首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to evaluate the effects of hypokinesia (HK) and fluid- and salt supplementation (FSS) on zinc metabolism in endurance-trained volunteers (ETV) for a period of 364 d. Thirty long-distance runners aged 22–25 yr with a peak VO2 of 67 mL/min/kg with an average 13.8 km/d running distance were chosen as subjects. They were equally divided into three groups:
1.  Controls;
2.  HK subjects; and
3.  HK+FSS subjects.
Throughout the duration of the study, groups 2. and 3. were maintained under an average running distance of 2.7 km/d, whereas group 1. did not experience any modifications to their normal training routines and diets. Prior to and during the experimental period, plasma volume, hemoglobin, sodium, potasium, hematocrit, osmolality, and protein concentrations were determined along with the concentrations and urinary excretions of zinc, magnesium, calcium, and phosphorous. During the HK period, plasma concentrations of these minerals increased significantly when compared to the HK+FSS and control groups. The same was observed for the remaining parameters, which led us to conclude that during prolonged restriction of muscular activity, (PRMA) the body of the HK+FSS volunteers acquire an apparent tendency to retain zinc, whereas in the HK group the opposite is observed.  相似文献   

2.
The aim of this investigation was to evaluate the effect of a daily intake of fluid and salt supplementation on fluid and electrolyte losses in endurance-trained volunteers during prolonged restriction of muscular activity (hypokinesia). The studies were performed on 30 long-distance runners aged 23–26 who had a peak oxygen uptake of 65.5 mL/kg/min and had taken 13.8 km/d on average prior to their participation in the study. The volunteers were divided into three groups: The volunteers in the first group were placed under normal ambulatory conditions (control subjects), the second group of volunteers subjected to hypokinesia alone (hypokinetic subjects), and the third group of volunteers was submitted to HK and consumed daily 0.1 g sodium chloride (NaCl)/kg body wt and 26 mL water/kg body wt (hyperhydrated subjects). The second and third group of volunteers were kept under an average of 2.7 km/d for 364 d. During the pre-experimental period of 60 d and during the experimental period of 364 d sodium, potassium, calcium, and magnesium in urine and plasma were determined. Blood was also assayed for osmolality, hemoglobin, hematocrit, plasma volume, plasma renin activity and plasma aldosterone. Mean arterial blood pressure was also determined. In the hyperhydrated volunteers plasma volume and arterial blood pressure increased, whereas plasma osmolality, plasma renin activity, plasma aldosterone, hematocrit, hemoglobin concentration, and urinary excretion and concentrations of electrolytes in plasma decreased. In the hypokinetic volunteers, plasma volume and arterial blood pressure decreased significantly, whereas hematocrit values, hemoglobin concenfration, plasma osmolality, plasma renin activity, plasma aldosterone, and electrolytes in urine and plasma increased significantly during the experimental period. It was concluded that chronic hyperhydration may be used in minimizing fluid and electrolyte losses in endurance-trained volunteers during prolonged restriction of muscular activity.  相似文献   

3.
The objective of this investigation was to determine the effect of daily intake of fluid and salt supplementation (FSS) on increased urinary losses of microelements that developed during hypokinesia (decreased number of walking steps/d). The studies were performed on 30 endurance-trained male volunteers aged 23–26 yr, with an averaged maximum oxygen uptake of 65 mL/kg/min during 364 d of hypokinesia (HK). All volunteers were divided into three equal groups: Ten volunteers were placed continuously under an average of 10,000 running steps/d (14.2 km/d) (control subjects), ten volunteers subjected continuously to HK without the use of FSS (hypokinetic subjects), and ten volunteers were continuously submitted to HK and consumed daily FSS (hyperhydrated subjects). For the simulation of the hypokinetic effect the hypokinetic and hyperhydrated volunteers were kept under an average of 3,000 walking steps/d (2.7 km/d) for 364 d. Prior to their exposure to HK the volunteers were on an average of 10,000 running steps/d (14.2 km/d). During the prehypokinetic period of 60 d and during the hypokinetic period of 364 d were determined renal excretion of microelements responses of endurance-trained volunteers. In the hyperhydrated volunteers urinary excretion of iron, zinc, copper, manganese, cobalt, nickel, lead, tin, chromium, aluminum, molybdenum, and vanadium decreased, whereas in the hypokinetic volunteers it increased significantly. It was concluded that chronic hyperhydration may be used to attenuate urinary excretion of microelements in endurance-trained volunteers during prolonged restriction of muscular activity.  相似文献   

4.
It was suggested that negative calcium balance is not based on the shortage of calcium in the diet, but on the decreased tissular capacity of the body to retain calcium during hypokinesia (decreased muscular activity), and that chronic hyperhydration may be used to normalize calcium balance. To evaluate this hypothesis studies were performed on 30 long distance runners aged 23–26 yr, with an average maximum oxygen uptake 65 mL/kg/min during 364 d of hypokinesia (HK). All volunteers were divided into three equal groups: Ten volunteers were placed continuously under an average of 14.9 km/d (control subjects), ten volunteers were subjected continuously to HK (hypokinetic subjects), and ten volunteers were submitted continuously to HK with daily consumption of an additional amount of 26 mL water/kg body wt and 0.16 g sodium chloride (NaCl)/kg body wt (hyperhydrated subjects). For the simulation of the hypokinetic effect, the hypokinetic and hyperhydrated volunteers were kept under an average of 2.7 km/day for 364 d. During the prehypokinetic period and hypokinetic period calcium lactate loading tests (0.55 mEq/kg body wt) were performed. Urinary and blood electrolytes (sodium, ionized calcium, total calcium, magnesium, and phosphate) and blood parathyroid hormone (PTH) were determined. Urinary electrolytes and concentrations in blood thereof decreased in the hyperhydrated and increased significantly in the hypokinetic volunteers. Blood parathyroid hormone content increased in the hyperhydrated and decreased in the hypokinetic volunteers. After calcium lactate loading tests, the hypokinetic volunteers displayed a faster excretion of calcium and a decreased blood PTH content as compared to the control and hyperhydrated groups of volunteers. It was concluded that calcium deficiency during HK is associated with decreased tissular capacity of the body to retain calcium, whereas chronic hyperhydration may be used to prevent calcium deficiency in endurance trained volunteers during prolonged restriction of muscular activity.  相似文献   

5.
The objective of this investigation was to determine whether urinary and plasma potassium changes developed during prolonged hypokinesia (HK) (decreased number of km/d) in endurance-trained subjects could be minimized or reversed with a daily intake of fluid and salt supplementation (FSS). The studies were performed on 30 endurance-trained male volunteers aged 23–26 yr with an average peak oxygen uptake of 65 mL/kg min during 364 d of HK. All volunteers were on an average of 13.8 km/d prior to their exposure to HK. All volunteers were randomly divided into three groups: 10 volunteers were placed continuously under an average of 14.0 km/d (control subjects), 10 volunteers were subjected continuously to an average of 2.7 km/d (unsupplemented hypokinetic subjects), and 10 volunteers were submitted continuously to an average of 2.7 km/d, and consumed daily an additional amount of 0.1 g sodium chloride (NaCl)/kg body wt and 30 mL water/kg body wt (supplemented hypokinetic subjects). During the prehypokinetic period of 60 d and during the hypokinetic period of 364 d, potassium loading tests were performed with 1.5–1.7 mEq potassium chloride/kg body wt, and potassium, sodium, and chloride excretion in urine and potassium, sodium, and chloride in plasma were determined. In the unsupplemented hypokinetic volunteers, urinary excretion of electrolytes and concentrations of electrolytes in plasma increased significantly as compared to the control and supplemented hypokinetic groups of volunteers. It was concluded that daily intake of fluid and salt supplementation had a favorable effect on regulation of urinary and plasma potassium changes in trained subjects during prolonged HK.  相似文献   

6.
The objective of this investigation was to determine fluid electrolyte changes after water-loading tests and during hypokinesia (decreased number of km taken per day) and daily intake of fluid and salt supplementation (FSS). The studies during hypokinesia (HK) were performed for 364 d on 30 endurance-trained male volunteers in the age range of 23–26 yr, with an average peak oxygen uptake, POU, of 64 mL/kg/min. All volunteers were divided into three equal groups: 10 volunteers were placed on a continuous regime of exercise of 14.4 km/d and served as control subjects (CS); 10 volunteers were submitted to continuous HK without FSS and were considered as the unsupplemented hypokinetic subjects (UHS); and 10 volunteers were under continuous HK and FSS and were considered as the supplemented hypokinetic subjects (SHS). For the simulation of the hypokinetic effect, the UHS and SHS groups were kept continuously under an average of 2.7 km/d for the duration of the study. Prior to exposure to HK, the two groups of volunteers were on the same exercise regime as the control group. During a 60-d preexperimental period and during the remainder of the study, water-loading tests with a water load of 20 mL/kg body wt/min were performed, and urinary and plasma electrolytes (sodium, potassium, calcium, and magnesium) were measured. In the SHS group, urinary excretion of electrolytes and plasma electrolyte content decreased, while in the UHS these values increased after water loading tests and during HK. Based on the obtained data, it is concluded that chronic hyperhydration may be used to prevent or minimize urinary and plasma electrolyte changes in endurance-trained volunteers after water-loading tests and during prolonged restriction of muscular activity.  相似文献   

7.
The aim of this study was to evaluate the effect of magnesium (Mg) loading (10.0 mg Mg/kg body wt) and daily Mg supplements (5.0 mg Mg/kg body wt) on Mg deficiency shown by increased and not by decreased serum Mg concentration during hypokinesia (decreased km number/d). The studies were done during 30 d of prehypokinesia and 364 d of hypokinesia (HK) periods. Forty endurance-trained volunteers aged 22–26 yr with a peak VO2 max of 66.3 mL·kg−1 min−1 and with an average 15.0 km/d running distance were chose as subjects. They were equally divided into four groups:
1.  Unsupplemented ambulatory control subjects (UACS).
2.  Unsupplemented hypokinetic subjects (UHKS).
3.  Supplemented hypokinetic subjects (SHKS).
4.  Supplemented ambulatory control subjects (SACS).
The SHKS and SACS groups took daily 5.0 mg elemental Mg/kg body wt and subjected to Mg loading (10.0 mg Mg/kg body wt). Both the SHKS and UHKS groups were maintained under an average running distance of 4.7 km/d, whereas the SACS and UACS groups did not experience any modifications to their normal training routines and diets. During the prehypokinetic and hypokinetic periods, excretion of Mg in feces and urine, concentration of Mg in serum, and Mg balance were measured. urinary and serum sodium (Na), potassium (K), and calcium (Ca) were also determined. In both SHKS and UHKS groups, fecal Mg loss, urinary excretion of electrolytes, and serum concentrations of electrolytes increased significantly (p≤0.05) when compared with the SACS and UACS groups. During Mg loading tests, urinary and fecal Mg excretion was also greater in the SHKS and UHKS groups than in the SACS and UACS groups. Throughout the study, Mg balance was negative in the SHKS and UHKS groups, whereas in the SACS and UACS groups, Mg balance was positive. It was concluded that significant losses of Mg occurred in the presence of negative Mg balance and Mg deficiency in endurance-trained subjects during prolonged exposure to HK, daily mg supplements, and Mg loading tests. This suggests that Mg is not entering or being retaining by the bones and cells of many tissues where most Mg is deposited normally, resulting in Mg deficiency as was shown by the increased serum Mg concentration.  相似文献   

8.
The objective of this investigation was to determine the effect of daily intake of fluid and salt supplementation (FSS) on increased urinary losses of microelements that developed during hypokinesia (decreased number of walking steps/d). The studies were performed on 30 endurance-trained male volunteers aged 23–26 yr, with an averaged maximum oxygen uptake of 65 mL/kg/min during 364 d of hypokinesia (HK). All volunteers were divided into three equal groups: Ten volunteers were placed continuously under an average of 10,000 running steps/d (14.2 km/d) (control subjects), ten volunteers subjected continuously to HK without the use of FSS (hypokinetic subjects), and ten volunteers were continuously submitted to HK and consumed daily FSS (hyperhydrated subjects). For the simulation of the hypokinetic effect the hypokinetic and hyperhydrated volunteers were kept under an average of 3,000 walking steps/d (2.7 km/d) for 364 d. Prior to their exposure to HK the volunteers were on an average of 10,000 running steps/d (14.2 km/d). During the prehypokinetic period of 60 d and during the hypokinetic period of 364 d were determined renal excretion of microelements responses of endurance-trained volunteers. In the hyperhydrated volunteers urinary excretion of iron, zinc, copper, manganese, cobalt, nickel, lead, tin, chromium, aluminum, molybdenum, and vanadium decreased, whereas in the hypokinetic volunteers it increased significantly. It was concluded that chronic hyperhydration may be used to attenuate urinary excretion of microelements in endurance-trained volunteers during prolonged restriction of muscular activity.  相似文献   

9.
Negative potassium balance during hypokinesia (decreased number of kilometers taken/day) is not based on the potassium shortage in the diet, but on the impossibility of the body to retain potassium. To assess this hypothesis, we study the effect of potassium loading on athletes during prolonged hypokinesia (HK). Studies were done during 30 d of a pre-HK period and during 364 d of an HK period. Forty male athletes aged 23–26 yr were chosen as subjects. They were divided equally into four groups: unloaded ambulatory control subjects (UACS), unloaded hypokinetic subjects (UHKS), loaded hypokinetic subjects (LHKS), and loaded ambulatory control subjects (LACS). For the simulation of the hypokinetic effect, the LHKS and UHKS groups were kept under an average running distance of 1.7 km/d. In the LACS and LHKS groups, potassium loading tests were done by administering 95.35 mg KC1 per kg body weight. During the pre-HK and HK periods and after KC1 loading tests, fecal and urinary potassium excretion, sodium and chloride excretion, plasma potassium, sodium and chloride concentration, and potassium balance were measured. Plasma renin activity (PRA) and plasma aldosterone concentration was also measured. Negative potassium balance increased significantly (p < -0.01) in the UHKS and LHKS groups when compared with the UACS and LACS groups. Plasma electrolyte concentration, urinary electrolyte excretion, fecal potassium excretion, PRA, and PA concentration increased significantly (p ≤ 0.01) in the LHKS and UHKS groups when compared with LACS and UACS groups. Urinary and fecal potassium excretion increased much more and much faster in the LHKS group than in the UHKS group. By contrast, the corresponding parameters change insignificantly in the UACS and LACS groups when compared with the base line control values. It was concluded that urinary and fecal potassium excretion increased significantly despite the presence of negative potassium balance; thus, negative potassium balance may not be based on potassium shortage in the diet because of the impossibility of the body to retain potassium during HK.  相似文献   

10.
The aim of this study was to assess the effect of a daily intake of copper supplements on negative copper balance during prolonged exposure to hypokinesia (decreased number of kilometers per day). During hypokinesia (HK), negative copper balance is shown by increased, not by decreased, serum copper concentration, as it happens in other situations. Studies were done during a 30-d prehypokinetic period and a 364-d hypokinetic period. Forty male trained volunteers aged 22–26 yr with a peak oxygen uptake of 66.4 mL/min/kg and with an average of 13.7 km/d running distance were chosen as subjects. They were equally divided into four groups: unsupplemented ambulatory control subjects (UACS), unsupplemented hypokinetic subjects (UHKS), supplemented hypokinetic subjects (SHKS), and supplemented ambulatory control subjects (SACS). The SACS and SHKS groups took 0.09 mg copper carbonate/kg body weight daily. The SHKS and UHKS groups were maintained under an average running distance of 1.7 km/d, whereas the SACS and UACS groups did not experience any modifications in their normal training routines. During the 30-d prehypokinetic period and the 346-d hypokinetic period, urinary excretion of copper, calcium, and magnesium and serum concentrations of copper, calcium, and magnesium were measured. Copper loss in feces and copper balance was also determined. In both UHKS and SHKS groups, urinary excretion of copper, calcium, and magnesium and concentrations of copper, magnesium, and calcium in serum increased significantly when compared with the SACS and UACS groups. Loss of copper in feces was also increased significantly in the SHKS and UHKS groups when compared with the UACS and SACS groups. Throughout the study, the copper balance was negative in the SHKS and UHKS groups, whereas in the SACS and UACS groups, the copper balance was positive. It was concluded that a daily intake of copper supplements cannot be used to prevent copper deficiency shown by increased copper concentration. Copper supplements also failed to prevent negative copper balance and copper losses in feces and urine in endurancetrained subjects during prolonged exposure to HK.  相似文献   

11.
12.
Neural, mechanical and muscle factors influence muscle force production. This study was, therefore, designed to compare possible differences in the function of the neuromuscular system among differently adapted subjects. A group of 11 power-trained athletes and 10 endurance-trained athletes volunteered as subjects for this study. Maximal voluntary isometric force and the rate of force production of the knee extensor and the plantar flexor muscles were measured. In addition, basic reflex function was measured in the two experimental conditions. The power athletes produced higher voluntary forces (P<0.01-0.001) with higher rates for force production (P<0.001) by both muscle groups measured. Unexpectedly, however, no differences were noticed in the electromyogram time curves between the groups. During reflex activity, the endurance group demonstrated higher sensitivity to the mechanical stimuli, i.e. the higher reflex amplitude caused a higher rate of reflex force development, and the reflex amplitude correlated with the averaged angular velocity. The differences in the isometric conditions could be explained by obviously different muscle fibre distribution, by different amounts of muscle mass, by possible differences in the force transmission from individual myofibrils to the skeletal muscle and by specificity of training. In addition, differences in nervous system structure and muscle spindle properties could explain the observed differences in reflex activity between the two groups.  相似文献   

13.
14.
15.
Comparisons were made of the appearance of phosphorylase (PHOS) a and lactate (LA) during electrical stimulation of the gastrocnemius (GM) and soleus (SM) muscles of normal and sympathectomized (SYMPX) rats. Ten-second stimulation at 3 Hz increased PHOS a approximately fourfold in the GM of normal rats, whereafter it declined during stimulation until at 60 s it was similar to rest. The increase in PHOS a of GM from SYMPX rats after 10 s of stimulation was approximately 50% that of normal rats. Stimulation of the SM produced smaller and slower increases in PHOS a with the peak occurring after 60 s, which remained constant to 90 s. SYMPX did not alter this effect in the SM. LA production and creatine phosphate depletion in the GM were continuous throughout stimulation and uninfluenced by SYMPX. This was true for the SM with the exception of LA production being greater after SYMPX. [ATP] was unchanged by electrical stimulation. The rate and magnitude of the PHOS a appearance was a function of stimulation frequency. Reversion of PHOS to the b form after stimulation was rapid, with approximately 50% of the peak value being attained in 2.5 s, and at 5 s the values were those of rest. These data demonstrate that an intact sympathoadrenal system is not obligatory for the initiation of glycogenolysis in skeletal muscle.  相似文献   

16.
17.
18.
19.
The aim of this study was to evaluate the effect of a daily intake of fluid and salt supplementation (FSS) on the deficiency of electrolytes, which is characterized by higher rather than lower plasma concentration of electrolytes during prolonged hypokinesia (HK) (decreased number of km taken per day). Forty long distance runners aged 22–25 yr with a peak V02 65.4 mL min-1 kg-1 with an average 14.2 km d running distance were selected as subjects. They were equally divided into four groups: 1) unsupplemented control subjects (UCS); 2) unsupplemented hypokinetic subjects (UHS); 3) supplemented hypokinetic subjects (SHS), and 4) supplemented control subjects (SCS). During the investigation of 364 d, groups 2 and 3 maintained an average running distance of less than 4.7 km per day, groups 1 and 4 did not experience any modification in their normal training routines and diets. During the preexperimental period of 60 d and during the experimental period of 364 d urinary excretion of electrolytes and concentrations of sodium, potassium, calcium, and magnesium in plasma were determined. Whole blood hemoglobin, hematocrit index, plasma osmolality, and plasma protein concentration were measured. In the UHS plasma concentration of electrolytes and urinary excretion thereof, fluid elimination, hematocrit, whole blood hemoglobin, plasma osmolality, and plasma protein concentration increased significantly (p < 0.05) when compared with the UCS, SCS, and SHS groups. In the SHS plasma concentration of electrolytes and urinary excretion thereof, fluid excretion, whole blood hemoglobin, hematocrit, plasma osmolality, and plasma protein concentration decreased when compared with the UHS and increased insignificantly when compared with the UCS and SCS groups. It was concluded that FSS may be used to prevent or minimize electrolyte deficiency in endurance-trained volunteers during prolonged restriction of muscular activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号