQC spectra. In the absence of any structural characterization of CopA-type proteins, we determined the structure of the 73-147 domain in the 1-151 construct in the apo state through 1H, 15N and 13C NMR spectroscopies. The structure of the Cu(I)-loaded 73-147 domain has been also determined in the construct 73-151. About 1300 meaningful NOEs and 90 dihedral angles were used to obtain structures at high resolution both for the Cu(I)-bound and the Cu(I)-free states (backbone RMSD to the mean 0.35(+/-0.06) A and 0.39(+/-0.07) A, respectively). The structural assessment shows that the structures are accurate. The protein has the typical betaalpha(betabeta)alphabeta folding with a cysteine in the C-terminal part of helix alpha1 and the other cysteine in loop 1. The structures are similar to other proteins involved in copper homeostasis. Particularly, between BsCopA and BsCopZ, only the charges located around loop 1 are reversed for BsCopA and BsCopZ, thus suggesting that the two proteins could interact one with the other. The variability in conformation displayed by the N-terminal cysteine of the CXXC motif in a number of structures of copper transporting proteins suggests that this may be the cysteine which binds first to the copper(I) carried by the partner protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号